BasicBlock.cpp 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BasicBlock class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/BasicBlock.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include <algorithm>

using namespace llvm;

ValueSymbolTable *BasicBlock::getValueSymbolTable() {
  if (Function *F = getParent())
    return F->getValueSymbolTable();
  return nullptr;
}

LLVMContext &BasicBlock::getContext() const {
  return getType()->getContext();
}

template <> void llvm::invalidateParentIListOrdering(BasicBlock *BB) {
  BB->invalidateOrders();
}

// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<Instruction>;

BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
                       BasicBlock *InsertBefore)
  : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {

  if (NewParent)
    insertInto(NewParent, InsertBefore);
  else
    assert(!InsertBefore &&
           "Cannot insert block before another block with no function!");

  setName(Name);
}

void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
  assert(NewParent && "Expected a parent");
  assert(!Parent && "Already has a parent");

  if (InsertBefore)
    NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
  else
    NewParent->getBasicBlockList().push_back(this);
}

BasicBlock::~BasicBlock() {
  validateInstrOrdering();

  // If the address of the block is taken and it is being deleted (e.g. because
  // it is dead), this means that there is either a dangling constant expr
  // hanging off the block, or an undefined use of the block (source code
  // expecting the address of a label to keep the block alive even though there
  // is no indirect branch).  Handle these cases by zapping the BlockAddress
  // nodes.  There are no other possible uses at this point.
  if (hasAddressTaken()) {
    assert(!use_empty() && "There should be at least one blockaddress!");
    Constant *Replacement =
      ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
    while (!use_empty()) {
      BlockAddress *BA = cast<BlockAddress>(user_back());
      BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
                                                       BA->getType()));
      BA->destroyConstant();
    }
  }

  assert(getParent() == nullptr && "BasicBlock still linked into the program!");
  dropAllReferences();
  InstList.clear();
}

void BasicBlock::setParent(Function *parent) {
  // Set Parent=parent, updating instruction symtab entries as appropriate.
  InstList.setSymTabObject(&Parent, parent);
}

iterator_range<filter_iterator<BasicBlock::const_iterator,
                               std::function<bool(const Instruction &)>>>
BasicBlock::instructionsWithoutDebug() const {
  std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
    return !isa<DbgInfoIntrinsic>(I);
  };
  return make_filter_range(*this, Fn);
}

iterator_range<filter_iterator<BasicBlock::iterator,
                               std::function<bool(Instruction &)>>>
BasicBlock::instructionsWithoutDebug() {
  std::function<bool(Instruction &)> Fn = [](Instruction &I) {
    return !isa<DbgInfoIntrinsic>(I);
  };
  return make_filter_range(*this, Fn);
}

filter_iterator<BasicBlock::const_iterator,
                std::function<bool(const Instruction &)>>::difference_type
BasicBlock::sizeWithoutDebug() const {
  return std::distance(instructionsWithoutDebug().begin(),
                       instructionsWithoutDebug().end());
}

void BasicBlock::removeFromParent() {
  getParent()->getBasicBlockList().remove(getIterator());
}

iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
  return getParent()->getBasicBlockList().erase(getIterator());
}

/// Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right before MovePos.
void BasicBlock::moveBefore(BasicBlock *MovePos) {
  MovePos->getParent()->getBasicBlockList().splice(
      MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
}

/// Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right after MovePos.
void BasicBlock::moveAfter(BasicBlock *MovePos) {
  MovePos->getParent()->getBasicBlockList().splice(
      ++MovePos->getIterator(), getParent()->getBasicBlockList(),
      getIterator());
}

const Module *BasicBlock::getModule() const {
  return getParent()->getParent();
}

const Instruction *BasicBlock::getTerminator() const {
  if (InstList.empty() || !InstList.back().isTerminator())
    return nullptr;
  return &InstList.back();
}

const CallInst *BasicBlock::getTerminatingMustTailCall() const {
  if (InstList.empty())
    return nullptr;
  const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
  if (!RI || RI == &InstList.front())
    return nullptr;

  const Instruction *Prev = RI->getPrevNode();
  if (!Prev)
    return nullptr;

  if (Value *RV = RI->getReturnValue()) {
    if (RV != Prev)
      return nullptr;

