ThinLTOCodeGenerator.cpp 45.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
//===-ThinLTOCodeGenerator.cpp - LLVM Link Time Optimizer -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Thin Link Time Optimization library. This library is
// intended to be used by linker to optimize code at link time.
//
//===----------------------------------------------------------------------===//

#include "llvm/LTO/legacy/ThinLTOCodeGenerator.h"
#include "llvm/Support/CommandLine.h"

#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/PassTimingInfo.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/LTO/LTO.h"
#include "llvm/LTO/SummaryBasedOptimizations.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Support/CachePruning.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/SmallVectorMemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/Transforms/ObjCARC.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"

#include <numeric>

#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif

using namespace llvm;

#define DEBUG_TYPE "thinlto"

namespace llvm {
// Flags -discard-value-names, defined in LTOCodeGenerator.cpp
extern cl::opt<bool> LTODiscardValueNames;
extern cl::opt<std::string> RemarksFilename;
extern cl::opt<std::string> RemarksPasses;
extern cl::opt<bool> RemarksWithHotness;
extern cl::opt<std::string> RemarksFormat;
}

namespace {

// Default to using all available threads in the system, but using only one
// thred per core, as indicated by the usage of
// heavyweight_hardware_concurrency() below.
static cl::opt<int> ThreadCount("threads", cl::init(0));

// Simple helper to save temporary files for debug.
static void saveTempBitcode(const Module &TheModule, StringRef TempDir,
                            unsigned count, StringRef Suffix) {
  if (TempDir.empty())
    return;
  // User asked to save temps, let dump the bitcode file after import.
  std::string SaveTempPath = (TempDir + llvm::Twine(count) + Suffix).str();
  std::error_code EC;
  raw_fd_ostream OS(SaveTempPath, EC, sys::fs::OF_None);
  if (EC)
    report_fatal_error(Twine("Failed to open ") + SaveTempPath +
                       " to save optimized bitcode\n");
  WriteBitcodeToFile(TheModule, OS, /* ShouldPreserveUseListOrder */ true);
}

static const GlobalValueSummary *
getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) {
  // If there is any strong definition anywhere, get it.
  auto StrongDefForLinker = llvm::find_if(
      GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
        auto Linkage = Summary->linkage();
        return !GlobalValue::isAvailableExternallyLinkage(Linkage) &&
               !GlobalValue::isWeakForLinker(Linkage);
      });
  if (StrongDefForLinker != GVSummaryList.end())
    return StrongDefForLinker->get();
  // Get the first *linker visible* definition for this global in the summary
  // list.
  auto FirstDefForLinker = llvm::find_if(
      GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
        auto Linkage = Summary->linkage();
        return !GlobalValue::isAvailableExternallyLinkage(Linkage);
      });
  // Extern templates can be emitted as available_externally.
  if (FirstDefForLinker == GVSummaryList.end())
    return nullptr;
  return FirstDefForLinker->get();
}

// Populate map of GUID to the prevailing copy for any multiply defined
// symbols. Currently assume first copy is prevailing, or any strong
// definition. Can be refined with Linker information in the future.
static void computePrevailingCopies(
    const ModuleSummaryIndex &Index,
    DenseMap<GlobalValue::GUID, const GlobalValueSummary *> &PrevailingCopy) {
  auto HasMultipleCopies = [&](const GlobalValueSummaryList &GVSummaryList) {
    return GVSummaryList.size() > 1;
  };

  for (auto &I : Index) {
    if (HasMultipleCopies(I.second.SummaryList))
      PrevailingCopy[I.first] =
          getFirstDefinitionForLinker(I.second.SummaryList);
  }
}

static StringMap<lto::InputFile *>
generateModuleMap(std::vector<std::unique_ptr<lto::InputFile>> &Modules) {
  StringMap<lto::InputFile *> ModuleMap;
  for (auto &M : Modules) {
    assert(ModuleMap.find(M->getName()) == ModuleMap.end() &&
           "Expect unique Buffer Identifier");
    ModuleMap[M->getName()] = M.get();
  }
  return ModuleMap;
}

static void promoteModule(Module &TheModule, const ModuleSummaryIndex &Index,
                          bool ClearDSOLocalOnDeclarations) {
  if (renameModuleForThinLTO(TheModule, Index, ClearDSOLocalOnDeclarations))
    report_fatal_error("renameModuleForThinLTO failed");
}

namespace {
class ThinLTODiagnosticInfo : public DiagnosticInfo {
  const Twine &Msg;
public:
  ThinLTODiagnosticInfo(const Twine &DiagMsg,
                        DiagnosticSeverity Severity = DS_Error)
      : DiagnosticInfo(DK_Linker, Severity), Msg(DiagMsg) {}
  void print(DiagnosticPrinter &DP) const override { DP << Msg; }
};
}

