Verifier.cpp 224 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * A landing pad is defined by a landingpad instruction, and can be jumped to
//    only by the unwind edge of an invoke instruction.
//  * A landingpad instruction must be the first non-PHI instruction in the
//    block.
//  * Landingpad instructions must be in a function with a personality function.
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Verifier.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>

using namespace llvm;

namespace llvm {

struct VerifierSupport {
  raw_ostream *OS;
  const Module &M;
  ModuleSlotTracker MST;
  Triple TT;
  const DataLayout &DL;
  LLVMContext &Context;

  /// Track the brokenness of the module while recursively visiting.
  bool Broken = false;
  /// Broken debug info can be "recovered" from by stripping the debug info.
  bool BrokenDebugInfo = false;
  /// Whether to treat broken debug info as an error.
  bool TreatBrokenDebugInfoAsError = true;

  explicit VerifierSupport(raw_ostream *OS, const Module &M)
      : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
        Context(M.getContext()) {}

private:
  void Write(const Module *M) {
    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
  }

  void Write(const Value *V) {
    if (V)
      Write(*V);
  }

  void Write(const Value &V) {
    if (isa<Instruction>(V)) {
      V.print(*OS, MST);
      *OS << '\n';
    } else {
      V.printAsOperand(*OS, true, MST);
      *OS << '\n';
    }
  }

  void Write(const Metadata *MD) {
    if (!MD)
      return;
    MD->print(*OS, MST, &M);
    *OS << '\n';
  }

  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
    Write(MD.get());
  }

  void Write(const NamedMDNode *NMD) {
    if (!NMD)
      return;
    NMD->print(*OS, MST);
    *OS << '\n';
  }

  void Write(Type *T) {
    if (!T)
      return;
    *OS << ' ' << *T;
  }

  void Write(const Comdat *C) {
    if (!C)
      return;
    *OS << *C;
  }

  void Write(const APInt *AI) {
    if (!AI)
      return;
    *OS << *AI << '\n';
  }

  void Write(const unsigned i) { *OS << i << '\n'; }

  template <typename T> void Write(ArrayRef<T> Vs) {
    for (const T &V : Vs)
      Write(V);
  }

  template <typename T1, typename... Ts>
  void WriteTs(const T1 &V1, const Ts &... Vs) {
    Write(V1);
    WriteTs(Vs...);
  }

  template <typename... Ts> void WriteTs() {}

public:
  /// A check failed, so printout out the condition and the message.
  ///
  /// This provides a nice place to put a breakpoint if you want to see why
  /// something is not correct.
  void CheckFailed(const Twine &Message) {
    if (OS)
      *OS << Message << '\n';
    Broken = true;
  }

  /// A check failed (with values to print).
  ///
  /// This calls the Message-only version so that the above is easier to set a
  /// breakpoint on.
  template <typename T1, typename... Ts>
  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
    CheckFailed(Message);
    if (OS)
      WriteTs(V1, Vs...);
  }

  /// A debug info check failed.
  void DebugInfoCheckFailed(const Twine &Message) {
    if (OS)
      *OS << Message << '\n';
    Broken |= TreatBrokenDebugInfoAsError;
    BrokenDebugInfo = true;
  }

  /// A debug info check failed (with values to print).
  template <typename T1, typename... Ts>
  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
                            const Ts &... Vs) {
    DebugInfoCheckFailed(Message);
    if (OS)
      WriteTs(V1, Vs...);
  }
};

} // namespace llvm

namespace {

class Verifier : public InstVisitor<Verifier>, VerifierSupport {
  friend class InstVisitor<Verifier>;

  DominatorTree DT;

  /// When verifying a basic block, keep track of all of the
  /// instructions we have seen so far.
  ///
  /// This allows us to do efficient dominance checks for the case when an
  /// instruction has an operand that is an instruction in the same block.
  SmallPtrSet<Instruction *, 16> InstsInThisBlock;

  /// Keep track of the metadata nodes that have been checked already.
  SmallPtrSet<const Metadata *, 32> MDNodes;

  /// Keep track which DISubprogram is attached to which function.
  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;

  /// Track all DICompileUnits visited.
  SmallPtrSet<const Metadata *, 2> CUVisited;

  /// The result type for a landingpad.
  Type *LandingPadResultTy;

  /// Whether we've seen a call to @llvm.localescape in this function
  /// already.
  bool SawFrameEscape;

  /// Whether the current function has a DISubprogram attached to it.
  bool HasDebugInfo = false;

  /// Whether source was present on the first DIFile encountered in each CU.
  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;

  /// Stores the count of how many objects were passed to llvm.localescape for a
  /// given function and the largest index passed to llvm.localrecover.
  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;

  // Maps catchswitches and cleanuppads that unwind to siblings to the
  // terminators that indicate the unwind, used to detect cycles therein.
  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;

  /// Cache of constants visited in search of ConstantExprs.
  SmallPtrSet<const Constant *, 32> ConstantExprVisited;

  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
  SmallVector<const Function *, 4> DeoptimizeDeclarations;

  // Verify that this GlobalValue is only used in this module.
  // This map is used to avoid visiting uses twice. We can arrive at a user
  // twice, if they have multiple operands. In particular for very large
  // constant expressions, we can arrive at a particular user many times.
  SmallPtrSet<const Value *, 32> GlobalValueVisited;

  // Keeps track of duplicate function argument debug info.
  SmallVector<const DILocalVariable *, 16> DebugFnArgs;

  TBAAVerifier TBAAVerifyHelper;

  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);

public:
  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
                    const Module &M)
      : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
        SawFrameEscape(false), TBAAVerifyHelper(this) {
    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
  }

  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }

  bool verify(const Function &F) {
    assert(F.getParent() == &M &&
           "An instance of this class only works with a specific module!");

    // First ensure the function is well-enough formed to compute dominance
    // information, and directly compute a dominance tree. We don't rely on the
    // pass manager to provide this as it isolates us from a potentially
    // out-of-date dominator tree and makes it significantly more complex to run
    // this code outside of a pass manager.
    // FIXME: It's really gross that we have to cast away constness here.
    if (!F.empty())
      DT.recalculate(const_cast<Function &>(F));

    for (const BasicBlock &BB : F) {
      if (!BB.empty() && BB.back().isTerminator())
        continue;

      if (OS) {
        *OS << "Basic Block in function '" << F.getName()
            << "' does not have terminator!\n";
        BB.printAsOperand(*OS, true, MST);
        *OS << "\n";
      }
      return false;
    }

    Broken = false;
    // FIXME: We strip const here because the inst visitor strips const.
    visit(const_cast<Function &>(F));
    verifySiblingFuncletUnwinds();
    InstsInThisBlock.clear();
    DebugFnArgs.clear();
    LandingPadResultTy = nullptr;
    SawFrameEscape = false;
    SiblingFuncletInfo.clear();

    return !Broken;
  }

  /// Verify the module that this instance of \c Verifier was initialized with.
  bool verify() {
    Broken = false;

    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
    for (const Function &F : M)
      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
        DeoptimizeDeclarations.push_back(&F);

    // Now that we've visited every function, verify that we never asked to
    // recover a frame index that wasn't escaped.
    verifyFrameRecoverIndices();
    for (const GlobalVariable &GV : M.globals())
      visitGlobalVariable(GV);

    for (const GlobalAlias &GA : M.aliases())
      visitGlobalAlias(GA);

    for (const NamedMDNode &NMD : M.named_metadata())
      visitNamedMDNode(NMD);

    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
      visitComdat(SMEC.getValue());

    visitModuleFlags(M);
    visitModuleIdents(M);
    visitModuleCommandLines(M);

    verifyCompileUnits();

    verifyDeoptimizeCallingConvs();
    DISubprogramAttachments.clear();
    return !Broken;
  }

private:
  /// Whether a metadata node is allowed to be, or contain, a DILocation.
  enum class AreDebugLocsAllowed { No, Yes };

  // Verification methods...
  void visitGlobalValue(const GlobalValue &GV);
  void visitGlobalVariable(const GlobalVariable &GV);
  void visitGlobalAlias(const GlobalAlias &GA);
  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
                           const GlobalAlias &A, const Constant &C);
  void visitNamedMDNode(const NamedMDNode &NMD);
  void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
  void visitComdat(const Comdat &C);
  void visitModuleIdents(const Module &M);
  void visitModuleCommandLines(const Module &M);
  void visitModuleFlags(const Module &M);
  void visitModuleFlag(const MDNode *Op,
                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
                       SmallVectorImpl<const MDNode *> &Requirements);
  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
  void visitFunction(const Function &F);
  void visitBasicBlock(BasicBlock &BB);
  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
  void visitProfMetadata(Instruction &I, MDNode *MD);

  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
#include "llvm/IR/Metadata.def"
  void visitDIScope(const DIScope &N);
  void visitDIVariable(const DIVariable &N);
  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
  void visitDITemplateParameter(const DITemplateParameter &N);

  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);

  // InstVisitor overrides...
  using InstVisitor<Verifier>::visit;
  void visit(Instruction &I);

  void visitTruncInst(TruncInst &I);
  void visitZExtInst(ZExtInst &I);
  void visitSExtInst(SExtInst &I);
  void visitFPTruncInst(FPTruncInst &I);
  void visitFPExtInst(FPExtInst &I);
  void visitFPToUIInst(FPToUIInst &I);
  void visitFPToSIInst(FPToSIInst &I);
  void visitUIToFPInst(UIToFPInst &I);
  void visitSIToFPInst(SIToFPInst &I);
  void visitIntToPtrInst(IntToPtrInst &I);
  void visitPtrToIntInst(PtrToIntInst &I);
  void visitBitCastInst(BitCastInst &I);
  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
  void visitPHINode(PHINode &PN);
  void visitCallBase(CallBase &Call);
  void visitUnaryOperator(UnaryOperator &U);
  void visitBinaryOperator(BinaryOperator &B);
  void visitICmpInst(ICmpInst &IC);
  void visitFCmpInst(FCmpInst &FC);
  void visitExtractElementInst(ExtractElementInst &EI);
  void visitInsertElementInst(InsertElementInst &EI);
  void visitShuffleVectorInst(ShuffleVectorInst &EI);
  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
  void visitCallInst(CallInst &CI);
  void visitInvokeInst(InvokeInst &II);
  void visitGetElementPtrInst(GetElementPtrInst &GEP);
  void visitLoadInst(LoadInst &LI);
  void visitStoreInst(StoreInst &SI);
  void verifyDominatesUse(Instruction &I, unsigned i);
  void visitInstruction(Instruction &I);
  void visitTerminator(Instruction &I);
  void visitBranchInst(BranchInst &BI);
  void visitReturnInst(ReturnInst &RI);
  void visitSwitchInst(SwitchInst &SI);
  void visitIndirectBrInst(IndirectBrInst &BI);
  void visitCallBrInst(CallBrInst &CBI);
  void visitSelectInst(SelectInst &SI);
  void visitUserOp1(Instruction &I);
  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
  void visitFenceInst(FenceInst &FI);
  void visitAllocaInst(AllocaInst &AI);
  void visitExtractValueInst(ExtractValueInst &EVI);
  void visitInsertValueInst(InsertValueInst &IVI);
  void visitEHPadPredecessors(Instruction &I);
  void visitLandingPadInst(LandingPadInst &LPI);
  void visitResumeInst(ResumeInst &RI);
  void visitCatchPadInst(CatchPadInst &CPI);
  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
  void visitCleanupPadInst(CleanupPadInst &CPI);
  void visitFuncletPadInst(FuncletPadInst &FPI);
  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
  void visitCleanupReturnInst(CleanupReturnInst &CRI);

  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
  void verifySwiftErrorValue(const Value *SwiftErrorVal);
  void verifyMustTailCall(CallInst &CI);
  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
                        unsigned ArgNo, std::string &Suffix);
  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
                            const Value *V);
  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
                           const Value *V, bool IsIntrinsic);
  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);

  void visitConstantExprsRecursively(const Constant *EntryC);
  void visitConstantExpr(const ConstantExpr *CE);
  void verifyStatepoint(const CallBase &Call);
  void verifyFrameRecoverIndices();
  void verifySiblingFuncletUnwinds();

  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
  template <typename ValueOrMetadata>
  void verifyFragmentExpression(const DIVariable &V,
                                DIExpression::FragmentInfo Fragment,
                                ValueOrMetadata *Desc);
  void verifyFnArgs(const DbgVariableIntrinsic &I);
  void verifyNotEntryValue(const DbgVariableIntrinsic &I);

  /// Module-level debug info verification...
  void verifyCompileUnits();

  /// Module-level verification that all @llvm.experimental.deoptimize
  /// declarations share the same calling convention.
  void verifyDeoptimizeCallingConvs();

  /// Verify all-or-nothing property of DIFile source attribute within a CU.
  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
};

} // end anonymous namespace

/// We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)

/// We know that a debug info condition should be true, if not print
/// an error message.
#define AssertDI(C, ...) \
  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)

void Verifier::visit(Instruction &I) {
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
  InstVisitor<Verifier>::visit(I);
}

// Helper to recursively iterate over indirect users. By
// returning false, the callback can ask to stop recursing
// further.
static void forEachUser(const Value *User,
                        SmallPtrSet<const Value *, 32> &Visited,
                        llvm::function_ref<bool(const Value *)> Callback) {
  if (!Visited.insert(User).second)
    return;
  for (const Value *TheNextUser : User->materialized_users())
    if (Callback(TheNextUser))
      forEachUser(TheNextUser, Visited, Callback);
}

void Verifier::visitGlobalValue(const GlobalValue &GV) {
  Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
         "Global is external, but doesn't have external or weak linkage!", &GV);

  if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
    Assert(GO->getAlignment() <= Value::MaximumAlignment,
           "huge alignment values are unsupported", GO);
  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
         "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    Assert(GVar && GVar->getValueType()->isArrayTy(),
           "Only global arrays can have appending linkage!", GVar);
  }

  if (GV.isDeclarationForLinker())
    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);

  if (GV.hasDLLImportStorageClass()) {
    Assert(!GV.isDSOLocal(),
           "GlobalValue with DLLImport Storage is dso_local!", &GV);

    Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
               GV.hasAvailableExternallyLinkage(),
           "Global is marked as dllimport, but not external", &GV);
  }

  if (GV.isImplicitDSOLocal())
    Assert(GV.isDSOLocal(),
           "GlobalValue with local linkage or non-default "
           "visibility must be dso_local!",
           &GV);

  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
    if (const Instruction *I = dyn_cast<Instruction>(V)) {
      if (!I->getParent() || !I->getParent()->getParent())
        CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
                    I);
      else if (I->getParent()->getParent()->getParent() != &M)
        CheckFailed("Global is referenced in a different module!", &GV, &M, I,
                    I->getParent()->getParent(),
                    I->getParent()->getParent()->getParent());
      return false;
    } else if (const Function *F = dyn_cast<Function>(V)) {
      if (F->getParent() != &M)
        CheckFailed("Global is used by function in a different module", &GV, &M,
                    F, F->getParent());
      return false;
    }
    return true;
  });
}

void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Assert(GV.getInitializer()->getType() == GV.getValueType(),
           "Global variable initializer type does not match global "
           "variable type!",
           &GV);
    // If the global has common linkage, it must have a zero initializer and
    // cannot be constant.
    if (GV.hasCommonLinkage()) {
      Assert(GV.getInitializer()->isNullValue(),
             "'common' global must have a zero initializer!", &GV);
      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
             &GV);
      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
    }
  }

  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
                       GV.getName() == "llvm.global_dtors")) {
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
           "invalid linkage for intrinsic global variable", &GV);
    // Don't worry about emitting an error for it not being an array,
    // visitGlobalValue will complain on appending non-array.
    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
      PointerType *FuncPtrTy =
          FunctionType::get(Type::getVoidTy(Context), false)->
          getPointerTo(DL.getProgramAddressSpace());
      Assert(STy &&
                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
                 STy->getTypeAtIndex(1) == FuncPtrTy,
             "wrong type for intrinsic global variable", &GV);
      Assert(STy->getNumElements() == 3,
             "the third field of the element type is mandatory, "
             "specify i8* null to migrate from the obsoleted 2-field form");
      Type *ETy = STy->getTypeAtIndex(2);
      Assert(ETy->isPointerTy() &&
                 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
             "wrong type for intrinsic global variable", &GV);
    }
  }

  if (GV.hasName() && (GV.getName() == "llvm.used" ||
                       GV.getName() == "llvm.compiler.used")) {
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
           "invalid linkage for intrinsic global variable", &GV);
    Type *GVType = GV.getValueType();
    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
      Assert(PTy, "wrong type for intrinsic global variable", &GV);
      if (GV.hasInitializer()) {
        const Constant *Init = GV.getInitializer();
        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
        Assert(InitArray, "wrong initalizer for intrinsic global variable",
               Init);
        for (Value *Op : InitArray->operands()) {
          Value *V = Op->stripPointerCasts();
          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
                     isa<GlobalAlias>(V),
                 "invalid llvm.used member", V);
          Assert(V->hasName(), "members of llvm.used must be named", V);
        }
      }
    }
  }

  // Visit any debug info attachments.
  SmallVector<MDNode *, 1> MDs;
  GV.getMetadata(LLVMContext::MD_dbg, MDs);
  for (auto *MD : MDs) {
    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
      visitDIGlobalVariableExpression(*GVE);
    else
      AssertDI(false, "!dbg attachment of global variable must be a "
                      "DIGlobalVariableExpression");
  }

  // Scalable vectors cannot be global variables, since we don't know
  // the runtime size. If the global is a struct or an array containing
  // scalable vectors, that will be caught by the isValidElementType methods
  // in StructType or ArrayType instead.
  Assert(!isa<ScalableVectorType>(GV.getValueType()),
         "Globals cannot contain scalable vectors", &GV);

  if (!GV.hasInitializer()) {
    visitGlobalValue(GV);
    return;
  }

  // Walk any aggregate initializers looking for bitcasts between address spaces
  visitConstantExprsRecursively(GV.getInitializer());

  visitGlobalValue(GV);
}

void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
  SmallPtrSet<const GlobalAlias*, 4> Visited;
  Visited.insert(&GA);
  visitAliaseeSubExpr(Visited, GA, C);
}

void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
                                   const GlobalAlias &GA, const Constant &C) {
  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
           &GA);

    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);

      Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
             &GA);
    } else {
      // Only continue verifying subexpressions of GlobalAliases.
      // Do not recurse into global initializers.
      return;
    }
  }

  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
    visitConstantExprsRecursively(CE);

  for (const Use &U : C.operands()) {
    Value *V = &*U;
    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
    else if (const auto *C2 = dyn_cast<Constant>(V))
      visitAliaseeSubExpr(Visited, GA, *C2);
  }
}

void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
         "weak_odr, or external linkage!",
         &GA);
  const Constant *Aliasee = GA.getAliasee();
  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
  Assert(GA.getType() == Aliasee->getType(),
         "Alias and aliasee types should match!", &GA);