    // Look through the optional bitcast.
    if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
      RV = BI->getOperand(0);
      Prev = BI->getPrevNode();
      if (!Prev || RV != Prev)
        return nullptr;
    }
  }

  if (auto *CI = dyn_cast<CallInst>(Prev)) {
    if (CI->isMustTailCall())
      return CI;
  }
  return nullptr;
}

const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
  if (InstList.empty())
    return nullptr;
  auto *RI = dyn_cast<ReturnInst>(&InstList.back());
  if (!RI || RI == &InstList.front())
    return nullptr;

  if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
    if (Function *F = CI->getCalledFunction())
      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
        return CI;

  return nullptr;
}

const CallInst *BasicBlock::getPostdominatingDeoptimizeCall() const {
  const BasicBlock* BB = this;
  SmallPtrSet<const BasicBlock *, 8> Visited;
  Visited.insert(BB);
  while (auto *Succ = BB->getUniqueSuccessor()) {
    if (!Visited.insert(Succ).second)
      return nullptr;
    BB = Succ;
  }
  return BB->getTerminatingDeoptimizeCall();
}

const Instruction* BasicBlock::getFirstNonPHI() const {
  for (const Instruction &I : *this)
    if (!isa<PHINode>(I))
      return &I;
  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
  for (const Instruction &I : *this)
    if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
      return &I;
  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
  for (const Instruction &I : *this) {
    if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
      continue;

    if (I.isLifetimeStartOrEnd())
      continue;

    return &I;
  }
  return nullptr;
}

BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
  const Instruction *FirstNonPHI = getFirstNonPHI();
  if (!FirstNonPHI)
    return end();

  const_iterator InsertPt = FirstNonPHI->getIterator();
  if (InsertPt->isEHPad()) ++InsertPt;
  return InsertPt;
}

void BasicBlock::dropAllReferences() {
  for (Instruction &I : *this)
    I.dropAllReferences();
}

/// If this basic block has a single predecessor block,
/// return the block, otherwise return a null pointer.
const BasicBlock *BasicBlock::getSinglePredecessor() const {
  const_pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return nullptr;         // No preds.
  const BasicBlock *ThePred = *PI;
  ++PI;
  return (PI == E) ? ThePred : nullptr /*multiple preds*/;
}

/// If this basic block has a unique predecessor block,
/// return the block, otherwise return a null pointer.
/// Note that unique predecessor doesn't mean single edge, there can be
/// multiple edges from the unique predecessor to this block (for example
/// a switch statement with multiple cases having the same destination).
const BasicBlock *BasicBlock::getUniquePredecessor() const {
  const_pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return nullptr; // No preds.
  const BasicBlock *PredBB = *PI;
  ++PI;
  for (;PI != E; ++PI) {
    if (*PI != PredBB)
      return nullptr;
    // The same predecessor appears multiple times in the predecessor list.
    // This is OK.
  }
  return PredBB;
}

bool BasicBlock::hasNPredecessors(unsigned N) const {
  return hasNItems(pred_begin(this), pred_end(this), N);
}

bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
  return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
}

const BasicBlock *BasicBlock::getSingleSuccessor() const {
  const_succ_iterator SI = succ_begin(this), E = succ_end(this);
  if (SI == E) return nullptr; // no successors
  const BasicBlock *TheSucc = *SI;
  ++SI;
  return (SI == E) ? TheSucc : nullptr /* multiple successors */;
}

const BasicBlock *BasicBlock::getUniqueSuccessor() const {
  const_succ_iterator SI = succ_begin(this), E = succ_end(this);
  if (SI == E) return nullptr; // No successors
  const BasicBlock *SuccBB = *SI;
  ++SI;
  for (;SI != E; ++SI) {
    if (*SI != SuccBB)
      return nullptr;
    // The same successor appears multiple times in the successor list.
    // This is OK.
  }
  return SuccBB;
}

iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
  PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
  return make_range<phi_iterator>(P, nullptr);
}

/// Update PHI nodes in this BasicBlock before removal of predecessor \p Pred.
/// Note that this function does not actually remove the predecessor.
///
/// If \p KeepOneInputPHIs is true then don't remove PHIs that are left with
/// zero or one incoming values, and don't simplify PHIs with all incoming
/// values the same.
void BasicBlock::removePredecessor(BasicBlock *Pred,
                                   bool KeepOneInputPHIs) {
  // Use hasNUsesOrMore to bound the cost of this assertion for complex CFGs.
  assert((hasNUsesOrMore(16) ||
          find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
         "Pred is not a predecessor!");

  // Return early if there are no PHI nodes to update.
  if (!isa<PHINode>(begin()))
    return;
  unsigned NumPreds = cast<PHINode>(front()).getNumIncomingValues();