/// Verify the module and strip broken debug info.
static void verifyLoadedModule(Module &TheModule) {
  bool BrokenDebugInfo = false;
  if (verifyModule(TheModule, &dbgs(), &BrokenDebugInfo))
    report_fatal_error("Broken module found, compilation aborted!");
  if (BrokenDebugInfo) {
    TheModule.getContext().diagnose(ThinLTODiagnosticInfo(
        "Invalid debug info found, debug info will be stripped", DS_Warning));
    StripDebugInfo(TheModule);
  }
}

static std::unique_ptr<Module> loadModuleFromInput(lto::InputFile *Input,
                                                   LLVMContext &Context,
                                                   bool Lazy,
                                                   bool IsImporting) {
  auto &Mod = Input->getSingleBitcodeModule();
  SMDiagnostic Err;
  Expected<std::unique_ptr<Module>> ModuleOrErr =
      Lazy ? Mod.getLazyModule(Context,
                               /* ShouldLazyLoadMetadata */ true, IsImporting)
           : Mod.parseModule(Context);
  if (!ModuleOrErr) {
    handleAllErrors(ModuleOrErr.takeError(), [&](ErrorInfoBase &EIB) {
      SMDiagnostic Err = SMDiagnostic(Mod.getModuleIdentifier(),
                                      SourceMgr::DK_Error, EIB.message());
      Err.print("ThinLTO", errs());
    });
    report_fatal_error("Can't load module, abort.");
  }
  if (!Lazy)
    verifyLoadedModule(*ModuleOrErr.get());
  return std::move(*ModuleOrErr);
}

static void
crossImportIntoModule(Module &TheModule, const ModuleSummaryIndex &Index,
                      StringMap<lto::InputFile *> &ModuleMap,
                      const FunctionImporter::ImportMapTy &ImportList,
                      bool ClearDSOLocalOnDeclarations) {
  auto Loader = [&](StringRef Identifier) {
    auto &Input = ModuleMap[Identifier];
    return loadModuleFromInput(Input, TheModule.getContext(),
                               /*Lazy=*/true, /*IsImporting*/ true);
  };

  FunctionImporter Importer(Index, Loader, ClearDSOLocalOnDeclarations);
  Expected<bool> Result = Importer.importFunctions(TheModule, ImportList);
  if (!Result) {
    handleAllErrors(Result.takeError(), [&](ErrorInfoBase &EIB) {
      SMDiagnostic Err = SMDiagnostic(TheModule.getModuleIdentifier(),
                                      SourceMgr::DK_Error, EIB.message());
      Err.print("ThinLTO", errs());
    });
    report_fatal_error("importFunctions failed");
  }
  // Verify again after cross-importing.
  verifyLoadedModule(TheModule);
}

static void optimizeModule(Module &TheModule, TargetMachine &TM,
                           unsigned OptLevel, bool Freestanding,
                           ModuleSummaryIndex *Index) {
  // Populate the PassManager
  PassManagerBuilder PMB;
  PMB.LibraryInfo = new TargetLibraryInfoImpl(TM.getTargetTriple());
  if (Freestanding)
    PMB.LibraryInfo->disableAllFunctions();
  PMB.Inliner = createFunctionInliningPass();
  // FIXME: should get it from the bitcode?
  PMB.OptLevel = OptLevel;
  PMB.LoopVectorize = true;
  PMB.SLPVectorize = true;
  // Already did this in verifyLoadedModule().
  PMB.VerifyInput = false;
  PMB.VerifyOutput = false;
  PMB.ImportSummary = Index;

  legacy::PassManager PM;

  // Add the TTI (required to inform the vectorizer about register size for
  // instance)
  PM.add(createTargetTransformInfoWrapperPass(TM.getTargetIRAnalysis()));

  // Add optimizations
  PMB.populateThinLTOPassManager(PM);

  PM.run(TheModule);
}

static void
addUsedSymbolToPreservedGUID(const lto::InputFile &File,
                             DenseSet<GlobalValue::GUID> &PreservedGUID) {
  for (const auto &Sym : File.symbols()) {
    if (Sym.isUsed())
      PreservedGUID.insert(GlobalValue::getGUID(Sym.getIRName()));
  }
}

// Convert the PreservedSymbols map from "Name" based to "GUID" based.
static DenseSet<GlobalValue::GUID>
computeGUIDPreservedSymbols(const StringSet<> &PreservedSymbols,
                            const Triple &TheTriple) {
  DenseSet<GlobalValue::GUID> GUIDPreservedSymbols(PreservedSymbols.size());
  for (auto &Entry : PreservedSymbols) {
    StringRef Name = Entry.first();
    if (TheTriple.isOSBinFormatMachO() && Name.size() > 0 && Name[0] == '_')
      Name = Name.drop_front();
    GUIDPreservedSymbols.insert(GlobalValue::getGUID(Name));
  }
  return GUIDPreservedSymbols;
}

std::unique_ptr<MemoryBuffer> codegenModule(Module &TheModule,
                                            TargetMachine &TM) {
  SmallVector<char, 128> OutputBuffer;

  // CodeGen
  {
    raw_svector_ostream OS(OutputBuffer);
    legacy::PassManager PM;

    // If the bitcode files contain ARC code and were compiled with optimization,
    // the ObjCARCContractPass must be run, so do it unconditionally here.
    PM.add(createObjCARCContractPass());

    // Setup the codegen now.
    if (TM.addPassesToEmitFile(PM, OS, nullptr, CGFT_ObjectFile,
                               /* DisableVerify */ true))
      report_fatal_error("Failed to setup codegen");

    // Run codegen now. resulting binary is in OutputBuffer.
    PM.run(TheModule);
  }
  return std::make_unique<SmallVectorMemoryBuffer>(std::move(OutputBuffer));
}