  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
         "Aliasee should be either GlobalValue or ConstantExpr", &GA);

  visitAliaseeSubExpr(GA, *Aliasee);

  visitGlobalValue(GA);
}

void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
  // There used to be various other llvm.dbg.* nodes, but we don't support
  // upgrading them and we want to reserve the namespace for future uses.
  if (NMD.getName().startswith("llvm.dbg."))
    AssertDI(NMD.getName() == "llvm.dbg.cu",
             "unrecognized named metadata node in the llvm.dbg namespace",
             &NMD);
  for (const MDNode *MD : NMD.operands()) {
    if (NMD.getName() == "llvm.dbg.cu")
      AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);

    if (!MD)
      continue;

    visitMDNode(*MD, AreDebugLocsAllowed::Yes);
  }
}

void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(&MD).second)
    return;

  switch (MD.getMetadataID()) {
  default:
    llvm_unreachable("Invalid MDNode subclass");
  case Metadata::MDTupleKind:
    break;
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
  case Metadata::CLASS##Kind:                                                  \
    visit##CLASS(cast<CLASS>(MD));                                             \
    break;
#include "llvm/IR/Metadata.def"
  }

  for (const Metadata *Op : MD.operands()) {
    if (!Op)
      continue;
    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
           &MD, Op);
    AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
             "DILocation not allowed within this metadata node", &MD, Op);
    if (auto *N = dyn_cast<MDNode>(Op)) {
      visitMDNode(*N, AllowLocs);
      continue;
    }
    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
      visitValueAsMetadata(*V, nullptr);
      continue;
    }
  }

  // Check these last, so we diagnose problems in operands first.
  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
}

void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
  Assert(MD.getValue(), "Expected valid value", &MD);
  Assert(!MD.getValue()->getType()->isMetadataTy(),
         "Unexpected metadata round-trip through values", &MD, MD.getValue());

  auto *L = dyn_cast<LocalAsMetadata>(&MD);
  if (!L)
    return;

  Assert(F, "function-local metadata used outside a function", L);

  // If this was an instruction, bb, or argument, verify that it is in the
  // function that we expect.
  Function *ActualF = nullptr;
  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
    ActualF = I->getParent()->getParent();
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
    ActualF = BB->getParent();
  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
    ActualF = A->getParent();
  assert(ActualF && "Unimplemented function local metadata case!");

  Assert(ActualF == F, "function-local metadata used in wrong function", L);
}

void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
  Metadata *MD = MDV.getMetadata();
  if (auto *N = dyn_cast<MDNode>(MD)) {
    visitMDNode(*N, AreDebugLocsAllowed::No);
    return;
  }

  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(MD).second)
    return;

  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    visitValueAsMetadata(*V, F);
}

static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }

void Verifier::visitDILocation(const DILocation &N) {
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "location requires a valid scope", &N, N.getRawScope());
  if (auto *IA = N.getRawInlinedAt())
    AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}

void Verifier::visitGenericDINode(const GenericDINode &N) {
  AssertDI(N.getTag(), "invalid tag", &N);
}

void Verifier::visitDIScope(const DIScope &N) {
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDISubrange(const DISubrange &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
  AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
           "Subrange must contain count or upperBound", &N);
  AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
           "Subrange can have any one of count or upperBound", &N);
  AssertDI(!N.getRawCountNode() || N.getCount(),
           "Count must either be a signed constant or a DIVariable", &N);
  auto Count = N.getCount();
  AssertDI(!Count || !Count.is<ConstantInt *>() ||
               Count.get<ConstantInt *>()->getSExtValue() >= -1,
           "invalid subrange count", &N);
  auto *LBound = N.getRawLowerBound();
  AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
               isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
           "LowerBound must be signed constant or DIVariable or DIExpression",
           &N);
  auto *UBound = N.getRawUpperBound();
  AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
               isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
           "UpperBound must be signed constant or DIVariable or DIExpression",
           &N);
  auto *Stride = N.getRawStride();
  AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
               isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
           "Stride must be signed constant or DIVariable or DIExpression", &N);
}

void Verifier::visitDIEnumerator(const DIEnumerator &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
}

void Verifier::visitDIBasicType(const DIBasicType &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
               N.getTag() == dwarf::DW_TAG_unspecified_type,
           "invalid tag", &N);
  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
            "has conflicting flags", &N);
}

void Verifier::visitDIDerivedType(const DIDerivedType &N) {
  // Common scope checks.
  visitDIScope(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
               N.getTag() == dwarf::DW_TAG_pointer_type ||
               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
               N.getTag() == dwarf::DW_TAG_reference_type ||
               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
               N.getTag() == dwarf::DW_TAG_const_type ||
               N.getTag() == dwarf::DW_TAG_volatile_type ||
               N.getTag() == dwarf::DW_TAG_restrict_type ||
               N.getTag() == dwarf::DW_TAG_atomic_type ||
               N.getTag() == dwarf::DW_TAG_member ||
               N.getTag() == dwarf::DW_TAG_inheritance ||
               N.getTag() == dwarf::DW_TAG_friend,
           "invalid tag", &N);
  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
    AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
             N.getRawExtraData());
  }

  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
           N.getRawBaseType());

  if (N.getDWARFAddressSpace()) {
    AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
                 N.getTag() == dwarf::DW_TAG_reference_type ||
                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
             "DWARF address space only applies to pointer or reference types",
             &N);
  }
}

/// Detect mutually exclusive flags.
static bool hasConflictingReferenceFlags(unsigned Flags) {
  return ((Flags & DINode::FlagLValueReference) &&
          (Flags & DINode::FlagRValueReference)) ||
         ((Flags & DINode::FlagTypePassByValue) &&
          (Flags & DINode::FlagTypePassByReference));
}

void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
  auto *Params = dyn_cast<MDTuple>(&RawParams);
  AssertDI(Params, "invalid template params", &N, &RawParams);
  for (Metadata *Op : Params->operands()) {
    AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
             &N, Params, Op);
  }
}

void Verifier::visitDICompositeType(const DICompositeType &N) {
  // Common scope checks.
  visitDIScope(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
               N.getTag() == dwarf::DW_TAG_structure_type ||
               N.getTag() == dwarf::DW_TAG_union_type ||
               N.getTag() == dwarf::DW_TAG_enumeration_type ||
               N.getTag() == dwarf::DW_TAG_class_type ||
               N.getTag() == dwarf::DW_TAG_variant_part,
           "invalid tag", &N);

  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
           N.getRawBaseType());

  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
           "invalid composite elements", &N, N.getRawElements());
  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
           N.getRawVTableHolder());
  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
           "invalid reference flags", &N);
  unsigned DIBlockByRefStruct = 1 << 4;
  AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);

  if (N.isVector()) {
    const DINodeArray Elements = N.getElements();
    AssertDI(Elements.size() == 1 &&
             Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
             "invalid vector, expected one element of type subrange", &N);
  }

  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);

  if (N.getTag() == dwarf::DW_TAG_class_type ||
      N.getTag() == dwarf::DW_TAG_union_type) {
    AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
             "class/union requires a filename", &N, N.getFile());
  }

  if (auto *D = N.getRawDiscriminator()) {
    AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
             "discriminator can only appear on variant part");
  }

  if (N.getRawDataLocation()) {
    AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
             "dataLocation can only appear in array type");
  }
}

void Verifier::visitDISubroutineType(const DISubroutineType &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
  if (auto *Types = N.getRawTypeArray()) {
    AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
    for (Metadata *Ty : N.getTypeArray()->operands()) {
      AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
    }
  }
  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
           "invalid reference flags", &N);
}

void Verifier::visitDIFile(const DIFile &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
  if (Checksum) {
    AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
             "invalid checksum kind", &N);
    size_t Size;
    switch (Checksum->Kind) {
    case DIFile::CSK_MD5:
      Size = 32;
      break;
    case DIFile::CSK_SHA1:
      Size = 40;
      break;
    case DIFile::CSK_SHA256:
      Size = 64;
      break;
    }
    AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
    AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
             "invalid checksum", &N);
  }
}

void Verifier::visitDICompileUnit(const DICompileUnit &N) {
  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);

  // Don't bother verifying the compilation directory or producer string
  // as those could be empty.
  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
           N.getRawFile());
  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
           N.getFile());

  verifySourceDebugInfo(N, *N.getFile());

  AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
           "invalid emission kind", &N);

  if (auto *Array = N.getRawEnumTypes()) {
    AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
    for (Metadata *Op : N.getEnumTypes()->operands()) {
      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
      AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
               "invalid enum type", &N, N.getEnumTypes(), Op);
    }
  }
  if (auto *Array = N.getRawRetainedTypes()) {
    AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
    for (Metadata *Op : N.getRetainedTypes()->operands()) {
      AssertDI(Op && (isa<DIType>(Op) ||
                      (isa<DISubprogram>(Op) &&
                       !cast<DISubprogram>(Op)->isDefinition())),
               "invalid retained type", &N, Op);
    }
  }
  if (auto *Array = N.getRawGlobalVariables()) {
    AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
    for (Metadata *Op : N.getGlobalVariables()->operands()) {
      AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
               "invalid global variable ref", &N, Op);
    }
  }
  if (auto *Array = N.getRawImportedEntities()) {
    AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
    for (Metadata *Op : N.getImportedEntities()->operands()) {
      AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
               &N, Op);
    }
  }
  if (auto *Array = N.getRawMacros()) {
    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    for (Metadata *Op : N.getMacros()->operands()) {
      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    }
  }
  CUVisited.insert(&N);
}

void Verifier::visitDISubprogram(const DISubprogram &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
  else
    AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
  if (auto *T = N.getRawType())
    AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
           N.getRawContainingType());
  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);
  if (auto *S = N.getRawDeclaration())
    AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
             "invalid subprogram declaration", &N, S);
  if (auto *RawNode = N.getRawRetainedNodes()) {
    auto *Node = dyn_cast<MDTuple>(RawNode);
    AssertDI(Node, "invalid retained nodes list", &N, RawNode);
    for (Metadata *Op : Node->operands()) {
      AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
               "invalid retained nodes, expected DILocalVariable or DILabel",
               &N, Node, Op);
    }
  }
  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
           "invalid reference flags", &N);

  auto *Unit = N.getRawUnit();
  if (N.isDefinition()) {
    // Subprogram definitions (not part of the type hierarchy).
    AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
    AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
    AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
    if (N.getFile())
      verifySourceDebugInfo(*N.getUnit(), *N.getFile());
  } else {
    // Subprogram declarations (part of the type hierarchy).
    AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
  }

  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
    AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
    for (Metadata *Op : ThrownTypes->operands())
      AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
               Op);
  }

  if (N.areAllCallsDescribed())
    AssertDI(N.isDefinition(),
             "DIFlagAllCallsDescribed must be attached to a definition");
}

void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "invalid local scope", &N, N.getRawScope());
  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}

void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
  visitDILexicalBlockBase(N);

  AssertDI(N.getLine() || !N.getColumn(),
           "cannot have column info without line info", &N);
}

void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
  visitDILexicalBlockBase(N);
}

void Verifier::visitDICommonBlock(const DICommonBlock &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
  if (auto *S = N.getRawDecl())
    AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
}

void Verifier::visitDINamespace(const DINamespace &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
}

void Verifier::visitDIMacro(const DIMacro &N) {
  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
           "invalid macinfo type", &N);
  AssertDI(!N.getName().empty(), "anonymous macro", &N);
  if (!N.getValue().empty()) {
    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
  }
}

void Verifier::visitDIMacroFile(const DIMacroFile &N) {
  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
           "invalid macinfo type", &N);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);

  if (auto *Array = N.getRawElements()) {
    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    for (Metadata *Op : N.getElements()->operands()) {
      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    }
  }
}

void Verifier::visitDIModule(const DIModule &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
  AssertDI(!N.getName().empty(), "anonymous module", &N);
}

void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
}

void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
  visitDITemplateParameter(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
           &N);
}

void Verifier::visitDITemplateValueParameter(
    const DITemplateValueParameter &N) {
  visitDITemplateParameter(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
           "invalid tag", &N);
}

void Verifier::visitDIVariable(const DIVariable &N) {
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
  // Checks common to all variables.
  visitDIVariable(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
  // Assert only if the global variable is not an extern
  if (N.isDefinition())
    AssertDI(N.getType(), "missing global variable type", &N);
  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
    AssertDI(isa<DIDerivedType>(Member),
             "invalid static data member declaration", &N, Member);
  }
}

void Verifier::visitDILocalVariable(const DILocalVariable &N) {
  // Checks common to all variables.
  visitDIVariable(N);

  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "local variable requires a valid scope", &N, N.getRawScope());
  if (auto Ty = N.getType())
    AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
}

void Verifier::visitDILabel(const DILabel &N) {
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);

  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "label requires a valid scope", &N, N.getRawScope());
}

void Verifier::visitDIExpression(const DIExpression &N) {
  AssertDI(N.isValid(), "invalid expression", &N);
}

void Verifier::visitDIGlobalVariableExpression(
    const DIGlobalVariableExpression &GVE) {
  AssertDI(GVE.getVariable(), "missing variable");
  if (auto *Var = GVE.getVariable())
    visitDIGlobalVariable(*Var);
  if (auto *Expr = GVE.getExpression()) {
    visitDIExpression(*Expr);
    if (auto Fragment = Expr->getFragmentInfo())
      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
  }
}

void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
  if (auto *T = N.getRawType())
    AssertDI(isType(T), "invalid type ref", &N, T);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
               N.getTag() == dwarf::DW_TAG_imported_declaration,
           "invalid tag", &N);
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
           N.getRawEntity());
}

void Verifier::visitComdat(const Comdat &C) {
  // In COFF the Module is invalid if the GlobalValue has private linkage.
  // Entities with private linkage don't have entries in the symbol table.
  if (TT.isOSBinFormatCOFF())
    if (const GlobalValue *GV = M.getNamedValue(C.getName()))
      Assert(!GV->hasPrivateLinkage(),
             "comdat global value has private linkage", GV);
}

void Verifier::visitModuleIdents(const Module &M) {
  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
  if (!Idents)
    return;

  // llvm.ident takes a list of metadata entry. Each entry has only one string.
  // Scan each llvm.ident entry and make sure that this requirement is met.
  for (const MDNode *N : Idents->operands()) {
    Assert(N->getNumOperands() == 1,
           "incorrect number of operands in llvm.ident metadata", N);
    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
           ("invalid value for llvm.ident metadata entry operand"
            "(the operand should be a string)"),
           N->getOperand(0));
  }
}

void Verifier::visitModuleCommandLines(const Module &M) {
  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
  if (!CommandLines)
    return;

  // llvm.commandline takes a list of metadata entry. Each entry has only one
  // string. Scan each llvm.commandline entry and make sure that this
  // requirement is met.
  for (const MDNode *N : CommandLines->operands()) {
    Assert(N->getNumOperands() == 1,
           "incorrect number of operands in llvm.commandline metadata", N);
    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
           ("invalid value for llvm.commandline metadata entry operand"
            "(the operand should be a string)"),
           N->getOperand(0));
  }
}

void Verifier::visitModuleFlags(const Module &M) {
  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
  if (!Flags) return;

  // Scan each flag, and track the flags and requirements.
  DenseMap<const MDString*, const MDNode*> SeenIDs;
  SmallVector<const MDNode*, 16> Requirements;
  for (const MDNode *MDN : Flags->operands())
    visitModuleFlag(MDN, SeenIDs, Requirements);

  // Validate that the requirements in the module are valid.
  for (const MDNode *Requirement : Requirements) {
    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    const Metadata *ReqValue = Requirement->getOperand(1);

    const MDNode *Op = SeenIDs.lookup(Flag);
    if (!Op) {
      CheckFailed("invalid requirement on flag, flag is not present in module",
                  Flag);
      continue;
    }

    if (Op->getOperand(2) != ReqValue) {
      CheckFailed(("invalid requirement on flag, "
                   "flag does not have the required value"),
                  Flag);
      continue;
    }
  }
}

void
Verifier::visitModuleFlag(const MDNode *Op,
                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
                          SmallVectorImpl<const MDNode *> &Requirements) {
  // Each module flag should have three arguments, the merge behavior (a
  // constant int), the flag ID (an MDString), and the value.
  Assert(Op->getNumOperands() == 3,
         "incorrect number of operands in module flag", Op);
  Module::ModFlagBehavior MFB;
  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
    Assert(
        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
        "invalid behavior operand in module flag (expected constant integer)",
        Op->getOperand(0));
    Assert(false,
           "invalid behavior operand in module flag (unexpected constant)",
           Op->getOperand(0));
  }
  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
         Op->getOperand(1));

  // Sanity check the values for behaviors with additional requirements.
  switch (MFB) {
  case Module::Error:
  case Module::Warning:
  case Module::Override:
    // These behavior types accept any value.
    break;

  case Module::Max: {
    Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
           "invalid value for 'max' module flag (expected constant integer)",
           Op->getOperand(2));
    break;
  }

  case Module::Require: {
    // The value should itself be an MDNode with two operands, a flag ID (an
    // MDString), and a value.
    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
    Assert(Value && Value->getNumOperands() == 2,
           "invalid value for 'require' module flag (expected metadata pair)",
           Op->getOperand(2));
    Assert(isa<MDString>(Value->getOperand(0)),
           ("invalid value for 'require' module flag "
            "(first value operand should be a string)"),
           Value->getOperand(0));

    // Append it to the list of requirements, to check once all module flags are
    // scanned.
    Requirements.push_back(Value);
    break;
  }

  case Module::Append:
  case Module::AppendUnique: {
    // These behavior types require the operand be an MDNode.
    Assert(isa<MDNode>(Op->getOperand(2)),
           "invalid value for 'append'-type module flag "
           "(expected a metadata node)",
           Op->getOperand(2));
    break;
  }
  }

  // Unless this is a "requires" flag, check the ID is unique.
  if (MFB != Module::Require) {
    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
    Assert(Inserted,
           "module flag identifiers must be unique (or of 'require' type)", ID);
  }

  if (ID->getString() == "wchar_size") {
    ConstantInt *Value
      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
    Assert(Value, "wchar_size metadata requires constant integer argument");
  }

  if (ID->getString() == "Linker Options") {
    // If the llvm.linker.options named metadata exists, we assume that the
    // bitcode reader has upgraded the module flag. Otherwise the flag might
    // have been created by a client directly.
    Assert(M.getNamedMetadata("llvm.linker.options"),
           "'Linker Options' named metadata no longer supported");
  }

  if (ID->getString() == "SemanticInterposition") {
    ConstantInt *Value =
        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
    Assert(Value,
           "SemanticInterposition metadata requires constant integer argument");
  }

  if (ID->getString() == "CG Profile") {
    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
      visitModuleFlagCGProfileEntry(MDO);
  }
}

void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
  auto CheckFunction = [&](const MDOperand &FuncMDO) {
    if (!FuncMDO)
      return;
    auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
    Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
           FuncMDO);
  };
  auto Node = dyn_cast_or_null<MDNode>(MDO);
  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
  CheckFunction(Node->getOperand(0));
  CheckFunction(Node->getOperand(1));
  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
  Assert(Count && Count->getType()->isIntegerTy(),
         "expected an integer constant", Node->getOperand(2));
}