  // Update all PHI nodes.
  for (iterator II = begin(); isa<PHINode>(II);) {
    PHINode *PN = cast<PHINode>(II++);
    PN->removeIncomingValue(Pred, !KeepOneInputPHIs);
    if (!KeepOneInputPHIs) {
      // If we have a single predecessor, removeIncomingValue erased the PHI
      // node itself.
      if (NumPreds > 1) {
        if (Value *PNV = PN->hasConstantValue()) {
          // Replace the PHI node with its constant value.
          PN->replaceAllUsesWith(PNV);
          PN->eraseFromParent();
        }
      }
    }
  }
}

bool BasicBlock::canSplitPredecessors() const {
  const Instruction *FirstNonPHI = getFirstNonPHI();
  if (isa<LandingPadInst>(FirstNonPHI))
    return true;
  // This is perhaps a little conservative because constructs like
  // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
  // cannot handle such things just yet.
  if (FirstNonPHI->isEHPad())
    return false;
  return true;
}

bool BasicBlock::isLegalToHoistInto() const {
  auto *Term = getTerminator();
  // No terminator means the block is under construction.
  if (!Term)
    return true;

  // If the block has no successors, there can be no instructions to hoist.
  assert(Term->getNumSuccessors() > 0);

  // Instructions should not be hoisted across exception handling boundaries.
  return !Term->isExceptionalTerminator();
}

/// This splits a basic block into two at the specified
/// instruction.  Note that all instructions BEFORE the specified iterator stay
/// as part of the original basic block, an unconditional branch is added to
/// the new BB, and the rest of the instructions in the BB are moved to the new
/// BB, including the old terminator.  This invalidates the iterator.
///
/// Note that this only works on well formed basic blocks (must have a
/// terminator), and 'I' must not be the end of instruction list (which would
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
  assert(I != InstList.end() &&
         "Trying to get me to create degenerate basic block!");

  BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
                                       this->getNextNode());

  // Save DebugLoc of split point before invalidating iterator.
  DebugLoc Loc = I->getDebugLoc();
  // Move all of the specified instructions from the original basic block into
  // the new basic block.
  New->getInstList().splice(New->end(), this->getInstList(), I, end());

  // Add a branch instruction to the newly formed basic block.
  BranchInst *BI = BranchInst::Create(New, this);
  BI->setDebugLoc(Loc);

  // Now we must loop through all of the successors of the New block (which
  // _were_ the successors of the 'this' block), and update any PHI nodes in
  // successors.  If there were PHI nodes in the successors, then they need to
  // know that incoming branches will be from New, not from Old (this).
  //
  New->replaceSuccessorsPhiUsesWith(this, New);
  return New;
}

void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) {
  // N.B. This might not be a complete BasicBlock, so don't assume
  // that it ends with a non-phi instruction.
  for (iterator II = begin(), IE = end(); II != IE; ++II) {
    PHINode *PN = dyn_cast<PHINode>(II);
    if (!PN)
      break;
    PN->replaceIncomingBlockWith(Old, New);
  }
}

void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old,
                                              BasicBlock *New) {
  Instruction *TI = getTerminator();
  if (!TI)
    // Cope with being called on a BasicBlock that doesn't have a terminator
    // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
    return;
  llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) {
    Succ->replacePhiUsesWith(Old, New);
  });
}

void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
  this->replaceSuccessorsPhiUsesWith(this, New);
}

/// Return true if this basic block is a landing pad. I.e., it's
/// the destination of the 'unwind' edge of an invoke instruction.
bool BasicBlock::isLandingPad() const {
  return isa<LandingPadInst>(getFirstNonPHI());
}

/// Return the landingpad instruction associated with the landing pad.
const LandingPadInst *BasicBlock::getLandingPadInst() const {
  return dyn_cast<LandingPadInst>(getFirstNonPHI());
}

Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
  const Instruction *TI = getTerminator();
  if (MDNode *MDIrrLoopHeader =
      TI->getMetadata(LLVMContext::MD_irr_loop)) {
    MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
    if (MDName->getString().equals("loop_header_weight")) {
      auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
      return Optional<uint64_t>(CI->getValue().getZExtValue());
    }
  }
  return Optional<uint64_t>();
}

BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
  while (isa<DbgInfoIntrinsic>(It))
    ++It;
  return It;
}

void BasicBlock::renumberInstructions() {
  unsigned Order = 0;
  for (Instruction &I : *this)
    I.Order = Order++;

  // Set the bit to indicate that the instruction order valid and cached.
  BasicBlockBits Bits = getBasicBlockBits();
  Bits.InstrOrderValid = true;
  setBasicBlockBits(Bits);
}

#ifndef NDEBUG
/// In asserts builds, this checks the numbering. In non-asserts builds, it
/// is defined as a no-op inline function in BasicBlock.h.
void BasicBlock::validateInstrOrdering() const {
  if (!isInstrOrderValid())
    return;
  const Instruction *Prev = nullptr;
  for (const Instruction &I : *this) {
    assert((!Prev || Prev->comesBefore(&I)) &&
           "cached instruction ordering is incorrect");
    Prev = &I;
  }
}
#endif