/// Manage caching for a single Module.
class ModuleCacheEntry {
  SmallString<128> EntryPath;

public:
  // Create a cache entry. This compute a unique hash for the Module considering
  // the current list of export/import, and offer an interface to query to
  // access the content in the cache.
  ModuleCacheEntry(
      StringRef CachePath, const ModuleSummaryIndex &Index, StringRef ModuleID,
      const FunctionImporter::ImportMapTy &ImportList,
      const FunctionImporter::ExportSetTy &ExportList,
      const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
      const GVSummaryMapTy &DefinedGVSummaries, unsigned OptLevel,
      bool Freestanding, const TargetMachineBuilder &TMBuilder) {
    if (CachePath.empty())
      return;

    if (!Index.modulePaths().count(ModuleID))
      // The module does not have an entry, it can't have a hash at all
      return;

    if (all_of(Index.getModuleHash(ModuleID),
               [](uint32_t V) { return V == 0; }))
      // No hash entry, no caching!
      return;

    llvm::lto::Config Conf;
    Conf.OptLevel = OptLevel;
    Conf.Options = TMBuilder.Options;
    Conf.CPU = TMBuilder.MCpu;
    Conf.MAttrs.push_back(TMBuilder.MAttr);
    Conf.RelocModel = TMBuilder.RelocModel;
    Conf.CGOptLevel = TMBuilder.CGOptLevel;
    Conf.Freestanding = Freestanding;
    SmallString<40> Key;
    computeLTOCacheKey(Key, Conf, Index, ModuleID, ImportList, ExportList,
                       ResolvedODR, DefinedGVSummaries);

    // This choice of file name allows the cache to be pruned (see pruneCache()
    // in include/llvm/Support/CachePruning.h).
    sys::path::append(EntryPath, CachePath, "llvmcache-" + Key);
  }

  // Access the path to this entry in the cache.
  StringRef getEntryPath() { return EntryPath; }

  // Try loading the buffer for this cache entry.
  ErrorOr<std::unique_ptr<MemoryBuffer>> tryLoadingBuffer() {
    if (EntryPath.empty())
      return std::error_code();
    SmallString<64> ResultPath;
    Expected<sys::fs::file_t> FDOrErr = sys::fs::openNativeFileForRead(
        Twine(EntryPath), sys::fs::OF_UpdateAtime, &ResultPath);
    if (!FDOrErr)
      return errorToErrorCode(FDOrErr.takeError());
    ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = MemoryBuffer::getOpenFile(
        *FDOrErr, EntryPath, /*FileSize=*/-1, /*RequiresNullTerminator=*/false);
    sys::fs::closeFile(*FDOrErr);
    return MBOrErr;
  }

  // Cache the Produced object file
  void write(const MemoryBuffer &OutputBuffer) {
    if (EntryPath.empty())
      return;

    // Write to a temporary to avoid race condition
    SmallString<128> TempFilename;
    SmallString<128> CachePath(EntryPath);
    llvm::sys::path::remove_filename(CachePath);
    sys::path::append(TempFilename, CachePath, "Thin-%%%%%%.tmp.o");

    if (auto Err = handleErrors(
            llvm::writeFileAtomically(TempFilename, EntryPath,
                                      OutputBuffer.getBuffer()),
            [](const llvm::AtomicFileWriteError &E) {
              std::string ErrorMsgBuffer;
              llvm::raw_string_ostream S(ErrorMsgBuffer);
              E.log(S);

              if (E.Error ==
                  llvm::atomic_write_error::failed_to_create_uniq_file) {
                errs() << "Error: " << ErrorMsgBuffer << "\n";
                report_fatal_error("ThinLTO: Can't get a temporary file");
              }
            })) {
      // FIXME
      consumeError(std::move(Err));
    }
  }
};

static std::unique_ptr<MemoryBuffer>
ProcessThinLTOModule(Module &TheModule, ModuleSummaryIndex &Index,
                     StringMap<lto::InputFile *> &ModuleMap, TargetMachine &TM,
                     const FunctionImporter::ImportMapTy &ImportList,
                     const FunctionImporter::ExportSetTy &ExportList,
                     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
                     const GVSummaryMapTy &DefinedGlobals,
                     const ThinLTOCodeGenerator::CachingOptions &CacheOptions,
                     bool DisableCodeGen, StringRef SaveTempsDir,
                     bool Freestanding, unsigned OptLevel, unsigned count) {

  // "Benchmark"-like optimization: single-source case
  bool SingleModule = (ModuleMap.size() == 1);

  // When linking an ELF shared object, dso_local should be dropped. We
  // conservatively do this for -fpic.
  bool ClearDSOLocalOnDeclarations =
      TM.getTargetTriple().isOSBinFormatELF() &&
      TM.getRelocationModel() != Reloc::Static &&
      TheModule.getPIELevel() == PIELevel::Default;

  if (!SingleModule) {
    promoteModule(TheModule, Index, ClearDSOLocalOnDeclarations);

    // Apply summary-based prevailing-symbol resolution decisions.
    thinLTOResolvePrevailingInModule(TheModule, DefinedGlobals);

    // Save temps: after promotion.
    saveTempBitcode(TheModule, SaveTempsDir, count, ".1.promoted.bc");
  }