/// Return true if this attribute kind only applies to functions.
static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
  switch (Kind) {
  case Attribute::NoMerge:
  case Attribute::NoReturn:
  case Attribute::NoSync:
  case Attribute::WillReturn:
  case Attribute::NoCfCheck:
  case Attribute::NoUnwind:
  case Attribute::NoInline:
  case Attribute::AlwaysInline:
  case Attribute::OptimizeForSize:
  case Attribute::StackProtect:
  case Attribute::StackProtectReq:
  case Attribute::StackProtectStrong:
  case Attribute::SafeStack:
  case Attribute::ShadowCallStack:
  case Attribute::NoRedZone:
  case Attribute::NoImplicitFloat:
  case Attribute::Naked:
  case Attribute::InlineHint:
  case Attribute::StackAlignment:
  case Attribute::UWTable:
  case Attribute::NonLazyBind:
  case Attribute::ReturnsTwice:
  case Attribute::SanitizeAddress:
  case Attribute::SanitizeHWAddress:
  case Attribute::SanitizeMemTag:
  case Attribute::SanitizeThread:
  case Attribute::SanitizeMemory:
  case Attribute::MinSize:
  case Attribute::NoDuplicate:
  case Attribute::Builtin:
  case Attribute::NoBuiltin:
  case Attribute::Cold:
  case Attribute::OptForFuzzing:
  case Attribute::OptimizeNone:
  case Attribute::JumpTable:
  case Attribute::Convergent:
  case Attribute::ArgMemOnly:
  case Attribute::NoRecurse:
  case Attribute::InaccessibleMemOnly:
  case Attribute::InaccessibleMemOrArgMemOnly:
  case Attribute::AllocSize:
  case Attribute::SpeculativeLoadHardening:
  case Attribute::Speculatable:
  case Attribute::StrictFP:
  case Attribute::NullPointerIsValid:
    return true;
  default:
    break;
  }
  return false;
}

/// Return true if this is a function attribute that can also appear on
/// arguments.
static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
         Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
         Kind == Attribute::Preallocated;
}

void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
                                    const Value *V) {
  for (Attribute A : Attrs) {
    if (A.isStringAttribute())
      continue;

    if (A.isIntAttribute() !=
        Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
      CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
                  V);
      return;
    }

    if (isFuncOnlyAttr(A.getKindAsEnum())) {
      if (!IsFunction) {
        CheckFailed("Attribute '" + A.getAsString() +
                        "' only applies to functions!",
                    V);
        return;
      }
    } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
      CheckFailed("Attribute '" + A.getAsString() +
                      "' does not apply to functions!",
                  V);
      return;
    }
  }
}

// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type.  The value V is printed in error messages.
void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
                                    const Value *V) {
  if (!Attrs.hasAttributes())
    return;

  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);

  if (Attrs.hasAttribute(Attribute::ImmArg)) {
    Assert(Attrs.getNumAttributes() == 1,
           "Attribute 'immarg' is incompatible with other attributes", V);
  }

  // Check for mutually incompatible attributes.  Only inreg is compatible with
  // sret.
  unsigned AttrCount = 0;
  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
  AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
               Attrs.hasAttribute(Attribute::InReg);
  AttrCount += Attrs.hasAttribute(Attribute::Nest);
  Assert(AttrCount <= 1,
         "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
         "and 'sret' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
           Attrs.hasAttribute(Attribute::ReadOnly)),
         "Attributes "
         "'inalloca and readonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
           Attrs.hasAttribute(Attribute::Returned)),
         "Attributes "
         "'sret and returned' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
           Attrs.hasAttribute(Attribute::SExt)),
         "Attributes "
         "'zeroext and signext' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
           Attrs.hasAttribute(Attribute::ReadOnly)),
         "Attributes "
         "'readnone and readonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
           Attrs.hasAttribute(Attribute::WriteOnly)),
         "Attributes "
         "'readnone and writeonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
           Attrs.hasAttribute(Attribute::WriteOnly)),
         "Attributes "
         "'readonly and writeonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
           Attrs.hasAttribute(Attribute::AlwaysInline)),
         "Attributes "
         "'noinline and alwaysinline' are incompatible!",
         V);

  if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
    Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
           "Attribute 'byval' type does not match parameter!", V);
  }

  if (Attrs.hasAttribute(Attribute::Preallocated)) {
    Assert(Attrs.getPreallocatedType() ==
               cast<PointerType>(Ty)->getElementType(),
           "Attribute 'preallocated' type does not match parameter!", V);
  }

  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
         "Wrong types for attribute: " +
             AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
         V);

  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    SmallPtrSet<Type*, 4> Visited;
    if (!PTy->getElementType()->isSized(&Visited)) {
      Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
                 !Attrs.hasAttribute(Attribute::InAlloca) &&
                 !Attrs.hasAttribute(Attribute::Preallocated),
             "Attributes 'byval', 'inalloca', and 'preallocated' do not "
             "support unsized types!",
             V);
    }
    if (!isa<PointerType>(PTy->getElementType()))
      Assert(!Attrs.hasAttribute(Attribute::SwiftError),
             "Attribute 'swifterror' only applies to parameters "
             "with pointer to pointer type!",
             V);
  } else {
    Assert(!Attrs.hasAttribute(Attribute::ByVal),
           "Attribute 'byval' only applies to parameters with pointer type!",
           V);
    Assert(!Attrs.hasAttribute(Attribute::SwiftError),
           "Attribute 'swifterror' only applies to parameters "
           "with pointer type!",
           V);
  }
}

// Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
                                   const Value *V, bool IsIntrinsic) {
  if (Attrs.isEmpty())
    return;

  bool SawNest = false;
  bool SawReturned = false;
  bool SawSRet = false;
  bool SawSwiftSelf = false;
  bool SawSwiftError = false;

  // Verify return value attributes.
  AttributeSet RetAttrs = Attrs.getRetAttributes();
  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
          !RetAttrs.hasAttribute(Attribute::Nest) &&
          !RetAttrs.hasAttribute(Attribute::StructRet) &&
          !RetAttrs.hasAttribute(Attribute::NoCapture) &&
          !RetAttrs.hasAttribute(Attribute::NoFree) &&
          !RetAttrs.hasAttribute(Attribute::Returned) &&
          !RetAttrs.hasAttribute(Attribute::InAlloca) &&
          !RetAttrs.hasAttribute(Attribute::Preallocated) &&
          !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
          !RetAttrs.hasAttribute(Attribute::SwiftError)),
         "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', "
         "'nocapture', 'nofree', "
         "'returned', 'swiftself', and 'swifterror' do not apply to return "
         "values!",
         V);
  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
          !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
          !RetAttrs.hasAttribute(Attribute::ReadNone)),
         "Attribute '" + RetAttrs.getAsString() +
             "' does not apply to function returns",
         V);
  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);

  // Verify parameter attributes.
  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
    Type *Ty = FT->getParamType(i);
    AttributeSet ArgAttrs = Attrs.getParamAttributes(i);

    if (!IsIntrinsic) {
      Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
             "immarg attribute only applies to intrinsics",V);
    }

    verifyParameterAttrs(ArgAttrs, Ty, V);

    if (ArgAttrs.hasAttribute(Attribute::Nest)) {
      Assert(!SawNest, "More than one parameter has attribute nest!", V);
      SawNest = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::Returned)) {
      Assert(!SawReturned, "More than one parameter has attribute returned!",
             V);
      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
             "Incompatible argument and return types for 'returned' attribute",
             V);
      SawReturned = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
      Assert(i == 0 || i == 1,
             "Attribute 'sret' is not on first or second parameter!", V);
      SawSRet = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
      Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
      SawSwiftSelf = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
      Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
             V);
      SawSwiftError = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
      Assert(i == FT->getNumParams() - 1,
             "inalloca isn't on the last parameter!", V);
    }
  }

  if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
    return;

  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::ReadOnly)),
         "Attributes 'readnone and readonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::WriteOnly)),
         "Attributes 'readnone and writeonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
           Attrs.hasFnAttribute(Attribute::WriteOnly)),
         "Attributes 'readonly and writeonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
         "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
         "incompatible!",
         V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
         "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
           Attrs.hasFnAttribute(Attribute::AlwaysInline)),
         "Attributes 'noinline and alwaysinline' are incompatible!", V);

  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
    Assert(Attrs.hasFnAttribute(Attribute::NoInline),
           "Attribute 'optnone' requires 'noinline'!", V);

    Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
           "Attributes 'optsize and optnone' are incompatible!", V);

    Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
           "Attributes 'minsize and optnone' are incompatible!", V);
  }

  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
    const GlobalValue *GV = cast<GlobalValue>(V);
    Assert(GV->hasGlobalUnnamedAddr(),
           "Attribute 'jumptable' requires 'unnamed_addr'", V);
  }

  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
    std::pair<unsigned, Optional<unsigned>> Args =
        Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);

    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
      if (ParamNo >= FT->getNumParams()) {
        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
        return false;
      }

      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
        CheckFailed("'allocsize' " + Name +
                        " argument must refer to an integer parameter",
                    V);
        return false;
      }

      return true;
    };

    if (!CheckParam("element size", Args.first))
      return;

    if (Args.second && !CheckParam("number of elements", *Args.second))
      return;
  }

  if (Attrs.hasFnAttribute("frame-pointer")) {
    StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
                                      "frame-pointer").getValueAsString();
    if (FP != "all" && FP != "non-leaf" && FP != "none")
      CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
  }

  if (Attrs.hasFnAttribute("patchable-function-prefix")) {
    StringRef S = Attrs
                      .getAttribute(AttributeList::FunctionIndex,
                                    "patchable-function-prefix")
                      .getValueAsString();
    unsigned N;
    if (S.getAsInteger(10, N))
      CheckFailed(
          "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
  }
  if (Attrs.hasFnAttribute("patchable-function-entry")) {
    StringRef S = Attrs
                      .getAttribute(AttributeList::FunctionIndex,
                                    "patchable-function-entry")
                      .getValueAsString();
    unsigned N;
    if (S.getAsInteger(10, N))
      CheckFailed(
          "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
  }
}

void Verifier::verifyFunctionMetadata(
    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
  for (const auto &Pair : MDs) {
    if (Pair.first == LLVMContext::MD_prof) {
      MDNode *MD = Pair.second;
      Assert(MD->getNumOperands() >= 2,
             "!prof annotations should have no less than 2 operands", MD);

      // Check first operand.
      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
             MD);
      Assert(isa<MDString>(MD->getOperand(0)),
             "expected string with name of the !prof annotation", MD);
      MDString *MDS = cast<MDString>(MD->getOperand(0));
      StringRef ProfName = MDS->getString();
      Assert(ProfName.equals("function_entry_count") ||
                 ProfName.equals("synthetic_function_entry_count"),
             "first operand should be 'function_entry_count'"
             " or 'synthetic_function_entry_count'",
             MD);

      // Check second operand.
      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
             MD);
      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
             "expected integer argument to function_entry_count", MD);
    }
  }
}

void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
  if (!ConstantExprVisited.insert(EntryC).second)
    return;

  SmallVector<const Constant *, 16> Stack;
  Stack.push_back(EntryC);

  while (!Stack.empty()) {
    const Constant *C = Stack.pop_back_val();

    // Check this constant expression.
    if (const auto *CE = dyn_cast<ConstantExpr>(C))
      visitConstantExpr(CE);

    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
      // Global Values get visited separately, but we do need to make sure
      // that the global value is in the correct module
      Assert(GV->getParent() == &M, "Referencing global in another module!",
             EntryC, &M, GV, GV->getParent());
      continue;
    }

    // Visit all sub-expressions.
    for (const Use &U : C->operands()) {
      const auto *OpC = dyn_cast<Constant>(U);
      if (!OpC)
        continue;
      if (!ConstantExprVisited.insert(OpC).second)
        continue;
      Stack.push_back(OpC);
    }
  }
}

void Verifier::visitConstantExpr(const ConstantExpr *CE) {
  if (CE->getOpcode() == Instruction::BitCast)
    Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
                                 CE->getType()),
           "Invalid bitcast", CE);

  if (CE->getOpcode() == Instruction::IntToPtr ||
      CE->getOpcode() == Instruction::PtrToInt) {
    auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
                      ? CE->getType()
                      : CE->getOperand(0)->getType();
    StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
                        ? "inttoptr not supported for non-integral pointers"
                        : "ptrtoint not supported for non-integral pointers";
    Assert(
        !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
        Msg);
  }
}

bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
  // There shouldn't be more attribute sets than there are parameters plus the
  // function and return value.
  return Attrs.getNumAttrSets() <= Params + 2;
}

/// Verify that statepoint intrinsic is well formed.
void Verifier::verifyStatepoint(const CallBase &Call) {
  assert(Call.getCalledFunction() &&
         Call.getCalledFunction()->getIntrinsicID() ==
             Intrinsic::experimental_gc_statepoint);

  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
             !Call.onlyAccessesArgMemory(),
         "gc.statepoint must read and write all memory to preserve "
         "reordering restrictions required by safepoint semantics",
         Call);

  const int64_t NumPatchBytes =
      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
  Assert(NumPatchBytes >= 0,
         "gc.statepoint number of patchable bytes must be "
         "positive",
         Call);

  const Value *Target = Call.getArgOperand(2);
  auto *PT = dyn_cast<PointerType>(Target->getType());
  Assert(PT && PT->getElementType()->isFunctionTy(),
         "gc.statepoint callee must be of function pointer type", Call, Target);
  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());

  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
  Assert(NumCallArgs >= 0,
         "gc.statepoint number of arguments to underlying call "
         "must be positive",
         Call);
  const int NumParams = (int)TargetFuncType->getNumParams();
  if (TargetFuncType->isVarArg()) {
    Assert(NumCallArgs >= NumParams,
           "gc.statepoint mismatch in number of vararg call args", Call);

    // TODO: Remove this limitation
    Assert(TargetFuncType->getReturnType()->isVoidTy(),
           "gc.statepoint doesn't support wrapping non-void "
           "vararg functions yet",
           Call);
  } else
    Assert(NumCallArgs == NumParams,
           "gc.statepoint mismatch in number of call args", Call);

  const uint64_t Flags
    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
         "unknown flag used in gc.statepoint flags argument", Call);

  // Verify that the types of the call parameter arguments match
  // the type of the wrapped callee.
  AttributeList Attrs = Call.getAttributes();
  for (int i = 0; i < NumParams; i++) {
    Type *ParamType = TargetFuncType->getParamType(i);
    Type *ArgType = Call.getArgOperand(5 + i)->getType();
    Assert(ArgType == ParamType,
           "gc.statepoint call argument does not match wrapped "
           "function type",
           Call);

    if (TargetFuncType->isVarArg()) {
      AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
      Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
             "Attribute 'sret' cannot be used for vararg call arguments!",
             Call);
    }
  }

  const int EndCallArgsInx = 4 + NumCallArgs;

  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
  Assert(isa<ConstantInt>(NumTransitionArgsV),
         "gc.statepoint number of transition arguments "
         "must be constant integer",
         Call);
  const int NumTransitionArgs =
      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
  Assert(NumTransitionArgs >= 0,
         "gc.statepoint number of transition arguments must be positive", Call);
  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;

  // We're migrating away from inline operands to operand bundles, enforce
  // the either/or property during transition.
  if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) {
    Assert(NumTransitionArgs == 0,
           "can't use both deopt operands and deopt bundle on a statepoint");
  }

  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
  Assert(isa<ConstantInt>(NumDeoptArgsV),
         "gc.statepoint number of deoptimization arguments "
         "must be constant integer",
         Call);
  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
  Assert(NumDeoptArgs >= 0,
         "gc.statepoint number of deoptimization arguments "
         "must be positive",
         Call);

  // We're migrating away from inline operands to operand bundles, enforce
  // the either/or property during transition.
  if (Call.getOperandBundle(LLVMContext::OB_deopt)) {
    Assert(NumDeoptArgs == 0,
           "can't use both deopt operands and deopt bundle on a statepoint");
  }

  const int ExpectedNumArgs =
      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
  Assert(ExpectedNumArgs <= (int)Call.arg_size(),
         "gc.statepoint too few arguments according to length fields", Call);

  // Check that the only uses of this gc.statepoint are gc.result or
  // gc.relocate calls which are tied to this statepoint and thus part
  // of the same statepoint sequence
  for (const User *U : Call.users()) {
    const CallInst *UserCall = dyn_cast<const CallInst>(U);
    Assert(UserCall, "illegal use of statepoint token", Call, U);
    if (!UserCall)
      continue;
    Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
           "gc.result or gc.relocate are the only value uses "
           "of a gc.statepoint",
           Call, U);
    if (isa<GCResultInst>(UserCall)) {
      Assert(UserCall->getArgOperand(0) == &Call,
             "gc.result connected to wrong gc.statepoint", Call, UserCall);
    } else if (isa<GCRelocateInst>(Call)) {
      Assert(UserCall->getArgOperand(0) == &Call,
             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
    }
  }

  // Note: It is legal for a single derived pointer to be listed multiple
  // times.  It's non-optimal, but it is legal.  It can also happen after
  // insertion if we strip a bitcast away.
  // Note: It is really tempting to check that each base is relocated and
  // that a derived pointer is never reused as a base pointer.  This turns
  // out to be problematic since optimizations run after safepoint insertion
  // can recognize equality properties that the insertion logic doesn't know
  // about.  See example statepoint.ll in the verifier subdirectory
}

void Verifier::verifyFrameRecoverIndices() {
  for (auto &Counts : FrameEscapeInfo) {
    Function *F = Counts.first;
    unsigned EscapedObjectCount = Counts.second.first;
    unsigned MaxRecoveredIndex = Counts.second.second;
    Assert(MaxRecoveredIndex <= EscapedObjectCount,
           "all indices passed to llvm.localrecover must be less than the "
           "number of arguments passed to llvm.localescape in the parent "
           "function",
           F);
  }
}

static Instruction *getSuccPad(Instruction *Terminator) {
  BasicBlock *UnwindDest;
  if (auto *II = dyn_cast<InvokeInst>(Terminator))
    UnwindDest = II->getUnwindDest();
  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
    UnwindDest = CSI->getUnwindDest();
  else
    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
  return UnwindDest->getFirstNonPHI();
}

void Verifier::verifySiblingFuncletUnwinds() {
  SmallPtrSet<Instruction *, 8> Visited;
  SmallPtrSet<Instruction *, 8> Active;
  for (const auto &Pair : SiblingFuncletInfo) {
    Instruction *PredPad = Pair.first;
    if (Visited.count(PredPad))
      continue;
    Active.insert(PredPad);
    Instruction *Terminator = Pair.second;
    do {
      Instruction *SuccPad = getSuccPad(Terminator);
      if (Active.count(SuccPad)) {
        // Found a cycle; report error
        Instruction *CyclePad = SuccPad;
        SmallVector<Instruction *, 8> CycleNodes;
        do {
          CycleNodes.push_back(CyclePad);
          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
          if (CycleTerminator != CyclePad)
            CycleNodes.push_back(CycleTerminator);
          CyclePad = getSuccPad(CycleTerminator);
        } while (CyclePad != SuccPad);
        Assert(false, "EH pads can't handle each other's exceptions",
               ArrayRef<Instruction *>(CycleNodes));
      }
      // Don't re-walk a node we've already checked
      if (!Visited.insert(SuccPad).second)
        break;
      // Walk to this successor if it has a map entry.
      PredPad = SuccPad;
      auto TermI = SiblingFuncletInfo.find(PredPad);
      if (TermI == SiblingFuncletInfo.end())
        break;
      Terminator = TermI->second;
      Active.insert(PredPad);
    } while (true);
    // Each node only has one successor, so we've walked all the active
    // nodes' successors.
    Active.clear();
  }
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
  visitGlobalValue(F);

  // Check function arguments.
  FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Assert(&Context == &F.getContext(),
         "Function context does not match Module context!", &F);