  // Be friendly and don't nuke totally the module when the client didn't
  // supply anything to preserve.
  if (!ExportList.empty() || !GUIDPreservedSymbols.empty()) {
    // Apply summary-based internalization decisions.
    thinLTOInternalizeModule(TheModule, DefinedGlobals);
  }

  // Save internalized bitcode
  saveTempBitcode(TheModule, SaveTempsDir, count, ".2.internalized.bc");

  if (!SingleModule) {
    crossImportIntoModule(TheModule, Index, ModuleMap, ImportList,
                          ClearDSOLocalOnDeclarations);

    // Save temps: after cross-module import.
    saveTempBitcode(TheModule, SaveTempsDir, count, ".3.imported.bc");
  }

  optimizeModule(TheModule, TM, OptLevel, Freestanding, &Index);

  saveTempBitcode(TheModule, SaveTempsDir, count, ".4.opt.bc");

  if (DisableCodeGen) {
    // Configured to stop before CodeGen, serialize the bitcode and return.
    SmallVector<char, 128> OutputBuffer;
    {
      raw_svector_ostream OS(OutputBuffer);
      ProfileSummaryInfo PSI(TheModule);
      auto Index = buildModuleSummaryIndex(TheModule, nullptr, &PSI);
      WriteBitcodeToFile(TheModule, OS, true, &Index);
    }
    return std::make_unique<SmallVectorMemoryBuffer>(std::move(OutputBuffer));
  }

  return codegenModule(TheModule, TM);
}

/// Resolve prevailing symbols. Record resolutions in the \p ResolvedODR map
/// for caching, and in the \p Index for application during the ThinLTO
/// backends. This is needed for correctness for exported symbols (ensure
/// at least one copy kept) and a compile-time optimization (to drop duplicate
/// copies when possible).
static void resolvePrevailingInIndex(
    ModuleSummaryIndex &Index,
    StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>>
        &ResolvedODR,
    const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
    const DenseMap<GlobalValue::GUID, const GlobalValueSummary *>
        &PrevailingCopy) {

  auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
    const auto &Prevailing = PrevailingCopy.find(GUID);
    // Not in map means that there was only one copy, which must be prevailing.
    if (Prevailing == PrevailingCopy.end())
      return true;
    return Prevailing->second == S;
  };

  auto recordNewLinkage = [&](StringRef ModuleIdentifier,
                              GlobalValue::GUID GUID,
                              GlobalValue::LinkageTypes NewLinkage) {
    ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
  };

  thinLTOResolvePrevailingInIndex(Index, isPrevailing, recordNewLinkage,
                                  GUIDPreservedSymbols);
}

// Initialize the TargetMachine builder for a given Triple
static void initTMBuilder(TargetMachineBuilder &TMBuilder,
                          const Triple &TheTriple) {
  // Set a default CPU for Darwin triples (copied from LTOCodeGenerator).
  // FIXME this looks pretty terrible...
  if (TMBuilder.MCpu.empty() && TheTriple.isOSDarwin()) {
    if (TheTriple.getArch() == llvm::Triple::x86_64)
      TMBuilder.MCpu = "core2";
    else if (TheTriple.getArch() == llvm::Triple::x86)
      TMBuilder.MCpu = "yonah";
    else if (TheTriple.getArch() == llvm::Triple::aarch64 ||
             TheTriple.getArch() == llvm::Triple::aarch64_32)
      TMBuilder.MCpu = "cyclone";
  }
  TMBuilder.TheTriple = std::move(TheTriple);
}

} // end anonymous namespace

void ThinLTOCodeGenerator::addModule(StringRef Identifier, StringRef Data) {
  MemoryBufferRef Buffer(Data, Identifier);

  auto InputOrError = lto::InputFile::create(Buffer);
  if (!InputOrError)
    report_fatal_error("ThinLTO cannot create input file: " +
                       toString(InputOrError.takeError()));

  auto TripleStr = (*InputOrError)->getTargetTriple();
  Triple TheTriple(TripleStr);

  if (Modules.empty())
    initTMBuilder(TMBuilder, Triple(TheTriple));
  else if (TMBuilder.TheTriple != TheTriple) {
    if (!TMBuilder.TheTriple.isCompatibleWith(TheTriple))
      report_fatal_error("ThinLTO modules with incompatible triples not "
                         "supported");
    initTMBuilder(TMBuilder, Triple(TMBuilder.TheTriple.merge(TheTriple)));
  }

  Modules.emplace_back(std::move(*InputOrError));
}

void ThinLTOCodeGenerator::preserveSymbol(StringRef Name) {
  PreservedSymbols.insert(Name);
}

void ThinLTOCodeGenerator::crossReferenceSymbol(StringRef Name) {
  // FIXME: At the moment, we don't take advantage of this extra information,
  // we're conservatively considering cross-references as preserved.
  //  CrossReferencedSymbols.insert(Name);
  PreservedSymbols.insert(Name);
}

// TargetMachine factory
std::unique_ptr<TargetMachine> TargetMachineBuilder::create() const {
  std::string ErrMsg;
  const Target *TheTarget =
      TargetRegistry::lookupTarget(TheTriple.str(), ErrMsg);
  if (!TheTarget) {
    report_fatal_error("Can't load target for this Triple: " + ErrMsg);
  }