  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
  Assert(FT->getNumParams() == NumArgs,
         "# formal arguments must match # of arguments for function type!", &F,
         FT);
  Assert(F.getReturnType()->isFirstClassType() ||
             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
         "Functions cannot return aggregate values!", &F);

  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
         "Invalid struct return type!", &F);

  AttributeList Attrs = F.getAttributes();

  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
         "Attribute after last parameter!", &F);

  bool isLLVMdotName = F.getName().size() >= 5 &&
                       F.getName().substr(0, 5) == "llvm.";

  // Check function attributes.
  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);

  // On function declarations/definitions, we do not support the builtin
  // attribute. We do not check this in VerifyFunctionAttrs since that is
  // checking for Attributes that can/can not ever be on functions.
  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
         "Attribute 'builtin' can only be applied to a callsite.", &F);

  // Check that this function meets the restrictions on this calling convention.
  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
  // restrictions can be lifted.
  switch (F.getCallingConv()) {
  default:
  case CallingConv::C:
    break;
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    Assert(F.getReturnType()->isVoidTy(),
           "Calling convention requires void return type", &F);
    LLVM_FALLTHROUGH;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
    Assert(!F.hasStructRetAttr(),
           "Calling convention does not allow sret", &F);
    LLVM_FALLTHROUGH;
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::Intel_OCL_BI:
  case CallingConv::PTX_Kernel:
  case CallingConv::PTX_Device:
    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
                          "perfect forwarding!",
           &F);
    break;
  }

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (const Argument &Arg : F.args()) {
    Assert(Arg.getType() == FT->getParamType(i),
           "Argument value does not match function argument type!", &Arg,
           FT->getParamType(i));
    Assert(Arg.getType()->isFirstClassType(),
           "Function arguments must have first-class types!", &Arg);
    if (!isLLVMdotName) {
      Assert(!Arg.getType()->isMetadataTy(),
             "Function takes metadata but isn't an intrinsic", &Arg, &F);
      Assert(!Arg.getType()->isTokenTy(),
             "Function takes token but isn't an intrinsic", &Arg, &F);
    }

    // Check that swifterror argument is only used by loads and stores.
    if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
      verifySwiftErrorValue(&Arg);
    }
    ++i;
  }

  if (!isLLVMdotName)
    Assert(!F.getReturnType()->isTokenTy(),
           "Functions returns a token but isn't an intrinsic", &F);

  // Get the function metadata attachments.
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  F.getAllMetadata(MDs);
  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
  verifyFunctionMetadata(MDs);

  // Check validity of the personality function
  if (F.hasPersonalityFn()) {
    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
    if (Per)
      Assert(Per->getParent() == F.getParent(),
             "Referencing personality function in another module!",
             &F, F.getParent(), Per, Per->getParent());
  }

  if (F.isMaterializable()) {
    // Function has a body somewhere we can't see.
    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
           MDs.empty() ? nullptr : MDs.front().second);
  } else if (F.isDeclaration()) {
    for (const auto &I : MDs) {
      // This is used for call site debug information.
      AssertDI(I.first != LLVMContext::MD_dbg ||
                   !cast<DISubprogram>(I.second)->isDistinct(),
               "function declaration may only have a unique !dbg attachment",
               &F);
      Assert(I.first != LLVMContext::MD_prof,
             "function declaration may not have a !prof attachment", &F);

      // Verify the metadata itself.
      visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
    }
    Assert(!F.hasPersonalityFn(),
           "Function declaration shouldn't have a personality routine", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);

    // Check the entry node
    const BasicBlock *Entry = &F.getEntryBlock();
    Assert(pred_empty(Entry),
           "Entry block to function must not have predecessors!", Entry);

    // The address of the entry block cannot be taken, unless it is dead.
    if (Entry->hasAddressTaken()) {
      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
             "blockaddress may not be used with the entry block!", Entry);
    }

    unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
    // Visit metadata attachments.
    for (const auto &I : MDs) {
      // Verify that the attachment is legal.
      auto AllowLocs = AreDebugLocsAllowed::No;
      switch (I.first) {
      default:
        break;
      case LLVMContext::MD_dbg: {
        ++NumDebugAttachments;
        AssertDI(NumDebugAttachments == 1,
                 "function must have a single !dbg attachment", &F, I.second);
        AssertDI(isa<DISubprogram>(I.second),
                 "function !dbg attachment must be a subprogram", &F, I.second);
        auto *SP = cast<DISubprogram>(I.second);
        const Function *&AttachedTo = DISubprogramAttachments[SP];
        AssertDI(!AttachedTo || AttachedTo == &F,
                 "DISubprogram attached to more than one function", SP, &F);
        AttachedTo = &F;
        AllowLocs = AreDebugLocsAllowed::Yes;
        break;
      }
      case LLVMContext::MD_prof:
        ++NumProfAttachments;
        Assert(NumProfAttachments == 1,
               "function must have a single !prof attachment", &F, I.second);
        break;
      }

      // Verify the metadata itself.
      visitMDNode(*I.second, AllowLocs);
    }
  }

  // If this function is actually an intrinsic, verify that it is only used in
  // direct call/invokes, never having its "address taken".
  // Only do this if the module is materialized, otherwise we don't have all the
  // uses.
  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
    const User *U;
    if (F.hasAddressTaken(&U))
      Assert(false, "Invalid user of intrinsic instruction!", U);
  }

  auto *N = F.getSubprogram();
  HasDebugInfo = (N != nullptr);
  if (!HasDebugInfo)
    return;

  // Check that all !dbg attachments lead to back to N.
  //
  // FIXME: Check this incrementally while visiting !dbg attachments.
  // FIXME: Only check when N is the canonical subprogram for F.
  SmallPtrSet<const MDNode *, 32> Seen;
  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
    // Be careful about using DILocation here since we might be dealing with
    // broken code (this is the Verifier after all).
    const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
    if (!DL)
      return;
    if (!Seen.insert(DL).second)
      return;

    Metadata *Parent = DL->getRawScope();
    AssertDI(Parent && isa<DILocalScope>(Parent),
             "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
             Parent);

    DILocalScope *Scope = DL->getInlinedAtScope();
    Assert(Scope, "Failed to find DILocalScope", DL);

    if (!Seen.insert(Scope).second)
      return;

    DISubprogram *SP = Scope->getSubprogram();

    // Scope and SP could be the same MDNode and we don't want to skip
    // validation in that case
    if (SP && ((Scope != SP) && !Seen.insert(SP).second))
      return;

    AssertDI(SP->describes(&F),
             "!dbg attachment points at wrong subprogram for function", N, &F,
             &I, DL, Scope, SP);
  };
  for (auto &BB : F)
    for (auto &I : BB) {
      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
      // The llvm.loop annotations also contain two DILocations.
      if (auto MD = I.getMetadata(LLVMContext::MD_loop))
        for (unsigned i = 1; i < MD->getNumOperands(); ++i)
          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
      if (BrokenDebugInfo)
        return;
    }
}

// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();

  // Ensure that basic blocks have terminators!
  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    llvm::sort(Preds);
    for (const PHINode &PN : BB.phis()) {
      // Ensure that PHI nodes have at least one entry!
      Assert(PN.getNumIncomingValues() != 0,
             "PHI nodes must have at least one entry.  If the block is dead, "
             "the PHI should be removed!",
             &PN);
      Assert(PN.getNumIncomingValues() == Preds.size(),
             "PHINode should have one entry for each predecessor of its "
             "parent basic block!",
             &PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN.getNumIncomingValues());
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
        Values.push_back(
            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
      llvm::sort(Values);

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
                   Values[i].second == Values[i - 1].second,
               "PHI node has multiple entries for the same basic block with "
               "different incoming values!",
               &PN, Values[i].first, Values[i].second, Values[i - 1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert(Values[i].first == Preds[i],
               "PHI node entries do not match predecessors!", &PN,
               Values[i].first, Preds[i]);
      }
    }
  }

  // Check that all instructions have their parent pointers set up correctly.
  for (auto &I : BB)
  {
    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
  }
}

void Verifier::visitTerminator(Instruction &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert(&I == I.getParent()->getTerminator(),
         "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitBranchInst(BranchInst &BI) {
  if (BI.isConditional()) {
    Assert(BI.getCondition()->getType()->isIntegerTy(1),
           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
  }
  visitTerminator(BI);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  unsigned N = RI.getNumOperands();
  if (F->getReturnType()->isVoidTy())
    Assert(N == 0,
           "Found return instr that returns non-void in Function of void "
           "return type!",
           &RI, F->getReturnType());
  else
    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
           "Function return type does not match operand "
           "type of return inst!",
           &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminator(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  Type *SwitchTy = SI.getCondition()->getType();
  SmallPtrSet<ConstantInt*, 32> Constants;
  for (auto &Case : SI.cases()) {
    Assert(Case.getCaseValue()->getType() == SwitchTy,
           "Switch constants must all be same type as switch value!", &SI);
    Assert(Constants.insert(Case.getCaseValue()).second,
           "Duplicate integer as switch case", &SI, Case.getCaseValue());
  }

  visitTerminator(SI);
}

void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
  Assert(BI.getAddress()->getType()->isPointerTy(),
         "Indirectbr operand must have pointer type!", &BI);
  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    Assert(BI.getDestination(i)->getType()->isLabelTy(),
           "Indirectbr destinations must all have pointer type!", &BI);

  visitTerminator(BI);
}

void Verifier::visitCallBrInst(CallBrInst &CBI) {
  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
         &CBI);
  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
    Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
           "Callbr successors must all have pointer type!", &CBI);
  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
    Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
           "Using an unescaped label as a callbr argument!", &CBI);
    if (isa<BasicBlock>(CBI.getOperand(i)))
      for (unsigned j = i + 1; j != e; ++j)
        Assert(CBI.getOperand(i) != CBI.getOperand(j),
               "Duplicate callbr destination!", &CBI);
  }
  {
    SmallPtrSet<BasicBlock *, 4> ArgBBs;
    for (Value *V : CBI.args())
      if (auto *BA = dyn_cast<BlockAddress>(V))
        ArgBBs.insert(BA->getBasicBlock());
    for (BasicBlock *BB : CBI.getIndirectDests())
      Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
  }

  visitTerminator(CBI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
                                         SI.getOperand(2)),
         "Invalid operands for select instruction!", &SI);

  Assert(SI.getTrueValue()->getType() == SI.getType(),
         "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}

/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert(false, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "trunc source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "zext source and destination must both be a vector or neither", &I);
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "sext source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "fptrunc source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "fpext source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "UIToFP source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isIntOrIntVectorTy(),
         "UIToFP source must be integer or integer vector", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
         &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getElementCount() ==
               cast<VectorType>(DestTy)->getElementCount(),
           "UIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "SIToFP source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isIntOrIntVectorTy(),
         "SIToFP source must be integer or integer vector", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
         &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getElementCount() ==
               cast<VectorType>(DestTy)->getElementCount(),
           "SIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "FPToUI source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
         &I);
  Assert(DestTy->isIntOrIntVectorTy(),
         "FPToUI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getElementCount() ==
               cast<VectorType>(DestTy)->getElementCount(),
           "FPToUI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "FPToSI source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
         &I);
  Assert(DestTy->isIntOrIntVectorTy(),
         "FPToSI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getElementCount() ==
               cast<VectorType>(DestTy)->getElementCount(),
           "FPToSI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);

  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
    Assert(!DL.isNonIntegralPointerType(PTy),
           "ptrtoint not supported for non-integral pointers");

  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
         &I);

  if (SrcTy->isVectorTy()) {
    auto *VSrc = cast<VectorType>(SrcTy);
    auto *VDest = cast<VectorType>(DestTy);
    Assert(VSrc->getElementCount() == VDest->getElementCount(),
           "PtrToInt Vector width mismatch", &I);
  }

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->isIntOrIntVectorTy(),
         "IntToPtr source must be an integral", &I);
  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);

  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
    Assert(!DL.isNonIntegralPointerType(PTy),
           "inttoptr not supported for non-integral pointers");

  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
         &I);
  if (SrcTy->isVectorTy()) {
    auto *VSrc = cast<VectorType>(SrcTy);
    auto *VDest = cast<VectorType>(DestTy);
    Assert(VSrc->getElementCount() == VDest->getElementCount(),
           "IntToPtr Vector width mismatch", &I);
  }
  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  Assert(
      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
      "Invalid bitcast", &I);
  visitInstruction(I);
}

void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
         &I);
  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
         &I);
  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
         "AddrSpaceCast must be between different address spaces", &I);
  if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
    Assert(SrcVTy->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "AddrSpaceCast vector pointer number of elements mismatch", &I);
  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert(&PN == &PN.getParent()->front() ||
             isa<PHINode>(--BasicBlock::iterator(&PN)),
         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());

  // Check that a PHI doesn't yield a Token.
  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");

  // Check that all of the values of the PHI node have the same type as the
  // result, and that the incoming blocks are really basic blocks.
  for (Value *IncValue : PN.incoming_values()) {
    Assert(PN.getType() == IncValue->getType(),
           "PHI node operands are not the same type as the result!", &PN);
  }

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::visitCallBase(CallBase &Call) {
  Assert(Call.getCalledOperand()->getType()->isPointerTy(),
         "Called function must be a pointer!", Call);
  PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());

  Assert(FPTy->getElementType()->isFunctionTy(),
         "Called function is not pointer to function type!", Call);

  Assert(FPTy->getElementType() == Call.getFunctionType(),
         "Called function is not the same type as the call!", Call);

  FunctionType *FTy = Call.getFunctionType();

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert(Call.arg_size() >= FTy->getNumParams(),
           "Called function requires more parameters than were provided!",
           Call);
  else
    Assert(Call.arg_size() == FTy->getNumParams(),
           "Incorrect number of arguments passed to called function!", Call);

  // Verify that all arguments to the call match the function type.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
           "Call parameter type does not match function signature!",
           Call.getArgOperand(i), FTy->getParamType(i), Call);

  AttributeList Attrs = Call.getAttributes();

  Assert(verifyAttributeCount(Attrs, Call.arg_size()),
         "Attribute after last parameter!", Call);

  bool IsIntrinsic = Call.getCalledFunction() &&
                     Call.getCalledFunction()->getName().startswith("llvm.");

  Function *Callee =
      dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());

  if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
    // Don't allow speculatable on call sites, unless the underlying function
    // declaration is also speculatable.
    Assert(Callee && Callee->isSpeculatable(),
           "speculatable attribute may not apply to call sites", Call);
  }

  if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
    Assert(Call.getCalledFunction()->getIntrinsicID() ==
               Intrinsic::call_preallocated_arg,
           "preallocated as a call site attribute can only be on "
           "llvm.call.preallocated.arg");
  }

  // Verify call attributes.
  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);

  // Conservatively check the inalloca argument.
  // We have a bug if we can find that there is an underlying alloca without
  // inalloca.
  if (Call.hasInAllocaArgument()) {
    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
      Assert(AI->isUsedWithInAlloca(),
             "inalloca argument for call has mismatched alloca", AI, Call);
  }

  // For each argument of the callsite, if it has the swifterror argument,
  // make sure the underlying alloca/parameter it comes from has a swifterror as
  // well.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
    if (Call.paramHasAttr(i, Attribute::SwiftError)) {
      Value *SwiftErrorArg = Call.getArgOperand(i);
      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
        Assert(AI->isSwiftError(),
               "swifterror argument for call has mismatched alloca", AI, Call);
        continue;
      }
      auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
      Assert(ArgI,
             "swifterror argument should come from an alloca or parameter",
             SwiftErrorArg, Call);
      Assert(ArgI->hasSwiftErrorAttr(),
             "swifterror argument for call has mismatched parameter", ArgI,
             Call);
    }

    if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
      // Don't allow immarg on call sites, unless the underlying declaration
      // also has the matching immarg.
      Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
             "immarg may not apply only to call sites",
             Call.getArgOperand(i), Call);
    }

    if (Call.paramHasAttr(i, Attribute::ImmArg)) {
      Value *ArgVal = Call.getArgOperand(i);
      Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
             "immarg operand has non-immediate parameter", ArgVal, Call);
    }

    if (Call.paramHasAttr(i, Attribute::Preallocated)) {
      Value *ArgVal = Call.getArgOperand(i);
      bool hasOB =
          Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
      bool isMustTail = Call.isMustTailCall();
      Assert(hasOB != isMustTail,
             "preallocated operand either requires a preallocated bundle or "
             "the call to be musttail (but not both)",
             ArgVal, Call);
    }
  }

  if (FTy->isVarArg()) {
    // FIXME? is 'nest' even legal here?
    bool SawNest = false;
    bool SawReturned = false;

    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
      if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
        SawNest = true;
      if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
        SawReturned = true;
    }

    // Check attributes on the varargs part.
    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
      Type *Ty = Call.getArgOperand(Idx)->getType();
      AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
      verifyParameterAttrs(ArgAttrs, Ty, &Call);

      if (ArgAttrs.hasAttribute(Attribute::Nest)) {
        Assert(!SawNest, "More than one parameter has attribute nest!", Call);
        SawNest = true;
      }

      if (ArgAttrs.hasAttribute(Attribute::Returned)) {
        Assert(!SawReturned, "More than one parameter has attribute returned!",
               Call);
        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
               "Incompatible argument and return types for 'returned' "
               "attribute",
               Call);
        SawReturned = true;
      }

      // Statepoint intrinsic is vararg but the wrapped function may be not.
      // Allow sret here and check the wrapped function in verifyStatepoint.
      if (!Call.getCalledFunction() ||
          Call.getCalledFunction()->getIntrinsicID() !=
              Intrinsic::experimental_gc_statepoint)
        Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
               "Attribute 'sret' cannot be used for vararg call arguments!",
               Call);

      if (ArgAttrs.hasAttribute(Attribute::InAlloca))
        Assert(Idx == Call.arg_size() - 1,
               "inalloca isn't on the last argument!", Call);
    }
  }

  // Verify that there's no metadata unless it's a direct call to an intrinsic.
  if (!IsIntrinsic) {
    for (Type *ParamTy : FTy->params()) {
      Assert(!ParamTy->isMetadataTy(),
             "Function has metadata parameter but isn't an intrinsic", Call);
      Assert(!ParamTy->isTokenTy(),
             "Function has token parameter but isn't an intrinsic", Call);
    }
  }

  // Verify that indirect calls don't return tokens.
  if (!Call.getCalledFunction())
    Assert(!FTy->getReturnType()->isTokenTy(),
           "Return type cannot be token for indirect call!");

  if (Function *F = Call.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicCall(ID, Call);

  // Verify that a callsite has at most one "deopt", at most one "funclet", at
  // most one "gc-transition", at most one "cfguardtarget",
  // and at most one "preallocated" operand bundle.
  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
       FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
       FoundPreallocatedBundle = false, FoundGCLiveBundle = false;;
  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
    OperandBundleUse BU = Call.getOperandBundleAt(i);
    uint32_t Tag = BU.getTagID();
    if (Tag == LLVMContext::OB_deopt) {
      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
      FoundDeoptBundle = true;
    } else if (Tag == LLVMContext::OB_gc_transition) {
      Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
             Call);
      FoundGCTransitionBundle = true;
    } else if (Tag == LLVMContext::OB_funclet) {
      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
      FoundFuncletBundle = true;
      Assert(BU.Inputs.size() == 1,
             "Expected exactly one funclet bundle operand", Call);
      Assert(isa<FuncletPadInst>(BU.Inputs.front()),
             "Funclet bundle operands should correspond to a FuncletPadInst",
             Call);
    } else if (Tag == LLVMContext::OB_cfguardtarget) {
      Assert(!FoundCFGuardTargetBundle,
             "Multiple CFGuardTarget operand bundles", Call);
      FoundCFGuardTargetBundle = true;
      Assert(BU.Inputs.size() == 1,
             "Expected exactly one cfguardtarget bundle operand", Call);
    } else if (Tag == LLVMContext::OB_preallocated) {
      Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
             Call);
      FoundPreallocatedBundle = true;
      Assert(BU.Inputs.size() == 1,
             "Expected exactly one preallocated bundle operand", Call);
      auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
      Assert(Input &&
                 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
             "\"preallocated\" argument must be a token from "
             "llvm.call.preallocated.setup",
             Call);
    } else if (Tag == LLVMContext::OB_gc_live) {
      Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
             Call);
      FoundGCLiveBundle = true;
    }
  }

  // Verify that each inlinable callsite of a debug-info-bearing function in a
  // debug-info-bearing function has a debug location attached to it. Failure to
  // do so causes assertion failures when the inliner sets up inline scope info.
  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
      Call.getCalledFunction()->getSubprogram())
    AssertDI(Call.getDebugLoc(),
             "inlinable function call in a function with "
             "debug info must have a !dbg location",
             Call);

  visitInstruction(Call);
}

/// Two types are "congruent" if they are identical, or if they are both pointer
/// types with different pointee types and the same address space.
static bool isTypeCongruent(Type *L, Type *R) {
  if (L == R)
    return true;
  PointerType *PL = dyn_cast<PointerType>(L);
  PointerType *PR = dyn_cast<PointerType>(R);
  if (!PL || !PR)
    return false;
  return PL->getAddressSpace() == PR->getAddressSpace();
}

static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
  static const Attribute::AttrKind ABIAttrs[] = {
      Attribute::StructRet,   Attribute::ByVal,     Attribute::InAlloca,
      Attribute::InReg,       Attribute::SwiftSelf, Attribute::SwiftError,
      Attribute::Preallocated};
  AttrBuilder Copy;
  for (auto AK : ABIAttrs) {
    if (Attrs.hasParamAttribute(I, AK))
      Copy.addAttribute(AK);
  }
  // `align` is ABI-affecting only in combination with `byval`.
  if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
      Attrs.hasParamAttribute(I, Attribute::ByVal))
    Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
  return Copy;
}

void Verifier::verifyMustTailCall(CallInst &CI) {
  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);

  // - The caller and callee prototypes must match.  Pointer types of
  //   parameters or return types may differ in pointee type, but not
  //   address space.
  Function *F = CI.getParent()->getParent();
  FunctionType *CallerTy = F->getFunctionType();
  FunctionType *CalleeTy = CI.getFunctionType();
  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
    Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
           "cannot guarantee tail call due to mismatched parameter counts",
           &CI);
    for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
      Assert(
          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
          "cannot guarantee tail call due to mismatched parameter types", &CI);
    }
  }
  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
         "cannot guarantee tail call due to mismatched varargs", &CI);
  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
         "cannot guarantee tail call due to mismatched return types", &CI);

  // - The calling conventions of the caller and callee must match.
  Assert(F->getCallingConv() == CI.getCallingConv(),
         "cannot guarantee tail call due to mismatched calling conv", &CI);

  // - All ABI-impacting function attributes, such as sret, byval, inreg,
  //   returned, preallocated, and inalloca, must match.
  AttributeList CallerAttrs = F->getAttributes();
  AttributeList CalleeAttrs = CI.getAttributes();
  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
    Assert(CallerABIAttrs == CalleeABIAttrs,
           "cannot guarantee tail call due to mismatched ABI impacting "
           "function attributes",
           &CI, CI.getOperand(I));
  }

  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
  //   or a pointer bitcast followed by a ret instruction.
  // - The ret instruction must return the (possibly bitcasted) value
  //   produced by the call or void.
  Value *RetVal = &CI;
  Instruction *Next = CI.getNextNode();

  // Handle the optional bitcast.
  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
    Assert(BI->getOperand(0) == RetVal,
           "bitcast following musttail call must use the call", BI);
    RetVal = BI;
    Next = BI->getNextNode();
  }

  // Check the return.
  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
         &CI);
  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
         "musttail call result must be returned", Ret);
}

void Verifier::visitCallInst(CallInst &CI) {
  visitCallBase(CI);

  if (CI.isMustTailCall())
    verifyMustTailCall(CI);
}

void Verifier::visitInvokeInst(InvokeInst &II) {
  visitCallBase(II);

  // Verify that the first non-PHI instruction of the unwind destination is an
  // exception handling instruction.
  Assert(
      II.getUnwindDest()->isEHPad(),
      "The unwind destination does not have an exception handling instruction!",
      &II);

  visitTerminator(II);
}

/// visitUnaryOperator - Check the argument to the unary operator.
///
void Verifier::visitUnaryOperator(UnaryOperator &U) {
  Assert(U.getType() == U.getOperand(0)->getType(),
         "Unary operators must have same type for"
         "operands and result!",
         &U);

  switch (U.getOpcode()) {
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FNeg:
    Assert(U.getType()->isFPOrFPVectorTy(),
           "FNeg operator only works with float types!", &U);
    break;
  default:
    llvm_unreachable("Unknown UnaryOperator opcode!");
  }

  visitInstruction(U);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
         "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that integer arithmetic operators are only used with
  // integral operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Integer arithmetic operators only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Integer arithmetic operators must have same type "
           "for operands and result!",
           &B);
    break;
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
    Assert(B.getType()->isFPOrFPVectorTy(),
           "Floating-point arithmetic operators only work with "
           "floating-point types!",
           &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Floating-point arithmetic operators must have same type "
           "for operands and result!",
           &B);
    break;
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Logical operators only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Logical operators must have same type for operands and result!",
           &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Shifts only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Shift return type must be same as operands!", &B);
    break;
  default:
    llvm_unreachable("Unknown BinaryOperator opcode!");
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst &IC) {
  // Check that the operands are the same type
  Type *Op0Ty = IC.getOperand(0)->getType();
  Type *Op1Ty = IC.getOperand(1)->getType();
  Assert(Op0Ty == Op1Ty,
         "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
         "Invalid operand types for ICmp instruction", &IC);
  // Check that the predicate is valid.
  Assert(IC.isIntPredicate(),
         "Invalid predicate in ICmp instruction!", &IC);

  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst &FC) {
  // Check that the operands are the same type
  Type *Op0Ty = FC.getOperand(0)->getType();
  Type *Op1Ty = FC.getOperand(1)->getType();
  Assert(Op0Ty == Op1Ty,
         "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Assert(Op0Ty->isFPOrFPVectorTy(),
         "Invalid operand types for FCmp instruction", &FC);
  // Check that the predicate is valid.
  Assert(FC.isFPPredicate(),
         "Invalid predicate in FCmp instruction!", &FC);

  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Assert(
      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
      "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
                                            IE.getOperand(2)),
         "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                            SV.getShuffleMask()),
         "Invalid shufflevector operands!", &SV);
  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();

  Assert(isa<PointerType>(TargetTy),
         "GEP base pointer is not a vector or a vector of pointers", &GEP);
  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);

  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
  Assert(all_of(
      Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
      "GEP indexes must be integers", &GEP);
  Type *ElTy =
      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);

  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
             GEP.getResultElementType() == ElTy,
         "GEP is not of right type for indices!", &GEP, ElTy);

  if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
    // Additional checks for vector GEPs.
    ElementCount GEPWidth = GEPVTy->getElementCount();
    if (GEP.getPointerOperandType()->isVectorTy())
      Assert(
          GEPWidth ==
              cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
          "Vector GEP result width doesn't match operand's", &GEP);
    for (Value *Idx : Idxs) {
      Type *IndexTy = Idx->getType();
      if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
        ElementCount IndexWidth = IndexVTy->getElementCount();
        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
      }
      Assert(IndexTy->isIntOrIntVectorTy(),
             "All GEP indices should be of integer type");
    }
  }

  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
    Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
           "GEP address space doesn't match type", &GEP);
  }

  visitInstruction(GEP);
}

static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}

void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
         "precondition violation");

  unsigned NumOperands = Range->getNumOperands();
  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
  unsigned NumRanges = NumOperands / 2;
  Assert(NumRanges >= 1, "It should have at least one range!", Range);

  ConstantRange LastRange(1, true); // Dummy initial value
  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Low =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
    Assert(Low, "The lower limit must be an integer!", Low);
    ConstantInt *High =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
    Assert(High, "The upper limit must be an integer!", High);
    Assert(High->getType() == Low->getType() && High->getType() == Ty,
           "Range types must match instruction type!", &I);

    APInt HighV = High->getValue();
    APInt LowV = Low->getValue();
    ConstantRange CurRange(LowV, HighV);
    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
           "Range must not be empty!", Range);
    if (i != 0) {
      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
             "Intervals are overlapping", Range);
      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
             Range);
      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
             Range);
    }
    LastRange = ConstantRange(LowV, HighV);
  }
  if (NumRanges > 2) {
    APInt FirstLow =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
    APInt FirstHigh =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
    ConstantRange FirstRange(FirstLow, FirstHigh);
    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
           "Intervals are overlapping", Range);
    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
           Range);
  }
}

void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
  unsigned Size = DL.getTypeSizeInBits(Ty);
  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
  Assert(!(Size & (Size - 1)),
         "atomic memory access' operand must have a power-of-two size", Ty, I);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
  Assert(PTy, "Load operand must be a pointer.", &LI);
  Type *ElTy = LI.getType();
  Assert(LI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &LI);
  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
  if (LI.isAtomic()) {
    Assert(LI.getOrdering() != AtomicOrdering::Release &&
               LI.getOrdering() != AtomicOrdering::AcquireRelease,
           "Load cannot have Release ordering", &LI);
    Assert(LI.getAlignment() != 0,
           "Atomic load must specify explicit alignment", &LI);
    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
           "atomic load operand must have integer, pointer, or floating point "
           "type!",
           ElTy, &LI);
    checkAtomicMemAccessSize(ElTy, &LI);
  } else {
    Assert(LI.getSyncScopeID() == SyncScope::System,
           "Non-atomic load cannot have SynchronizationScope specified", &LI);
  }

  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
  Assert(PTy, "Store operand must be a pointer.", &SI);
  Type *ElTy = PTy->getElementType();
  Assert(ElTy == SI.getOperand(0)->getType(),
         "Stored value type does not match pointer operand type!", &SI, ElTy);
  Assert(SI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &SI);
  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
  if (SI.isAtomic()) {
    Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
               SI.getOrdering() != AtomicOrdering::AcquireRelease,
           "Store cannot have Acquire ordering", &SI);
    Assert(SI.getAlignment() != 0,
           "Atomic store must specify explicit alignment", &SI);
    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
           "atomic store operand must have integer, pointer, or floating point "
           "type!",
           ElTy, &SI);
    checkAtomicMemAccessSize(ElTy, &SI);
  } else {
    Assert(SI.getSyncScopeID() == SyncScope::System,
           "Non-atomic store cannot have SynchronizationScope specified", &SI);
  }
  visitInstruction(SI);
}

/// Check that SwiftErrorVal is used as a swifterror argument in CS.
void Verifier::verifySwiftErrorCall(CallBase &Call,
                                    const Value *SwiftErrorVal) {
  unsigned Idx = 0;
  for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
    if (*I == SwiftErrorVal) {
      Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
             "swifterror value when used in a callsite should be marked "
             "with swifterror attribute",
             SwiftErrorVal, Call);
    }
  }
}

void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
  // Check that swifterror value is only used by loads, stores, or as
  // a swifterror argument.
  for (const User *U : SwiftErrorVal->users()) {
    Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
           isa<InvokeInst>(U),
           "swifterror value can only be loaded and stored from, or "
           "as a swifterror argument!",
           SwiftErrorVal, U);
    // If it is used by a store, check it is the second operand.
    if (auto StoreI = dyn_cast<StoreInst>(U))
      Assert(StoreI->getOperand(1) == SwiftErrorVal,
             "swifterror value should be the second operand when used "
             "by stores", SwiftErrorVal, U);
    if (auto *Call = dyn_cast<CallBase>(U))
      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
  }
}

void Verifier::visitAllocaInst(AllocaInst &AI) {
  SmallPtrSet<Type*, 4> Visited;
  PointerType *PTy = AI.getType();
  // TODO: Relax this restriction?
  Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
         "Allocation instruction pointer not in the stack address space!",
         &AI);
  Assert(AI.getAllocatedType()->isSized(&Visited),
         "Cannot allocate unsized type", &AI);
  Assert(AI.getArraySize()->getType()->isIntegerTy(),
         "Alloca array size must have integer type", &AI);
  Assert(AI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &AI);

  if (AI.isSwiftError()) {
    verifySwiftErrorValue(&AI);
  }

  visitInstruction(AI);
}

void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {

  // FIXME: more conditions???
  Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
         "cmpxchg instructions must be atomic.", &CXI);
  Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
         "cmpxchg instructions must be atomic.", &CXI);
  Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
         "cmpxchg instructions cannot be unordered.", &CXI);
  Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
         "cmpxchg instructions cannot be unordered.", &CXI);
  Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
         "cmpxchg instructions failure argument shall be no stronger than the "
         "success argument",
         &CXI);
  Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
             CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
         "cmpxchg failure ordering cannot include release semantics", &CXI);

  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
  Type *ElTy = PTy->getElementType();
  Assert(ElTy->isIntOrPtrTy(),
         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
  checkAtomicMemAccessSize(ElTy, &CXI);
  Assert(ElTy == CXI.getOperand(1)->getType(),
         "Expected value type does not match pointer operand type!", &CXI,
         ElTy);
  Assert(ElTy == CXI.getOperand(2)->getType(),
         "Stored value type does not match pointer operand type!", &CXI, ElTy);
  visitInstruction(CXI);
}

void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
  Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
         "atomicrmw instructions must be atomic.", &RMWI);
  Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
         "atomicrmw instructions cannot be unordered.", &RMWI);
  auto Op = RMWI.getOperation();
  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
  Type *ElTy = PTy->getElementType();
  if (Op == AtomicRMWInst::Xchg) {
    Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
           AtomicRMWInst::getOperationName(Op) +
           " operand must have integer or floating point type!",
           &RMWI, ElTy);
  } else if (AtomicRMWInst::isFPOperation(Op)) {
    Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
           AtomicRMWInst::getOperationName(Op) +
           " operand must have floating point type!",
           &RMWI, ElTy);
  } else {
    Assert(ElTy->isIntegerTy(), "atomicrmw " +
           AtomicRMWInst::getOperationName(Op) +
           " operand must have integer type!",
           &RMWI, ElTy);
  }
  checkAtomicMemAccessSize(ElTy, &RMWI);
  Assert(ElTy == RMWI.getOperand(1)->getType(),
         "Argument value type does not match pointer operand type!", &RMWI,
         ElTy);
  Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
         "Invalid binary operation!", &RMWI);
  visitInstruction(RMWI);
}

void Verifier::visitFenceInst(FenceInst &FI) {
  const AtomicOrdering Ordering = FI.getOrdering();
  Assert(Ordering == AtomicOrdering::Acquire ||
             Ordering == AtomicOrdering::Release ||
             Ordering == AtomicOrdering::AcquireRelease ||
             Ordering == AtomicOrdering::SequentiallyConsistent,
         "fence instructions may only have acquire, release, acq_rel, or "
         "seq_cst ordering.",
         &FI);
  visitInstruction(FI);
}

void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
                                          EVI.getIndices()) == EVI.getType(),
         "Invalid ExtractValueInst operands!", &EVI);

  visitInstruction(EVI);
}

void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
                                          IVI.getIndices()) ==
             IVI.getOperand(1)->getType(),
         "Invalid InsertValueInst operands!", &IVI);

  visitInstruction(IVI);
}

static Value *getParentPad(Value *EHPad) {
  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
    return FPI->getParentPad();

  return cast<CatchSwitchInst>(EHPad)->getParentPad();
}

void Verifier::visitEHPadPredecessors(Instruction &I) {
  assert(I.isEHPad());

  BasicBlock *BB = I.getParent();
  Function *F = BB->getParent();

  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);

  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
    // The landingpad instruction defines its parent as a landing pad block. The
    // landing pad block may be branched to only by the unwind edge of an
    // invoke.
    for (BasicBlock *PredBB : predecessors(BB)) {
      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
             "Block containing LandingPadInst must be jumped to "
             "only by the unwind edge of an invoke.",
             LPI);
    }
    return;
  }
  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
    if (!pred_empty(BB))
      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
             "Block containg CatchPadInst must be jumped to "
             "only by its catchswitch.",
             CPI);
    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
           "Catchswitch cannot unwind to one of its catchpads",
           CPI->getCatchSwitch(), CPI);
    return;
  }

  // Verify that each pred has a legal terminator with a legal to/from EH
  // pad relationship.
  Instruction *ToPad = &I;
  Value *ToPadParent = getParentPad(ToPad);
  for (BasicBlock *PredBB : predecessors(BB)) {
    Instruction *TI = PredBB->getTerminator();
    Value *FromPad;
    if (auto *II = dyn_cast<InvokeInst>(TI)) {
      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
             "EH pad must be jumped to via an unwind edge", ToPad, II);
      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
        FromPad = Bundle->Inputs[0];
      else
        FromPad = ConstantTokenNone::get(II->getContext());
    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
      FromPad = CRI->getOperand(0);
      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
      FromPad = CSI;
    } else {
      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
    }

    // The edge may exit from zero or more nested pads.
    SmallSet<Value *, 8> Seen;
    for (;; FromPad = getParentPad(FromPad)) {
      Assert(FromPad != ToPad,
             "EH pad cannot handle exceptions raised within it", FromPad, TI);
      if (FromPad == ToPadParent) {
        // This is a legal unwind edge.
        break;
      }
      Assert(!isa<ConstantTokenNone>(FromPad),
             "A single unwind edge may only enter one EH pad", TI);
      Assert(Seen.insert(FromPad).second,
             "EH pad jumps through a cycle of pads", FromPad);
    }
  }
}

void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
  // The landingpad instruction is ill-formed if it doesn't have any clauses and
  // isn't a cleanup.
  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);

  visitEHPadPredecessors(LPI);

  if (!LandingPadResultTy)
    LandingPadResultTy = LPI.getType();
  else
    Assert(LandingPadResultTy == LPI.getType(),
           "The landingpad instruction should have a consistent result type "
           "inside a function.",
           &LPI);

  Function *F = LPI.getParent()->getParent();
  Assert(F->hasPersonalityFn(),
         "LandingPadInst needs to be in a function with a personality.", &LPI);

  // The landingpad instruction must be the first non-PHI instruction in the
  // block.
  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
         "LandingPadInst not the first non-PHI instruction in the block.",
         &LPI);

  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
    Constant *Clause = LPI.getClause(i);
    if (LPI.isCatch(i)) {
      Assert(isa<PointerType>(Clause->getType()),
             "Catch operand does not have pointer type!", &LPI);
    } else {
      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
             "Filter operand is not an array of constants!", &LPI);
    }
  }

  visitInstruction(LPI);
}

void Verifier::visitResumeInst(ResumeInst &RI) {
  Assert(RI.getFunction()->hasPersonalityFn(),
         "ResumeInst needs to be in a function with a personality.", &RI);

  if (!LandingPadResultTy)
    LandingPadResultTy = RI.getValue()->getType();
  else
    Assert(LandingPadResultTy == RI.getValue()->getType(),
           "The resume instruction should have a consistent result type "
           "inside a function.",
           &RI);

  visitTerminator(RI);
}

void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
  BasicBlock *BB = CPI.getParent();