  // Use MAttr as the default set of features.
  SubtargetFeatures Features(MAttr);
  Features.getDefaultSubtargetFeatures(TheTriple);
  std::string FeatureStr = Features.getString();

  return std::unique_ptr<TargetMachine>(
      TheTarget->createTargetMachine(TheTriple.str(), MCpu, FeatureStr, Options,
                                     RelocModel, None, CGOptLevel));
}

/**
 * Produce the combined summary index from all the bitcode files:
 * "thin-link".
 */
std::unique_ptr<ModuleSummaryIndex> ThinLTOCodeGenerator::linkCombinedIndex() {
  std::unique_ptr<ModuleSummaryIndex> CombinedIndex =
      std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
  uint64_t NextModuleId = 0;
  for (auto &Mod : Modules) {
    auto &M = Mod->getSingleBitcodeModule();
    if (Error Err =
            M.readSummary(*CombinedIndex, Mod->getName(), NextModuleId++)) {
      // FIXME diagnose
      logAllUnhandledErrors(
          std::move(Err), errs(),
          "error: can't create module summary index for buffer: ");
      return nullptr;
    }
  }
  return CombinedIndex;
}

namespace {
struct IsExported {
  const StringMap<FunctionImporter::ExportSetTy> &ExportLists;
  const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols;

  IsExported(const StringMap<FunctionImporter::ExportSetTy> &ExportLists,
             const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols)
      : ExportLists(ExportLists), GUIDPreservedSymbols(GUIDPreservedSymbols) {}

  bool operator()(StringRef ModuleIdentifier, ValueInfo VI) const {
    const auto &ExportList = ExportLists.find(ModuleIdentifier);
    return (ExportList != ExportLists.end() && ExportList->second.count(VI)) ||
           GUIDPreservedSymbols.count(VI.getGUID());
  }
};

struct IsPrevailing {
  const DenseMap<GlobalValue::GUID, const GlobalValueSummary *> &PrevailingCopy;
  IsPrevailing(const DenseMap<GlobalValue::GUID, const GlobalValueSummary *>
                   &PrevailingCopy)
      : PrevailingCopy(PrevailingCopy) {}

  bool operator()(GlobalValue::GUID GUID, const GlobalValueSummary *S) const {
    const auto &Prevailing = PrevailingCopy.find(GUID);
    // Not in map means that there was only one copy, which must be prevailing.
    if (Prevailing == PrevailingCopy.end())
      return true;
    return Prevailing->second == S;
  };
};
} // namespace

static void computeDeadSymbolsInIndex(
    ModuleSummaryIndex &Index,
    const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
  // We have no symbols resolution available. And can't do any better now in the
  // case where the prevailing symbol is in a native object. It can be refined
  // with linker information in the future.
  auto isPrevailing = [&](GlobalValue::GUID G) {
    return PrevailingType::Unknown;
  };
  computeDeadSymbolsWithConstProp(Index, GUIDPreservedSymbols, isPrevailing,
                                  /* ImportEnabled = */ true);
}

/**
 * Perform promotion and renaming of exported internal functions.
 * Index is updated to reflect linkage changes from weak resolution.
 */
void ThinLTOCodeGenerator::promote(Module &TheModule, ModuleSummaryIndex &Index,
                                   const lto::InputFile &File) {
  auto ModuleCount = Index.modulePaths().size();
  auto ModuleIdentifier = TheModule.getModuleIdentifier();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries;
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Convert the preserved symbols set from string to GUID
  auto GUIDPreservedSymbols = computeGUIDPreservedSymbols(
      PreservedSymbols, Triple(TheModule.getTargetTriple()));

  // Add used symbol to the preserved symbols.
  addUsedSymbolToPreservedGUID(File, GUIDPreservedSymbols);

  // Compute "dead" symbols, we don't want to import/export these!
  computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
  computePrevailingCopies(Index, PrevailingCopy);

  // Resolve prevailing symbols
  StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
  resolvePrevailingInIndex(Index, ResolvedODR, GUIDPreservedSymbols,
                           PrevailingCopy);

  thinLTOResolvePrevailingInModule(
      TheModule, ModuleToDefinedGVSummaries[ModuleIdentifier]);

  // Promote the exported values in the index, so that they are promoted
  // in the module.
  thinLTOInternalizeAndPromoteInIndex(
      Index, IsExported(ExportLists, GUIDPreservedSymbols),
      IsPrevailing(PrevailingCopy));

  // FIXME Set ClearDSOLocalOnDeclarations.
  promoteModule(TheModule, Index, /*ClearDSOLocalOnDeclarations=*/false);
}

/**
 * Perform cross-module importing for the module identified by ModuleIdentifier.
 */
void ThinLTOCodeGenerator::crossModuleImport(Module &TheModule,
                                             ModuleSummaryIndex &Index,
                                             const lto::InputFile &File) {
  auto ModuleMap = generateModuleMap(Modules);
  auto ModuleCount = Index.modulePaths().size();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Convert the preserved symbols set from string to GUID
  auto GUIDPreservedSymbols = computeGUIDPreservedSymbols(
      PreservedSymbols, Triple(TheModule.getTargetTriple()));

  addUsedSymbolToPreservedGUID(File, GUIDPreservedSymbols);

  // Compute "dead" symbols, we don't want to import/export these!
  computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);
  auto &ImportList = ImportLists[TheModule.getModuleIdentifier()];