  Function *F = BB->getParent();
  Assert(F->hasPersonalityFn(),
         "CatchPadInst needs to be in a function with a personality.", &CPI);

  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
         CPI.getParentPad());

  // The catchpad instruction must be the first non-PHI instruction in the
  // block.
  Assert(BB->getFirstNonPHI() == &CPI,
         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);

  visitEHPadPredecessors(CPI);
  visitFuncletPadInst(CPI);
}

void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
         CatchReturn.getOperand(0));

  visitTerminator(CatchReturn);
}

void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
  BasicBlock *BB = CPI.getParent();

  Function *F = BB->getParent();
  Assert(F->hasPersonalityFn(),
         "CleanupPadInst needs to be in a function with a personality.", &CPI);

  // The cleanuppad instruction must be the first non-PHI instruction in the
  // block.
  Assert(BB->getFirstNonPHI() == &CPI,
         "CleanupPadInst not the first non-PHI instruction in the block.",
         &CPI);

  auto *ParentPad = CPI.getParentPad();
  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
         "CleanupPadInst has an invalid parent.", &CPI);

  visitEHPadPredecessors(CPI);
  visitFuncletPadInst(CPI);
}

void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
  User *FirstUser = nullptr;
  Value *FirstUnwindPad = nullptr;
  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
  SmallSet<FuncletPadInst *, 8> Seen;

  while (!Worklist.empty()) {
    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
    Assert(Seen.insert(CurrentPad).second,
           "FuncletPadInst must not be nested within itself", CurrentPad);
    Value *UnresolvedAncestorPad = nullptr;
    for (User *U : CurrentPad->users()) {
      BasicBlock *UnwindDest;
      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
        UnwindDest = CRI->getUnwindDest();
      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
        // We allow catchswitch unwind to caller to nest
        // within an outer pad that unwinds somewhere else,
        // because catchswitch doesn't have a nounwind variant.
        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
        if (CSI->unwindsToCaller())
          continue;
        UnwindDest = CSI->getUnwindDest();
      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
        UnwindDest = II->getUnwindDest();
      } else if (isa<CallInst>(U)) {
        // Calls which don't unwind may be found inside funclet
        // pads that unwind somewhere else.  We don't *require*
        // such calls to be annotated nounwind.
        continue;
      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
        // The unwind dest for a cleanup can only be found by
        // recursive search.  Add it to the worklist, and we'll
        // search for its first use that determines where it unwinds.
        Worklist.push_back(CPI);
        continue;
      } else {
        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
        continue;
      }

      Value *UnwindPad;
      bool ExitsFPI;
      if (UnwindDest) {
        UnwindPad = UnwindDest->getFirstNonPHI();
        if (!cast<Instruction>(UnwindPad)->isEHPad())
          continue;
        Value *UnwindParent = getParentPad(UnwindPad);
        // Ignore unwind edges that don't exit CurrentPad.
        if (UnwindParent == CurrentPad)
          continue;
        // Determine whether the original funclet pad is exited,
        // and if we are scanning nested pads determine how many
        // of them are exited so we can stop searching their
        // children.
        Value *ExitedPad = CurrentPad;
        ExitsFPI = false;
        do {
          if (ExitedPad == &FPI) {
            ExitsFPI = true;
            // Now we can resolve any ancestors of CurrentPad up to
            // FPI, but not including FPI since we need to make sure
            // to check all direct users of FPI for consistency.
            UnresolvedAncestorPad = &FPI;
            break;
          }
          Value *ExitedParent = getParentPad(ExitedPad);
          if (ExitedParent == UnwindParent) {
            // ExitedPad is the ancestor-most pad which this unwind
            // edge exits, so we can resolve up to it, meaning that
            // ExitedParent is the first ancestor still unresolved.
            UnresolvedAncestorPad = ExitedParent;
            break;
          }
          ExitedPad = ExitedParent;
        } while (!isa<ConstantTokenNone>(ExitedPad));
      } else {
        // Unwinding to caller exits all pads.
        UnwindPad = ConstantTokenNone::get(FPI.getContext());
        ExitsFPI = true;
        UnresolvedAncestorPad = &FPI;
      }

      if (ExitsFPI) {
        // This unwind edge exits FPI.  Make sure it agrees with other
        // such edges.
        if (FirstUser) {
          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
                                              "pad must have the same unwind "
                                              "dest",
                 &FPI, U, FirstUser);
        } else {
          FirstUser = U;
          FirstUnwindPad = UnwindPad;
          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
              getParentPad(UnwindPad) == getParentPad(&FPI))
            SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
        }
      }
      // Make sure we visit all uses of FPI, but for nested pads stop as
      // soon as we know where they unwind to.
      if (CurrentPad != &FPI)
        break;
    }
    if (UnresolvedAncestorPad) {
      if (CurrentPad == UnresolvedAncestorPad) {
        // When CurrentPad is FPI itself, we don't mark it as resolved even if
        // we've found an unwind edge that exits it, because we need to verify
        // all direct uses of FPI.
        assert(CurrentPad == &FPI);
        continue;
      }
      // Pop off the worklist any nested pads that we've found an unwind
      // destination for.  The pads on the worklist are the uncles,
      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
      // for all ancestors of CurrentPad up to but not including
      // UnresolvedAncestorPad.
      Value *ResolvedPad = CurrentPad;
      while (!Worklist.empty()) {
        Value *UnclePad = Worklist.back();
        Value *AncestorPad = getParentPad(UnclePad);
        // Walk ResolvedPad up the ancestor list until we either find the
        // uncle's parent or the last resolved ancestor.
        while (ResolvedPad != AncestorPad) {
          Value *ResolvedParent = getParentPad(ResolvedPad);
          if (ResolvedParent == UnresolvedAncestorPad) {
            break;
          }
          ResolvedPad = ResolvedParent;
        }
        // If the resolved ancestor search didn't find the uncle's parent,
        // then the uncle is not yet resolved.
        if (ResolvedPad != AncestorPad)
          break;
        // This uncle is resolved, so pop it from the worklist.
        Worklist.pop_back();
      }
    }
  }

  if (FirstUnwindPad) {
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
      Value *SwitchUnwindPad;
      if (SwitchUnwindDest)
        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
      else
        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
      Assert(SwitchUnwindPad == FirstUnwindPad,
             "Unwind edges out of a catch must have the same unwind dest as "
             "the parent catchswitch",
             &FPI, FirstUser, CatchSwitch);
    }
  }

  visitInstruction(FPI);
}

void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
  BasicBlock *BB = CatchSwitch.getParent();

  Function *F = BB->getParent();
  Assert(F->hasPersonalityFn(),
         "CatchSwitchInst needs to be in a function with a personality.",
         &CatchSwitch);

  // The catchswitch instruction must be the first non-PHI instruction in the
  // block.
  Assert(BB->getFirstNonPHI() == &CatchSwitch,
         "CatchSwitchInst not the first non-PHI instruction in the block.",
         &CatchSwitch);

  auto *ParentPad = CatchSwitch.getParentPad();
  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
         "CatchSwitchInst has an invalid parent.", ParentPad);

  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
    Instruction *I = UnwindDest->getFirstNonPHI();
    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
           "CatchSwitchInst must unwind to an EH block which is not a "
           "landingpad.",
           &CatchSwitch);

    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
    if (getParentPad(I) == ParentPad)
      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
  }

  Assert(CatchSwitch.getNumHandlers() != 0,
         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);

  for (BasicBlock *Handler : CatchSwitch.handlers()) {
    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
  }

  visitEHPadPredecessors(CatchSwitch);
  visitTerminator(CatchSwitch);
}

void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
         CRI.getOperand(0));

  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
    Instruction *I = UnwindDest->getFirstNonPHI();
    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
           "CleanupReturnInst must unwind to an EH block which is not a "
           "landingpad.",
           &CRI);
  }

  visitTerminator(CRI);
}

void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
  Instruction *Op = cast<Instruction>(I.getOperand(i));
  // If the we have an invalid invoke, don't try to compute the dominance.
  // We already reject it in the invoke specific checks and the dominance
  // computation doesn't handle multiple edges.
  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
    if (II->getNormalDest() == II->getUnwindDest())
      return;
  }

  // Quick check whether the def has already been encountered in the same block.
  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
  // uses are defined to happen on the incoming edge, not at the instruction.
  //
  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
  // wrapping an SSA value, assert that we've already encountered it.  See
  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
    return;

  const Use &U = I.getOperandUse(i);
  Assert(DT.dominates(Op, U),
         "Instruction does not dominate all uses!", Op, &I);
}

void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
         "apply only to pointer types", &I);
  Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
         "dereferenceable, dereferenceable_or_null apply only to load"
         " and inttoptr instructions, use attributes for calls or invokes", &I);
  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
         "take one operand!", &I);
  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
         "dereferenceable_or_null metadata value must be an i64!", &I);
}

void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
  Assert(MD->getNumOperands() >= 2,
         "!prof annotations should have no less than 2 operands", MD);

  // Check first operand.
  Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
  Assert(isa<MDString>(MD->getOperand(0)),
         "expected string with name of the !prof annotation", MD);
  MDString *MDS = cast<MDString>(MD->getOperand(0));
  StringRef ProfName = MDS->getString();

  // Check consistency of !prof branch_weights metadata.
  if (ProfName.equals("branch_weights")) {
    if (isa<InvokeInst>(&I)) {
      Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
             "Wrong number of InvokeInst branch_weights operands", MD);
    } else {
      unsigned ExpectedNumOperands = 0;
      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
        ExpectedNumOperands = BI->getNumSuccessors();
      else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
        ExpectedNumOperands = SI->getNumSuccessors();
      else if (isa<CallInst>(&I))
        ExpectedNumOperands = 1;
      else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
        ExpectedNumOperands = IBI->getNumDestinations();
      else if (isa<SelectInst>(&I))
        ExpectedNumOperands = 2;
      else
        CheckFailed("!prof branch_weights are not allowed for this instruction",
                    MD);

      Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
             "Wrong number of operands", MD);
    }
    for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
      auto &MDO = MD->getOperand(i);
      Assert(MDO, "second operand should not be null", MD);
      Assert(mdconst::dyn_extract<ConstantInt>(MDO),
             "!prof brunch_weights operand is not a const int");
    }
  }
}

/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Assert(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (User *U : I.users()) {
      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
             "Only PHI nodes may reference their own value!", &I);
    }
  }

  // Check that void typed values don't have names
  Assert(!I.getType()->isVoidTy() || !I.hasName(),
         "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
         "Instruction returns a non-scalar type!", &I);

  // Check that the instruction doesn't produce metadata. Calls are already
  // checked against the callee type.
  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
         "Invalid use of metadata!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (Use &U : I.uses()) {
    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
      Assert(Used->getParent() != nullptr,
             "Instruction referencing"
             " instruction not embedded in a basic block!",
             &I, Used);
    else {
      CheckFailed("Use of instruction is not an instruction!", U);
      return;
    }
  }

  // Get a pointer to the call base of the instruction if it is some form of
  // call.
  const CallBase *CBI = dyn_cast<CallBase>(&I);

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    if (!I.getOperand(i)->getType()->isFirstClassType()) {
      Assert(false, "Instruction operands must be first-class values!", &I);
    }

    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // Check to make sure that the "address of" an intrinsic function is never
      // taken.
      Assert(!F->isIntrinsic() ||
                 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
             "Cannot take the address of an intrinsic!", &I);
      Assert(
          !F->isIntrinsic() || isa<CallInst>(I) ||
              F->getIntrinsicID() == Intrinsic::donothing ||
              F->getIntrinsicID() == Intrinsic::coro_resume ||
              F->getIntrinsicID() == Intrinsic::coro_destroy ||
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
              F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
          "Cannot invoke an intrinsic other than donothing, patchpoint, "
          "statepoint, coro_resume or coro_destroy",
          &I);
      Assert(F->getParent() == &M, "Referencing function in another module!",
             &I, &M, F, F->getParent());
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert(OpBB->getParent() == BB->getParent(),
             "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert(OpArg->getParent() == BB->getParent(),
             "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
             &M, GV, GV->getParent());
    } else if (isa<Instruction>(I.getOperand(i))) {
      verifyDominatesUse(I, i);
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
             "Cannot take the address of an inline asm!", &I);
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
      if (CE->getType()->isPtrOrPtrVectorTy() ||
          !DL.getNonIntegralAddressSpaces().empty()) {
        // If we have a ConstantExpr pointer, we need to see if it came from an
        // illegal bitcast.  If the datalayout string specifies non-integral
        // address spaces then we also need to check for illegal ptrtoint and
        // inttoptr expressions.
        visitConstantExprsRecursively(CE);
      }
    }
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
    Assert(I.getType()->isFPOrFPVectorTy(),
           "fpmath requires a floating point result!", &I);
    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
    if (ConstantFP *CFP0 =
            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
      const APFloat &Accuracy = CFP0->getValueAPF();
      Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
             "fpmath accuracy must have float type", &I);
      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
             "fpmath accuracy not a positive number!", &I);
    } else {
      Assert(false, "invalid fpmath accuracy!", &I);
    }
  }

  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
           "Ranges are only for loads, calls and invokes!", &I);
    visitRangeMetadata(I, Range, I.getType());
  }

  if (I.getMetadata(LLVMContext::MD_nonnull)) {
    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
           &I);
    Assert(isa<LoadInst>(I),
           "nonnull applies only to load instructions, use attributes"
           " for calls or invokes",
           &I);
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
    visitDereferenceableMetadata(I, MD);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
    visitDereferenceableMetadata(I, MD);

  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);

  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
    Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
           &I);
    Assert(isa<LoadInst>(I), "align applies only to load instructions, "
           "use attributes for calls or invokes", &I);
    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
    Assert(CI && CI->getType()->isIntegerTy(64),
           "align metadata value must be an i64!", &I);
    uint64_t Align = CI->getZExtValue();
    Assert(isPowerOf2_64(Align),
           "align metadata value must be a power of 2!", &I);
    Assert(Align <= Value::MaximumAlignment,
           "alignment is larger that implementation defined limit", &I);
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
    visitProfMetadata(I, MD);

  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
    AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
    visitMDNode(*N, AreDebugLocsAllowed::Yes);
  }

  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
    verifyFragmentExpression(*DII);
    verifyNotEntryValue(*DII);
  }

  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  I.getAllMetadata(MDs);
  for (auto Attachment : MDs) {
    unsigned Kind = Attachment.first;
    auto AllowLocs =
        (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
            ? AreDebugLocsAllowed::Yes
            : AreDebugLocsAllowed::No;
    visitMDNode(*Attachment.second, AllowLocs);
  }

  InstsInThisBlock.insert(&I);
}

/// Allow intrinsics to be verified in different ways.
void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
  Function *IF = Call.getCalledFunction();
  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
         IF);

  // Verify that the intrinsic prototype lines up with what the .td files
  // describe.
  FunctionType *IFTy = IF->getFunctionType();
  bool IsVarArg = IFTy->isVarArg();

  SmallVector<Intrinsic::IITDescriptor, 8> Table;
  getIntrinsicInfoTableEntries(ID, Table);
  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;

  // Walk the descriptors to extract overloaded types.
  SmallVector<Type *, 4> ArgTys;
  Intrinsic::MatchIntrinsicTypesResult Res =
      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
         "Intrinsic has incorrect return type!", IF);
  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
         "Intrinsic has incorrect argument type!", IF);

  // Verify if the intrinsic call matches the vararg property.
  if (IsVarArg)
    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
           "Intrinsic was not defined with variable arguments!", IF);
  else
    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
           "Callsite was not defined with variable arguments!", IF);

  // All descriptors should be absorbed by now.
  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);

  // Now that we have the intrinsic ID and the actual argument types (and we
  // know they are legal for the intrinsic!) get the intrinsic name through the
  // usual means.  This allows us to verify the mangling of argument types into
  // the name.
  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
  Assert(ExpectedName == IF->getName(),
         "Intrinsic name not mangled correctly for type arguments! "
         "Should be: " +
             ExpectedName,
         IF);

  // If the intrinsic takes MDNode arguments, verify that they are either global
  // or are local to *this* function.
  for (Value *V : Call.args())
    if (auto *MD = dyn_cast<MetadataAsValue>(V))
      visitMetadataAsValue(*MD, Call.getCaller());

  switch (ID) {
  default:
    break;
  case Intrinsic::assume: {
    for (auto &Elem : Call.bundle_op_infos()) {
      Assert(Elem.Tag->getKey() == "ignore" ||
                 Attribute::isExistingAttribute(Elem.Tag->getKey()),
             "tags must be valid attribute names");
      Assert(Elem.End - Elem.Begin <= 2, "to many arguments");
      Attribute::AttrKind Kind =
          Attribute::getAttrKindFromName(Elem.Tag->getKey());
      if (Kind == Attribute::None)
        break;
      if (Attribute::doesAttrKindHaveArgument(Kind)) {
        Assert(Elem.End - Elem.Begin == 2,
               "this attribute should have 2 arguments");
        Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
               "the second argument should be a constant integral value");
      } else if (isFuncOnlyAttr(Kind)) {
        Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument");
      } else if (!isFuncOrArgAttr(Kind)) {
        Assert((Elem.End - Elem.Begin) == 1,
               "this attribute should have one argument");
      }
    }
    break;
  }
  case Intrinsic::coro_id: {
    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
    if (isa<ConstantPointerNull>(InfoArg))
      break;
    auto *GV = dyn_cast<GlobalVariable>(InfoArg);
    Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
      "info argument of llvm.coro.begin must refer to an initialized "
      "constant");
    Constant *Init = GV->getInitializer();
    Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
      "info argument of llvm.coro.begin must refer to either a struct or "
      "an array");
    break;
  }
#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
  case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
    break;
  case Intrinsic::dbg_declare: // llvm.dbg.declare
    Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
           "invalid llvm.dbg.declare intrinsic call 1", Call);
    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_addr: // llvm.dbg.addr
    visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_value: // llvm.dbg.value
    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_label: // llvm.dbg.label
    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
    break;
  case Intrinsic::memcpy:
  case Intrinsic::memcpy_inline:
  case Intrinsic::memmove:
  case Intrinsic::memset: {
    const auto *MI = cast<MemIntrinsic>(&Call);
    auto IsValidAlignment = [&](unsigned Alignment) -> bool {
      return Alignment == 0 || isPowerOf2_32(Alignment);
    };
    Assert(IsValidAlignment(MI->getDestAlignment()),
           "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
           Call);
    if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
      Assert(IsValidAlignment(MTI->getSourceAlignment()),
             "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
             Call);
    }

    break;
  }
  case Intrinsic::memcpy_element_unordered_atomic:
  case Intrinsic::memmove_element_unordered_atomic:
  case Intrinsic::memset_element_unordered_atomic: {
    const auto *AMI = cast<AtomicMemIntrinsic>(&Call);

    ConstantInt *ElementSizeCI =
        cast<ConstantInt>(AMI->getRawElementSizeInBytes());
    const APInt &ElementSizeVal = ElementSizeCI->getValue();
    Assert(ElementSizeVal.isPowerOf2(),
           "element size of the element-wise atomic memory intrinsic "
           "must be a power of 2",
           Call);

    auto IsValidAlignment = [&](uint64_t Alignment) {
      return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
    };
    uint64_t DstAlignment = AMI->getDestAlignment();
    Assert(IsValidAlignment(DstAlignment),
           "incorrect alignment of the destination argument", Call);
    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
      uint64_t SrcAlignment = AMT->getSourceAlignment();
      Assert(IsValidAlignment(SrcAlignment),
             "incorrect alignment of the source argument", Call);
    }
    break;
  }
  case Intrinsic::call_preallocated_setup: {
    auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
    Assert(NumArgs != nullptr,
           "llvm.call.preallocated.setup argument must be a constant");
    bool FoundCall = false;
    for (User *U : Call.users()) {
      auto *UseCall = dyn_cast<CallBase>(U);
      Assert(UseCall != nullptr,
             "Uses of llvm.call.preallocated.setup must be calls");
      const Function *Fn = UseCall->getCalledFunction();
      if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
        auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
        Assert(AllocArgIndex != nullptr,
               "llvm.call.preallocated.alloc arg index must be a constant");
        auto AllocArgIndexInt = AllocArgIndex->getValue();
        Assert(AllocArgIndexInt.sge(0) &&
                   AllocArgIndexInt.slt(NumArgs->getValue()),
               "llvm.call.preallocated.alloc arg index must be between 0 and "
               "corresponding "
               "llvm.call.preallocated.setup's argument count");
      } else if (Fn && Fn->getIntrinsicID() ==
                           Intrinsic::call_preallocated_teardown) {
        // nothing to do
      } else {
        Assert(!FoundCall, "Can have at most one call corresponding to a "
                           "llvm.call.preallocated.setup");
        FoundCall = true;
        size_t NumPreallocatedArgs = 0;
        for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
          if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
            ++NumPreallocatedArgs;
          }
        }
        Assert(NumPreallocatedArgs != 0,
               "cannot use preallocated intrinsics on a call without "
               "preallocated arguments");
        Assert(NumArgs->equalsInt(NumPreallocatedArgs),
               "llvm.call.preallocated.setup arg size must be equal to number "
               "of preallocated arguments "
               "at call site",
               Call, *UseCall);
        // getOperandBundle() cannot be called if more than one of the operand
        // bundle exists. There is already a check elsewhere for this, so skip
        // here if we see more than one.
        if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
            1) {
          return;
        }
        auto PreallocatedBundle =
            UseCall->getOperandBundle(LLVMContext::OB_preallocated);
        Assert(PreallocatedBundle,
               "Use of llvm.call.preallocated.setup outside intrinsics "
               "must be in \"preallocated\" operand bundle");
        Assert(PreallocatedBundle->Inputs.front().get() == &Call,
               "preallocated bundle must have token from corresponding "
               "llvm.call.preallocated.setup");
      }
    }
    break;
  }
  case Intrinsic::call_preallocated_arg: {
    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
    Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
                        Intrinsic::call_preallocated_setup,
           "llvm.call.preallocated.arg token argument must be a "
           "llvm.call.preallocated.setup");
    Assert(Call.hasFnAttr(Attribute::Preallocated),
           "llvm.call.preallocated.arg must be called with a \"preallocated\" "
           "call site attribute");
    break;
  }
  case Intrinsic::call_preallocated_teardown: {
    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
    Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
                        Intrinsic::call_preallocated_setup,
           "llvm.call.preallocated.teardown token argument must be a "
           "llvm.call.preallocated.setup");
    break;
  }
  case Intrinsic::gcroot:
  case Intrinsic::gcwrite:
  case Intrinsic::gcread:
    if (ID == Intrinsic::gcroot) {
      AllocaInst *AI =
          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
      Assert(isa<Constant>(Call.getArgOperand(1)),
             "llvm.gcroot parameter #2 must be a constant.", Call);
      if (!AI->getAllocatedType()->isPointerTy()) {
        Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
               "llvm.gcroot parameter #1 must either be a pointer alloca, "
               "or argument #2 must be a non-null constant.",
               Call);
      }
    }

    Assert(Call.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", Call);
    break;
  case Intrinsic::init_trampoline:
    Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
           "llvm.init_trampoline parameter #2 must resolve to a function.",
           Call);
    break;
  case Intrinsic::prefetch:
    Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
           cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
           "invalid arguments to llvm.prefetch", Call);
    break;
  case Intrinsic::stackprotector:
    Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
    break;
  case Intrinsic::localescape: {
    BasicBlock *BB = Call.getParent();
    Assert(BB == &BB->getParent()->front(),
           "llvm.localescape used outside of entry block", Call);
    Assert(!SawFrameEscape,
           "multiple calls to llvm.localescape in one function", Call);
    for (Value *Arg : Call.args()) {
      if (isa<ConstantPointerNull>(Arg))
        continue; // Null values are allowed as placeholders.
      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
      Assert(AI && AI->isStaticAlloca(),
             "llvm.localescape only accepts static allocas", Call);
    }
    FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
    SawFrameEscape = true;
    break;
  }
  case Intrinsic::localrecover: {
    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
    Function *Fn = dyn_cast<Function>(FnArg);
    Assert(Fn && !Fn->isDeclaration(),
           "llvm.localrecover first "
           "argument must be function defined in this module",
           Call);
    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
    auto &Entry = FrameEscapeInfo[Fn];
    Entry.second = unsigned(
        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
    break;
  }

  case Intrinsic::experimental_gc_statepoint:
    if (auto *CI = dyn_cast<CallInst>(&Call))
      Assert(!CI->isInlineAsm(),
             "gc.statepoint support for inline assembly unimplemented", CI);
    Assert(Call.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", Call);

    verifyStatepoint(Call);
    break;
  case Intrinsic::experimental_gc_result: {
    Assert(Call.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", Call);
    // Are we tied to a statepoint properly?
    const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
    const Function *StatepointFn =
        StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
    Assert(StatepointFn && StatepointFn->isDeclaration() &&
               StatepointFn->getIntrinsicID() ==
                   Intrinsic::experimental_gc_statepoint,
           "gc.result operand #1 must be from a statepoint", Call,
           Call.getArgOperand(0));

    // Assert that result type matches wrapped callee.
    const Value *Target = StatepointCall->getArgOperand(2);
    auto *PT = cast<PointerType>(Target->getType());
    auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
    Assert(Call.getType() == TargetFuncType->getReturnType(),
           "gc.result result type does not match wrapped callee", Call);
    break;
  }
  case Intrinsic::experimental_gc_relocate: {
    Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);

    Assert(isa<PointerType>(Call.getType()->getScalarType()),
           "gc.relocate must return a pointer or a vector of pointers", Call);

    // Check that this relocate is correctly tied to the statepoint

    // This is case for relocate on the unwinding path of an invoke statepoint
    if (LandingPadInst *LandingPad =
            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {

      const BasicBlock *InvokeBB =
          LandingPad->getParent()->getUniquePredecessor();

      // Landingpad relocates should have only one predecessor with invoke
      // statepoint terminator
      Assert(InvokeBB, "safepoints should have unique landingpads",
             LandingPad->getParent());
      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
             InvokeBB);
      Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
             "gc relocate should be linked to a statepoint", InvokeBB);
    } else {
      // In all other cases relocate should be tied to the statepoint directly.
      // This covers relocates on a normal return path of invoke statepoint and
      // relocates of a call statepoint.
      auto Token = Call.getArgOperand(0);
      Assert(isa<GCStatepointInst>(Token),
             "gc relocate is incorrectly tied to the statepoint", Call, Token);
    }

    // Verify rest of the relocate arguments.
    const CallBase &StatepointCall =
      *cast<GCRelocateInst>(Call).getStatepoint();

    // Both the base and derived must be piped through the safepoint.
    Value *Base = Call.getArgOperand(1);
    Assert(isa<ConstantInt>(Base),
           "gc.relocate operand #2 must be integer offset", Call);

    Value *Derived = Call.getArgOperand(2);
    Assert(isa<ConstantInt>(Derived),
           "gc.relocate operand #3 must be integer offset", Call);

    const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
    const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();

    // Check the bounds
    if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
      Assert(BaseIndex < Opt->Inputs.size(),
             "gc.relocate: statepoint base index out of bounds", Call);
      Assert(DerivedIndex < Opt->Inputs.size(),
             "gc.relocate: statepoint derived index out of bounds", Call);
    } else {
      Assert(BaseIndex < StatepointCall.arg_size(),
             "gc.relocate: statepoint base index out of bounds", Call);
      Assert(DerivedIndex < StatepointCall.arg_size(),
             "gc.relocate: statepoint derived index out of bounds", Call);

      // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
      // section of the statepoint's argument.
      Assert(StatepointCall.arg_size() > 0,
             "gc.statepoint: insufficient arguments");
      Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
             "gc.statement: number of call arguments must be constant integer");
      const uint64_t NumCallArgs =
        cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
      Assert(StatepointCall.arg_size() > NumCallArgs + 5,
             "gc.statepoint: mismatch in number of call arguments");
      Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
             "gc.statepoint: number of transition arguments must be "
             "a constant integer");
      const uint64_t NumTransitionArgs =
          cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
              ->getZExtValue();
      const uint64_t DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
      Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
             "gc.statepoint: number of deoptimization arguments must be "
             "a constant integer");
      const uint64_t NumDeoptArgs =
          cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
              ->getZExtValue();
      const uint64_t GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
      const uint64_t GCParamArgsEnd = StatepointCall.arg_size();
      Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
             "gc.relocate: statepoint base index doesn't fall within the "
             "'gc parameters' section of the statepoint call",
             Call);
      Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
             "gc.relocate: statepoint derived index doesn't fall within the "
             "'gc parameters' section of the statepoint call",
             Call);
    }

    // Relocated value must be either a pointer type or vector-of-pointer type,
    // but gc_relocate does not need to return the same pointer type as the
    // relocated pointer. It can be casted to the correct type later if it's
    // desired. However, they must have the same address space and 'vectorness'
    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
    Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
           "gc.relocate: relocated value must be a gc pointer", Call);

    auto ResultType = Call.getType();
    auto DerivedType = Relocate.getDerivedPtr()->getType();
    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
           "gc.relocate: vector relocates to vector and pointer to pointer",
           Call);
    Assert(
        ResultType->getPointerAddressSpace() ==
            DerivedType->getPointerAddressSpace(),
        "gc.relocate: relocating a pointer shouldn't change its address space",
        Call);
    break;
  }
  case Intrinsic::eh_exceptioncode:
  case Intrinsic::eh_exceptionpointer: {
    Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
           "eh.exceptionpointer argument must be a catchpad", Call);
    break;
  }
  case Intrinsic::get_active_lane_mask: {
    Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
           "vector", Call);
    auto *ElemTy = Call.getType()->getScalarType();
    Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
           "i1", Call);
    break;
  }
  case Intrinsic::masked_load: {
    Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
           Call);

    Value *Ptr = Call.getArgOperand(0);
    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
    Value *Mask = Call.getArgOperand(2);
    Value *PassThru = Call.getArgOperand(3);
    Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
           Call);
    Assert(Alignment->getValue().isPowerOf2(),
           "masked_load: alignment must be a power of 2", Call);

    // DataTy is the overloaded type
    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
    Assert(DataTy == Call.getType(),
           "masked_load: return must match pointer type", Call);
    Assert(PassThru->getType() == DataTy,
           "masked_load: pass through and data type must match", Call);
    Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
               cast<VectorType>(DataTy)->getElementCount(),
           "masked_load: vector mask must be same length as data", Call);
    break;
  }
  case Intrinsic::masked_store: {
    Value *Val = Call.getArgOperand(0);
    Value *Ptr = Call.getArgOperand(1);
    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
    Value *Mask = Call.getArgOperand(3);
    Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
           Call);
    Assert(Alignment->getValue().isPowerOf2(),
           "masked_store: alignment must be a power of 2", Call);

    // DataTy is the overloaded type
    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
    Assert(DataTy == Val->getType(),
           "masked_store: storee must match pointer type", Call);
    Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
               cast<VectorType>(DataTy)->getElementCount(),
           "masked_store: vector mask must be same length as data", Call);
    break;
  }

  case Intrinsic::masked_gather: {
    const APInt &Alignment =
        cast<ConstantInt>(Call.getArgOperand(1))->getValue();
    Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
           "masked_gather: alignment must be 0 or a power of 2", Call);
    break;
  }
  case Intrinsic::masked_scatter: {
    const APInt &Alignment =
        cast<ConstantInt>(Call.getArgOperand(2))->getValue();
    Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
           "masked_scatter: alignment must be 0 or a power of 2", Call);
    break;
  }

  case Intrinsic::experimental_guard: {
    Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
           "experimental_guard must have exactly one "
           "\"deopt\" operand bundle");
    break;
  }

  case Intrinsic::experimental_deoptimize: {
    Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
           Call);
    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
           "experimental_deoptimize must have exactly one "
           "\"deopt\" operand bundle");
    Assert(Call.getType() == Call.getFunction()->getReturnType(),
           "experimental_deoptimize return type must match caller return type");

    if (isa<CallInst>(Call)) {
      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
      Assert(RI,
             "calls to experimental_deoptimize must be followed by a return");

      if (!Call.getType()->isVoidTy() && RI)
        Assert(RI->getReturnValue() == &Call,
               "calls to experimental_deoptimize must be followed by a return "
               "of the value computed by experimental_deoptimize");
    }

    break;
  }
  case Intrinsic::sadd_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::usub_sat: {
    Value *Op1 = Call.getArgOperand(0);
    Value *Op2 = Call.getArgOperand(1);
    Assert(Op1->getType()->isIntOrIntVectorTy(),
           "first operand of [us][add|sub]_sat must be an int type or vector "
           "of ints");
    Assert(Op2->getType()->isIntOrIntVectorTy(),
           "second operand of [us][add|sub]_sat must be an int type or vector "
           "of ints");
    break;
  }
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::umul_fix:
  case Intrinsic::umul_fix_sat:
  case Intrinsic::sdiv_fix:
  case Intrinsic::sdiv_fix_sat:
  case Intrinsic::udiv_fix:
  case Intrinsic::udiv_fix_sat: {
    Value *Op1 = Call.getArgOperand(0);
    Value *Op2 = Call.getArgOperand(1);
    Assert(Op1->getType()->isIntOrIntVectorTy(),
           "first operand of [us][mul|div]_fix[_sat] must be an int type or "
           "vector of ints");
    Assert(Op2->getType()->isIntOrIntVectorTy(),
           "second operand of [us][mul|div]_fix[_sat] must be an int type or "
           "vector of ints");

    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
    Assert(Op3->getType()->getBitWidth() <= 32,
           "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");

    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
        ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
      Assert(
          Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
          "the scale of s[mul|div]_fix[_sat] must be less than the width of "
          "the operands");
    } else {
      Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
             "the scale of u[mul|div]_fix[_sat] must be less than or equal "
             "to the width of the operands");
    }
    break;
  }
  case Intrinsic::lround:
  case Intrinsic::llround:
  case Intrinsic::lrint:
  case Intrinsic::llrint: {
    Type *ValTy = Call.getArgOperand(0)->getType();
    Type *ResultTy = Call.getType();
    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
           "Intrinsic does not support vectors", &Call);
    break;
  }
  case Intrinsic::bswap: {
    Type *Ty = Call.getType();
    unsigned Size = Ty->getScalarSizeInBits();
    Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
    break;
  }
  case Intrinsic::matrix_multiply:
  case Intrinsic::matrix_transpose:
  case Intrinsic::matrix_column_major_load:
  case Intrinsic::matrix_column_major_store: {
    Function *IF = Call.getCalledFunction();
    ConstantInt *Stride = nullptr;
    ConstantInt *NumRows;
    ConstantInt *NumColumns;
    VectorType *ResultTy;
    Type *Op0ElemTy = nullptr;
    Type *Op1ElemTy = nullptr;
    switch (ID) {
    case Intrinsic::matrix_multiply:
      NumRows = cast<ConstantInt>(Call.getArgOperand(2));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
      ResultTy = cast<VectorType>(Call.getType());
      Op0ElemTy =
          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
      Op1ElemTy =
          cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
      break;
    case Intrinsic::matrix_transpose:
      NumRows = cast<ConstantInt>(Call.getArgOperand(1));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
      ResultTy = cast<VectorType>(Call.getType());
      Op0ElemTy =
          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
      break;
    case Intrinsic::matrix_column_major_load:
      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
      NumRows = cast<ConstantInt>(Call.getArgOperand(3));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
      ResultTy = cast<VectorType>(Call.getType());
      Op0ElemTy =
          cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
      break;
    case Intrinsic::matrix_column_major_store:
      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
      NumRows = cast<ConstantInt>(Call.getArgOperand(4));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
      ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
      Op0ElemTy =
          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
      Op1ElemTy =
          cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
      break;
    default:
      llvm_unreachable("unexpected intrinsic");
    }

    Assert(ResultTy->getElementType()->isIntegerTy() ||
           ResultTy->getElementType()->isFloatingPointTy(),
           "Result type must be an integer or floating-point type!", IF);

    Assert(ResultTy->getElementType() == Op0ElemTy,
           "Vector element type mismatch of the result and first operand "
           "vector!", IF);

    if (Op1ElemTy)
      Assert(ResultTy->getElementType() == Op1ElemTy,
             "Vector element type mismatch of the result and second operand "
             "vector!", IF);

    Assert(ResultTy->getNumElements() ==
               NumRows->getZExtValue() * NumColumns->getZExtValue(),
           "Result of a matrix operation does not fit in the returned vector!");

    if (Stride)
      Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
             "Stride must be greater or equal than the number of rows!", IF);

    break;
  }
  };
}

/// Carefully grab the subprogram from a local scope.
///
/// This carefully grabs the subprogram from a local scope, avoiding the
/// built-in assertions that would typically fire.
static DISubprogram *getSubprogram(Metadata *LocalScope) {
  if (!LocalScope)
    return nullptr;

  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
    return SP;

  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
    return getSubprogram(LB->getRawScope());

  // Just return null; broken scope chains are checked elsewhere.
  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
  return nullptr;
}

void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
  unsigned NumOperands;
  bool HasRoundingMD;
  switch (FPI.getIntrinsicID()) {
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
  case Intrinsic::INTRINSIC:                                                   \
    NumOperands = NARG;                                                        \
    HasRoundingMD = ROUND_MODE;                                                \
    break;
#include "llvm/IR/ConstrainedOps.def"
  default:
    llvm_unreachable("Invalid constrained FP intrinsic!");
  }
  NumOperands += (1 + HasRoundingMD);
  // Compare intrinsics carry an extra predicate metadata operand.
  if (isa<ConstrainedFPCmpIntrinsic>(FPI))
    NumOperands += 1;
  Assert((FPI.getNumArgOperands() == NumOperands),
         "invalid arguments for constrained FP intrinsic", &FPI);

  switch (FPI.getIntrinsicID()) {
  case Intrinsic::experimental_constrained_lrint:
  case Intrinsic::experimental_constrained_llrint: {
    Type *ValTy = FPI.getArgOperand(0)->getType();
    Type *ResultTy = FPI.getType();
    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
           "Intrinsic does not support vectors", &FPI);
  }
    break;

  case Intrinsic::experimental_constrained_lround:
  case Intrinsic::experimental_constrained_llround: {
    Type *ValTy = FPI.getArgOperand(0)->getType();
    Type *ResultTy = FPI.getType();
    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
           "Intrinsic does not support vectors", &FPI);
    break;
  }

  case Intrinsic::experimental_constrained_fcmp:
  case Intrinsic::experimental_constrained_fcmps: {
    auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
    Assert(CmpInst::isFPPredicate(Pred),
           "invalid predicate for constrained FP comparison intrinsic", &FPI);
    break;
  }

  case Intrinsic::experimental_constrained_fptosi:
  case Intrinsic::experimental_constrained_fptoui: {
    Value *Operand = FPI.getArgOperand(0);
    uint64_t NumSrcElem = 0;
    Assert(Operand->getType()->isFPOrFPVectorTy(),
           "Intrinsic first argument must be floating point", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      NumSrcElem = OperandT->getNumElements();
    }