  // FIXME Set ClearDSOLocalOnDeclarations.
  crossImportIntoModule(TheModule, Index, ModuleMap, ImportList,
                        /*ClearDSOLocalOnDeclarations=*/false);
}

/**
 * Compute the list of summaries needed for importing into module.
 */
void ThinLTOCodeGenerator::gatherImportedSummariesForModule(
    Module &TheModule, ModuleSummaryIndex &Index,
    std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex,
    const lto::InputFile &File) {
  auto ModuleCount = Index.modulePaths().size();
  auto ModuleIdentifier = TheModule.getModuleIdentifier();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Convert the preserved symbols set from string to GUID
  auto GUIDPreservedSymbols = computeGUIDPreservedSymbols(
      PreservedSymbols, Triple(TheModule.getTargetTriple()));

  addUsedSymbolToPreservedGUID(File, GUIDPreservedSymbols);

  // Compute "dead" symbols, we don't want to import/export these!
  computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  llvm::gatherImportedSummariesForModule(
      ModuleIdentifier, ModuleToDefinedGVSummaries,
      ImportLists[ModuleIdentifier], ModuleToSummariesForIndex);
}

/**
 * Emit the list of files needed for importing into module.
 */
void ThinLTOCodeGenerator::emitImports(Module &TheModule, StringRef OutputName,
                                       ModuleSummaryIndex &Index,
                                       const lto::InputFile &File) {
  auto ModuleCount = Index.modulePaths().size();
  auto ModuleIdentifier = TheModule.getModuleIdentifier();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Convert the preserved symbols set from string to GUID
  auto GUIDPreservedSymbols = computeGUIDPreservedSymbols(
      PreservedSymbols, Triple(TheModule.getTargetTriple()));

  addUsedSymbolToPreservedGUID(File, GUIDPreservedSymbols);

  // Compute "dead" symbols, we don't want to import/export these!
  computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
  llvm::gatherImportedSummariesForModule(
      ModuleIdentifier, ModuleToDefinedGVSummaries,
      ImportLists[ModuleIdentifier], ModuleToSummariesForIndex);

  std::error_code EC;
  if ((EC = EmitImportsFiles(ModuleIdentifier, OutputName,
                             ModuleToSummariesForIndex)))
    report_fatal_error(Twine("Failed to open ") + OutputName +
                       " to save imports lists\n");
}

/**
 * Perform internalization. Runs promote and internalization together.
 * Index is updated to reflect linkage changes.
 */
void ThinLTOCodeGenerator::internalize(Module &TheModule,
                                       ModuleSummaryIndex &Index,
                                       const lto::InputFile &File) {
  initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));
  auto ModuleCount = Index.modulePaths().size();
  auto ModuleIdentifier = TheModule.getModuleIdentifier();

  // Convert the preserved symbols set from string to GUID
  auto GUIDPreservedSymbols =
      computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);

  addUsedSymbolToPreservedGUID(File, GUIDPreservedSymbols);

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Compute "dead" symbols, we don't want to import/export these!
  computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);
  auto &ExportList = ExportLists[ModuleIdentifier];

  // Be friendly and don't nuke totally the module when the client didn't
  // supply anything to preserve.
  if (ExportList.empty() && GUIDPreservedSymbols.empty())
    return;

  DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
  computePrevailingCopies(Index, PrevailingCopy);

  // Resolve prevailing symbols
  StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
  resolvePrevailingInIndex(Index, ResolvedODR, GUIDPreservedSymbols,
                           PrevailingCopy);

  // Promote the exported values in the index, so that they are promoted
  // in the module.
  thinLTOInternalizeAndPromoteInIndex(
      Index, IsExported(ExportLists, GUIDPreservedSymbols),
      IsPrevailing(PrevailingCopy));

  // FIXME Set ClearDSOLocalOnDeclarations.
  promoteModule(TheModule, Index, /*ClearDSOLocalOnDeclarations=*/false);

  // Internalization
  thinLTOResolvePrevailingInModule(
      TheModule, ModuleToDefinedGVSummaries[ModuleIdentifier]);

  thinLTOInternalizeModule(TheModule,
                           ModuleToDefinedGVSummaries[ModuleIdentifier]);
}

/**
 * Perform post-importing ThinLTO optimizations.
 */
void ThinLTOCodeGenerator::optimize(Module &TheModule) {
  initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));

  // Optimize now
  optimizeModule(TheModule, *TMBuilder.create(), OptLevel, Freestanding,
                 nullptr);
}

/// Write out the generated object file, either from CacheEntryPath or from
/// OutputBuffer, preferring hard-link when possible.
/// Returns the path to the generated file in SavedObjectsDirectoryPath.
std::string
ThinLTOCodeGenerator::writeGeneratedObject(int count, StringRef CacheEntryPath,
                                           const MemoryBuffer &OutputBuffer) {
  auto ArchName = TMBuilder.TheTriple.getArchName();
  SmallString<128> OutputPath(SavedObjectsDirectoryPath);
  llvm::sys::path::append(OutputPath,
                          Twine(count) + "." + ArchName + ".thinlto.o");
  OutputPath.c_str(); // Ensure the string is null terminated.
  if (sys::fs::exists(OutputPath))
    sys::fs::remove(OutputPath);

  // We don't return a memory buffer to the linker, just a list of files.
  if (!CacheEntryPath.empty()) {
    // Cache is enabled, hard-link the entry (or copy if hard-link fails).
    auto Err = sys::fs::create_hard_link(CacheEntryPath, OutputPath);
    if (!Err)
      return std::string(OutputPath.str());
    // Hard linking failed, try to copy.
    Err = sys::fs::copy_file(CacheEntryPath, OutputPath);
    if (!Err)
      return std::string(OutputPath.str());
    // Copy failed (could be because the CacheEntry was removed from the cache
    // in the meantime by another process), fall back and try to write down the
    // buffer to the output.
    errs() << "remark: can't link or copy from cached entry '" << CacheEntryPath
           << "' to '" << OutputPath << "'\n";
  }
  // No cache entry, just write out the buffer.
  std::error_code Err;
  raw_fd_ostream OS(OutputPath, Err, sys::fs::OF_None);
  if (Err)
    report_fatal_error("Can't open output '" + OutputPath + "'\n");
  OS << OutputBuffer.getBuffer();
  return std::string(OutputPath.str());
}

// Main entry point for the ThinLTO processing
void ThinLTOCodeGenerator::run() {
  // Prepare the resulting object vector
  assert(ProducedBinaries.empty() && "The generator should not be reused");
  if (SavedObjectsDirectoryPath.empty())
    ProducedBinaries.resize(Modules.size());
  else {
    sys::fs::create_directories(SavedObjectsDirectoryPath);
    bool IsDir;
    sys::fs::is_directory(SavedObjectsDirectoryPath, IsDir);
    if (!IsDir)
      report_fatal_error("Unexistent dir: '" + SavedObjectsDirectoryPath + "'");
    ProducedBinaryFiles.resize(Modules.size());
  }

  if (CodeGenOnly) {
    // Perform only parallel codegen and return.
    ThreadPool Pool;
    int count = 0;
    for (auto &Mod : Modules) {
      Pool.async([&](int count) {
        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);

        // Parse module now
        auto TheModule = loadModuleFromInput(Mod.get(), Context, false,
                                             /*IsImporting*/ false);

        // CodeGen
        auto OutputBuffer = codegenModule(*TheModule, *TMBuilder.create());
        if (SavedObjectsDirectoryPath.empty())
          ProducedBinaries[count] = std::move(OutputBuffer);
        else
          ProducedBinaryFiles[count] =
              writeGeneratedObject(count, "", *OutputBuffer);
      }, count++);
    }

    return;
  }

  // Sequential linking phase
  auto Index = linkCombinedIndex();

  // Save temps: index.
  if (!SaveTempsDir.empty()) {
    auto SaveTempPath = SaveTempsDir + "index.bc";
    std::error_code EC;
    raw_fd_ostream OS(SaveTempPath, EC, sys::fs::OF_None);
    if (EC)
      report_fatal_error(Twine("Failed to open ") + SaveTempPath +
                         " to save optimized bitcode\n");
    WriteIndexToFile(*Index, OS);
  }


  // Prepare the module map.
  auto ModuleMap = generateModuleMap(Modules);
  auto ModuleCount = Modules.size();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Convert the preserved symbols set from string to GUID, this is needed for
  // computing the caching hash and the internalization.
  auto GUIDPreservedSymbols =
      computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);

  // Add used symbol from inputs to the preserved symbols.
  for (const auto &M : Modules)
    addUsedSymbolToPreservedGUID(*M, GUIDPreservedSymbols);

  // Compute "dead" symbols, we don't want to import/export these!
  computeDeadSymbolsInIndex(*Index, GUIDPreservedSymbols);

  // Synthesize entry counts for functions in the combined index.
  computeSyntheticCounts(*Index);

  // Currently there is no support for enabling whole program visibility via a
  // linker option in the old LTO API, but this call allows it to be specified
  // via the internal option. Must be done before WPD below.
  updateVCallVisibilityInIndex(*Index,
                               /* WholeProgramVisibilityEnabledInLTO */ false);

  // Perform index-based WPD. This will return immediately if there are
  // no index entries in the typeIdMetadata map (e.g. if we are instead
  // performing IR-based WPD in hybrid regular/thin LTO mode).
  std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
  std::set<GlobalValue::GUID> ExportedGUIDs;
  runWholeProgramDevirtOnIndex(*Index, ExportedGUIDs, LocalWPDTargetsMap);
  for (auto GUID : ExportedGUIDs)
    GUIDPreservedSymbols.insert(GUID);

  // Collect the import/export lists for all modules from the call-graph in the
  // combined index.
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(*Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  // We use a std::map here to be able to have a defined ordering when
  // producing a hash for the cache entry.
  // FIXME: we should be able to compute the caching hash for the entry based
  // on the index, and nuke this map.
  StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;

  DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
  computePrevailingCopies(*Index, PrevailingCopy);

  // Resolve prevailing symbols, this has to be computed early because it
  // impacts the caching.
  resolvePrevailingInIndex(*Index, ResolvedODR, GUIDPreservedSymbols,
                           PrevailingCopy);

  // Use global summary-based analysis to identify symbols that can be
  // internalized (because they aren't exported or preserved as per callback).
  // Changes are made in the index, consumed in the ThinLTO backends.
  updateIndexWPDForExports(*Index,
                           IsExported(ExportLists, GUIDPreservedSymbols),
                           LocalWPDTargetsMap);
  thinLTOInternalizeAndPromoteInIndex(
      *Index, IsExported(ExportLists, GUIDPreservedSymbols),
      IsPrevailing(PrevailingCopy));