    Operand = &FPI;
    Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
           "Intrinsic first argument and result disagree on vector use", &FPI);
    Assert(Operand->getType()->isIntOrIntVectorTy(),
           "Intrinsic result must be an integer", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      Assert(NumSrcElem == OperandT->getNumElements(),
             "Intrinsic first argument and result vector lengths must be equal",
             &FPI);
    }
  }
    break;

  case Intrinsic::experimental_constrained_sitofp:
  case Intrinsic::experimental_constrained_uitofp: {
    Value *Operand = FPI.getArgOperand(0);
    uint64_t NumSrcElem = 0;
    Assert(Operand->getType()->isIntOrIntVectorTy(),
           "Intrinsic first argument must be integer", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      NumSrcElem = OperandT->getNumElements();
    }

    Operand = &FPI;
    Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
           "Intrinsic first argument and result disagree on vector use", &FPI);
    Assert(Operand->getType()->isFPOrFPVectorTy(),
           "Intrinsic result must be a floating point", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      Assert(NumSrcElem == OperandT->getNumElements(),
             "Intrinsic first argument and result vector lengths must be equal",
             &FPI);
    }
  } break;

  case Intrinsic::experimental_constrained_fptrunc:
  case Intrinsic::experimental_constrained_fpext: {
    Value *Operand = FPI.getArgOperand(0);
    Type *OperandTy = Operand->getType();
    Value *Result = &FPI;
    Type *ResultTy = Result->getType();
    Assert(OperandTy->isFPOrFPVectorTy(),
           "Intrinsic first argument must be FP or FP vector", &FPI);
    Assert(ResultTy->isFPOrFPVectorTy(),
           "Intrinsic result must be FP or FP vector", &FPI);
    Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
           "Intrinsic first argument and result disagree on vector use", &FPI);
    if (OperandTy->isVectorTy()) {
      auto *OperandVecTy = cast<VectorType>(OperandTy);
      auto *ResultVecTy = cast<VectorType>(ResultTy);
      Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
             "Intrinsic first argument and result vector lengths must be equal",
             &FPI);
    }
    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
      Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
             "Intrinsic first argument's type must be larger than result type",
             &FPI);
    } else {
      Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
             "Intrinsic first argument's type must be smaller than result type",
             &FPI);
    }
  }
    break;

  default:
    break;
  }

  // If a non-metadata argument is passed in a metadata slot then the
  // error will be caught earlier when the incorrect argument doesn't
  // match the specification in the intrinsic call table. Thus, no
  // argument type check is needed here.

  Assert(FPI.getExceptionBehavior().hasValue(),
         "invalid exception behavior argument", &FPI);
  if (HasRoundingMD) {
    Assert(FPI.getRoundingMode().hasValue(),
           "invalid rounding mode argument", &FPI);
  }
}

void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
  AssertDI(isa<ValueAsMetadata>(MD) ||
             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
         DII.getRawVariable());
  AssertDI(isa<DIExpression>(DII.getRawExpression()),
         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
         DII.getRawExpression());

  // Ignore broken !dbg attachments; they're checked elsewhere.
  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
    if (!isa<DILocation>(N))
      return;

  BasicBlock *BB = DII.getParent();
  Function *F = BB ? BB->getParent() : nullptr;

  // The scopes for variables and !dbg attachments must agree.
  DILocalVariable *Var = DII.getVariable();
  DILocation *Loc = DII.getDebugLoc();
  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
           &DII, BB, F);

  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
  if (!VarSP || !LocSP)
    return; // Broken scope chains are checked elsewhere.

  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
                               " variable and !dbg attachment",
           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
           Loc->getScope()->getSubprogram());

  // This check is redundant with one in visitLocalVariable().
  AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
           Var->getRawType());
  verifyFnArgs(DII);
}

void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
  AssertDI(isa<DILabel>(DLI.getRawLabel()),
         "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
         DLI.getRawLabel());

  // Ignore broken !dbg attachments; they're checked elsewhere.
  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
    if (!isa<DILocation>(N))
      return;

  BasicBlock *BB = DLI.getParent();
  Function *F = BB ? BB->getParent() : nullptr;

  // The scopes for variables and !dbg attachments must agree.
  DILabel *Label = DLI.getLabel();
  DILocation *Loc = DLI.getDebugLoc();
  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
         &DLI, BB, F);

  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
  if (!LabelSP || !LocSP)
    return;

  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
                             " label and !dbg attachment",
           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
           Loc->getScope()->getSubprogram());
}

void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());

  // We don't know whether this intrinsic verified correctly.
  if (!V || !E || !E->isValid())
    return;

  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
  auto Fragment = E->getFragmentInfo();
  if (!Fragment)
    return;

  // The frontend helps out GDB by emitting the members of local anonymous
  // unions as artificial local variables with shared storage. When SROA splits
  // the storage for artificial local variables that are smaller than the entire
  // union, the overhang piece will be outside of the allotted space for the
  // variable and this check fails.
  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
  if (V->isArtificial())
    return;

  verifyFragmentExpression(*V, *Fragment, &I);
}

template <typename ValueOrMetadata>
void Verifier::verifyFragmentExpression(const DIVariable &V,
                                        DIExpression::FragmentInfo Fragment,
                                        ValueOrMetadata *Desc) {
  // If there's no size, the type is broken, but that should be checked
  // elsewhere.
  auto VarSize = V.getSizeInBits();
  if (!VarSize)
    return;

  unsigned FragSize = Fragment.SizeInBits;
  unsigned FragOffset = Fragment.OffsetInBits;
  AssertDI(FragSize + FragOffset <= *VarSize,
         "fragment is larger than or outside of variable", Desc, &V);
  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
}

void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
  // This function does not take the scope of noninlined function arguments into
  // account. Don't run it if current function is nodebug, because it may
  // contain inlined debug intrinsics.
  if (!HasDebugInfo)
    return;

  // For performance reasons only check non-inlined ones.
  if (I.getDebugLoc()->getInlinedAt())
    return;

  DILocalVariable *Var = I.getVariable();
  AssertDI(Var, "dbg intrinsic without variable");

  unsigned ArgNo = Var->getArg();
  if (!ArgNo)
    return;

  // Verify there are no duplicate function argument debug info entries.
  // These will cause hard-to-debug assertions in the DWARF backend.
  if (DebugFnArgs.size() < ArgNo)
    DebugFnArgs.resize(ArgNo, nullptr);

  auto *Prev = DebugFnArgs[ArgNo - 1];
  DebugFnArgs[ArgNo - 1] = Var;
  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
           Prev, Var);
}

void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());

  // We don't know whether this intrinsic verified correctly.
  if (!E || !E->isValid())
    return;

  AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
}

void Verifier::verifyCompileUnits() {
  // When more than one Module is imported into the same context, such as during
  // an LTO build before linking the modules, ODR type uniquing may cause types
  // to point to a different CU. This check does not make sense in this case.
  if (M.getContext().isODRUniquingDebugTypes())
    return;
  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
  SmallPtrSet<const Metadata *, 2> Listed;
  if (CUs)
    Listed.insert(CUs->op_begin(), CUs->op_end());
  for (auto *CU : CUVisited)
    AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
  CUVisited.clear();
}

void Verifier::verifyDeoptimizeCallingConvs() {
  if (DeoptimizeDeclarations.empty())
    return;

  const Function *First = DeoptimizeDeclarations[0];
  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
    Assert(First->getCallingConv() == F->getCallingConv(),
           "All llvm.experimental.deoptimize declarations must have the same "
           "calling convention",
           First, F);
  }
}

void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
  bool HasSource = F.getSource().hasValue();
  if (!HasSourceDebugInfo.count(&U))
    HasSourceDebugInfo[&U] = HasSource;
  AssertDI(HasSource == HasSourceDebugInfo[&U],
           "inconsistent use of embedded source");
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
  Function &F = const_cast<Function &>(f);

  // Don't use a raw_null_ostream.  Printing IR is expensive.
  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());

  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return !V.verify(F);
}

bool llvm::verifyModule(const Module &M, raw_ostream *OS,
                        bool *BrokenDebugInfo) {
  // Don't use a raw_null_ostream.  Printing IR is expensive.
  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);

  bool Broken = false;
  for (const Function &F : M)
    Broken |= !V.verify(F);

  Broken |= !V.verify();
  if (BrokenDebugInfo)
    *BrokenDebugInfo = V.hasBrokenDebugInfo();
  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return Broken;
}

namespace {

struct VerifierLegacyPass : public FunctionPass {
  static char ID;

  std::unique_ptr<Verifier> V;
  bool FatalErrors = true;

  VerifierLegacyPass() : FunctionPass(ID) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }
  explicit VerifierLegacyPass(bool FatalErrors)
      : FunctionPass(ID),
        FatalErrors(FatalErrors) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    V = std::make_unique<Verifier>(
        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
    return false;
  }

  bool runOnFunction(Function &F) override {
    if (!V->verify(F) && FatalErrors) {
      errs() << "in function " << F.getName() << '\n';
      report_fatal_error("Broken function found, compilation aborted!");
    }
    return false;
  }

  bool doFinalization(Module &M) override {
    bool HasErrors = false;
    for (Function &F : M)
      if (F.isDeclaration())
        HasErrors |= !V->verify(F);

    HasErrors |= !V->verify();
    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
      report_fatal_error("Broken module found, compilation aborted!");
    return false;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
};

} // end anonymous namespace

/// Helper to issue failure from the TBAA verification
template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
  if (Diagnostic)
    return Diagnostic->CheckFailed(Args...);
}

#define AssertTBAA(C, ...)                                                     \
  do {                                                                         \
    if (!(C)) {                                                                \
      CheckFailed(__VA_ARGS__);                                                \
      return false;                                                            \
    }                                                                          \
  } while (false)

/// Verify that \p BaseNode can be used as the "base type" in the struct-path
/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
/// struct-type node describing an aggregate data structure (like a struct).
TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
                                 bool IsNewFormat) {
  if (BaseNode->getNumOperands() < 2) {
    CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
    return {true, ~0u};
  }

  auto Itr = TBAABaseNodes.find(BaseNode);
  if (Itr != TBAABaseNodes.end())
    return Itr->second;

  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
  (void)InsertResult;
  assert(InsertResult.second && "We just checked!");
  return Result;
}

TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
                                     bool IsNewFormat) {
  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};

  if (BaseNode->getNumOperands() == 2) {
    // Scalar nodes can only be accessed at offset 0.
    return isValidScalarTBAANode(BaseNode)
               ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
               : InvalidNode;
  }

  if (IsNewFormat) {
    if (BaseNode->getNumOperands() % 3 != 0) {
      CheckFailed("Access tag nodes must have the number of operands that is a "
                  "multiple of 3!", BaseNode);
      return InvalidNode;
    }
  } else {
    if (BaseNode->getNumOperands() % 2 != 1) {
      CheckFailed("Struct tag nodes must have an odd number of operands!",
                  BaseNode);
      return InvalidNode;
    }
  }

  // Check the type size field.
  if (IsNewFormat) {
    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
        BaseNode->getOperand(1));
    if (!TypeSizeNode) {
      CheckFailed("Type size nodes must be constants!", &I, BaseNode);
      return InvalidNode;
    }
  }

  // Check the type name field. In the new format it can be anything.
  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
    CheckFailed("Struct tag nodes have a string as their first operand",
                BaseNode);
    return InvalidNode;
  }

  bool Failed = false;

  Optional<APInt> PrevOffset;
  unsigned BitWidth = ~0u;

  // We've already checked that BaseNode is not a degenerate root node with one
  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
           Idx += NumOpsPerField) {
    const MDOperand &FieldTy = BaseNode->getOperand(Idx);
    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
    if (!isa<MDNode>(FieldTy)) {
      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
      Failed = true;
      continue;
    }

    auto *OffsetEntryCI =
        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
    if (!OffsetEntryCI) {
      CheckFailed("Offset entries must be constants!", &I, BaseNode);
      Failed = true;
      continue;
    }

    if (BitWidth == ~0u)
      BitWidth = OffsetEntryCI->getBitWidth();

    if (OffsetEntryCI->getBitWidth() != BitWidth) {
      CheckFailed(
          "Bitwidth between the offsets and struct type entries must match", &I,
          BaseNode);
      Failed = true;
      continue;
    }

    // NB! As far as I can tell, we generate a non-strictly increasing offset
    // sequence only from structs that have zero size bit fields.  When
    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
    // pick the field lexically the latest in struct type metadata node.  This
    // mirrors the actual behavior of the alias analysis implementation.
    bool IsAscending =
        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());

    if (!IsAscending) {
      CheckFailed("Offsets must be increasing!", &I, BaseNode);
      Failed = true;
    }

    PrevOffset = OffsetEntryCI->getValue();

    if (IsNewFormat) {
      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
          BaseNode->getOperand(Idx + 2));
      if (!MemberSizeNode) {
        CheckFailed("Member size entries must be constants!", &I, BaseNode);
        Failed = true;
        continue;
      }
    }
  }

  return Failed ? InvalidNode
                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
}

static bool IsRootTBAANode(const MDNode *MD) {
  return MD->getNumOperands() < 2;
}

static bool IsScalarTBAANodeImpl(const MDNode *MD,
                                 SmallPtrSetImpl<const MDNode *> &Visited) {
  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
    return false;

  if (!isa<MDString>(MD->getOperand(0)))
    return false;

  if (MD->getNumOperands() == 3) {
    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
      return false;
  }

  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
  return Parent && Visited.insert(Parent).second &&
         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
}

bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
  auto ResultIt = TBAAScalarNodes.find(MD);
  if (ResultIt != TBAAScalarNodes.end())
    return ResultIt->second;

  SmallPtrSet<const MDNode *, 4> Visited;
  bool Result = IsScalarTBAANodeImpl(MD, Visited);
  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
  (void)InsertResult;
  assert(InsertResult.second && "Just checked!");

  return Result;
}

/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
/// Offset in place to be the offset within the field node returned.
///
/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
                                                   const MDNode *BaseNode,
                                                   APInt &Offset,
                                                   bool IsNewFormat) {
  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");

  // Scalar nodes have only one possible "field" -- their parent in the access
  // hierarchy.  Offset must be zero at this point, but our caller is supposed
  // to Assert that.
  if (BaseNode->getNumOperands() == 2)
    return cast<MDNode>(BaseNode->getOperand(1));

  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
           Idx += NumOpsPerField) {
    auto *OffsetEntryCI =
        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
    if (OffsetEntryCI->getValue().ugt(Offset)) {
      if (Idx == FirstFieldOpNo) {
        CheckFailed("Could not find TBAA parent in struct type node", &I,
                    BaseNode, &Offset);
        return nullptr;
      }

      unsigned PrevIdx = Idx - NumOpsPerField;
      auto *PrevOffsetEntryCI =
          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
      Offset -= PrevOffsetEntryCI->getValue();
      return cast<MDNode>(BaseNode->getOperand(PrevIdx));
    }
  }

  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
      BaseNode->getOperand(LastIdx + 1));
  Offset -= LastOffsetEntryCI->getValue();
  return cast<MDNode>(BaseNode->getOperand(LastIdx));
}

static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
  if (!Type || Type->getNumOperands() < 3)
    return false;

  // In the new format type nodes shall have a reference to the parent type as
  // its first operand.
  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
  if (!Parent)
    return false;

  return true;
}

bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
                 isa<AtomicCmpXchgInst>(I),
             "This instruction shall not have a TBAA access tag!", &I);

  bool IsStructPathTBAA =
      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;

  AssertTBAA(
      IsStructPathTBAA,
      "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);

  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));

  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);

  if (IsNewFormat) {
    AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
               "Access tag metadata must have either 4 or 5 operands", &I, MD);
  } else {
    AssertTBAA(MD->getNumOperands() < 5,
               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
  }

  // Check the access size field.
  if (IsNewFormat) {
    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
        MD->getOperand(3));
    AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
  }

  // Check the immutability flag.
  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
        MD->getOperand(ImmutabilityFlagOpNo));
    AssertTBAA(IsImmutableCI,
               "Immutability tag on struct tag metadata must be a constant",
               &I, MD);
    AssertTBAA(
        IsImmutableCI->isZero() || IsImmutableCI->isOne(),
        "Immutability part of the struct tag metadata must be either 0 or 1",
        &I, MD);
  }

  AssertTBAA(BaseNode && AccessType,
             "Malformed struct tag metadata: base and access-type "
             "should be non-null and point to Metadata nodes",
             &I, MD, BaseNode, AccessType);

  if (!IsNewFormat) {
    AssertTBAA(isValidScalarTBAANode(AccessType),
               "Access type node must be a valid scalar type", &I, MD,
               AccessType);
  }

  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);

  APInt Offset = OffsetCI->getValue();
  bool SeenAccessTypeInPath = false;

  SmallPtrSet<MDNode *, 4> StructPath;

  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
       BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
                                               IsNewFormat)) {
    if (!StructPath.insert(BaseNode).second) {
      CheckFailed("Cycle detected in struct path", &I, MD);
      return false;
    }

    bool Invalid;
    unsigned BaseNodeBitWidth;
    std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
                                                             IsNewFormat);

    // If the base node is invalid in itself, then we've already printed all the
    // errors we wanted to print.
    if (Invalid)
      return false;

    SeenAccessTypeInPath |= BaseNode == AccessType;

    if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
      AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
                 &I, MD, &Offset);

    AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
                   (BaseNodeBitWidth == 0 && Offset == 0) ||
                   (IsNewFormat && BaseNodeBitWidth == ~0u),
               "Access bit-width not the same as description bit-width", &I, MD,
               BaseNodeBitWidth, Offset.getBitWidth());

    if (IsNewFormat && SeenAccessTypeInPath)
      break;
  }

  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
             &I, MD);
  return true;
}

char VerifierLegacyPass::ID = 0;
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)

FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
  return new VerifierLegacyPass(FatalErrors);
}

AnalysisKey VerifierAnalysis::Key;
VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
                                               ModuleAnalysisManager &) {
  Result Res;
  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
  return Res;
}

VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
                                               FunctionAnalysisManager &) {
  return { llvm::verifyFunction(F, &dbgs()), false };
}

PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
  auto Res = AM.getResult<VerifierAnalysis>(M);
  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
    report_fatal_error("Broken module found, compilation aborted!");

  return PreservedAnalyses::all();
}

PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto res = AM.getResult<VerifierAnalysis>(F);
  if (res.IRBroken && FatalErrors)
    report_fatal_error("Broken function found, compilation aborted!");

  return PreservedAnalyses::all();
}