  // Make sure that every module has an entry in the ExportLists, ImportList,
  // GVSummary and ResolvedODR maps to enable threaded access to these maps
  // below.
  for (auto &Module : Modules) {
    auto ModuleIdentifier = Module->getName();
    ExportLists[ModuleIdentifier];
    ImportLists[ModuleIdentifier];
    ResolvedODR[ModuleIdentifier];
    ModuleToDefinedGVSummaries[ModuleIdentifier];
  }

  // Compute the ordering we will process the inputs: the rough heuristic here
  // is to sort them per size so that the largest module get schedule as soon as
  // possible. This is purely a compile-time optimization.
  std::vector<int> ModulesOrdering;
  ModulesOrdering.resize(Modules.size());
  std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0);
  llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) {
    auto LSize =
        Modules[LeftIndex]->getSingleBitcodeModule().getBuffer().size();
    auto RSize =
        Modules[RightIndex]->getSingleBitcodeModule().getBuffer().size();
    return LSize > RSize;
  });

  // Parallel optimizer + codegen
  {
    ThreadPool Pool(heavyweight_hardware_concurrency(ThreadCount));
    for (auto IndexCount : ModulesOrdering) {
      auto &Mod = Modules[IndexCount];
      Pool.async([&](int count) {
        auto ModuleIdentifier = Mod->getName();
        auto &ExportList = ExportLists[ModuleIdentifier];

        auto &DefinedGVSummaries = ModuleToDefinedGVSummaries[ModuleIdentifier];

        // The module may be cached, this helps handling it.
        ModuleCacheEntry CacheEntry(CacheOptions.Path, *Index, ModuleIdentifier,
                                    ImportLists[ModuleIdentifier], ExportList,
                                    ResolvedODR[ModuleIdentifier],
                                    DefinedGVSummaries, OptLevel, Freestanding,
                                    TMBuilder);
        auto CacheEntryPath = CacheEntry.getEntryPath();

        {
          auto ErrOrBuffer = CacheEntry.tryLoadingBuffer();
          LLVM_DEBUG(dbgs() << "Cache " << (ErrOrBuffer ? "hit" : "miss")
                            << " '" << CacheEntryPath << "' for buffer "
                            << count << " " << ModuleIdentifier << "\n");

          if (ErrOrBuffer) {
            // Cache Hit!
            if (SavedObjectsDirectoryPath.empty())
              ProducedBinaries[count] = std::move(ErrOrBuffer.get());
            else
              ProducedBinaryFiles[count] = writeGeneratedObject(
                  count, CacheEntryPath, *ErrOrBuffer.get());
            return;
          }
        }

        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);
        Context.enableDebugTypeODRUniquing();
        auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks(
            Context, RemarksFilename, RemarksPasses, RemarksFormat,
            RemarksWithHotness, count);
        if (!DiagFileOrErr) {
          errs() << "Error: " << toString(DiagFileOrErr.takeError()) << "\n";
          report_fatal_error("ThinLTO: Can't get an output file for the "
                             "remarks");
        }

        // Parse module now
        auto TheModule = loadModuleFromInput(Mod.get(), Context, false,
                                             /*IsImporting*/ false);

        // Save temps: original file.
        saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc");

        auto &ImportList = ImportLists[ModuleIdentifier];
        // Run the main process now, and generates a binary
        auto OutputBuffer = ProcessThinLTOModule(
            *TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList,
            ExportList, GUIDPreservedSymbols,
            ModuleToDefinedGVSummaries[ModuleIdentifier], CacheOptions,
            DisableCodeGen, SaveTempsDir, Freestanding, OptLevel, count);

        // Commit to the cache (if enabled)
        CacheEntry.write(*OutputBuffer);

        if (SavedObjectsDirectoryPath.empty()) {
          // We need to generated a memory buffer for the linker.
          if (!CacheEntryPath.empty()) {
            // When cache is enabled, reload from the cache if possible.
            // Releasing the buffer from the heap and reloading it from the
            // cache file with mmap helps us to lower memory pressure.
            // The freed memory can be used for the next input file.
            // The final binary link will read from the VFS cache (hopefully!)
            // or from disk (if the memory pressure was too high).
            auto ReloadedBufferOrErr = CacheEntry.tryLoadingBuffer();
            if (auto EC = ReloadedBufferOrErr.getError()) {
              // On error, keep the preexisting buffer and print a diagnostic.
              errs() << "remark: can't reload cached file '" << CacheEntryPath
                     << "': " << EC.message() << "\n";
            } else {
              OutputBuffer = std::move(*ReloadedBufferOrErr);
            }
          }
          ProducedBinaries[count] = std::move(OutputBuffer);
          return;
        }
        ProducedBinaryFiles[count] = writeGeneratedObject(
            count, CacheEntryPath, *OutputBuffer);
      }, IndexCount);
    }
  }

  pruneCache(CacheOptions.Path, CacheOptions.Policy);

  // If statistics were requested, print them out now.
  if (llvm::AreStatisticsEnabled())
    llvm::PrintStatistics();
  reportAndResetTimings();
}