RuntimeDyldImpl.h
21 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Interface for the implementations of runtime dynamic linker facilities.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/SwapByteOrder.h"
#include <deque>
#include <map>
#include <system_error>
#include <unordered_map>
using namespace llvm;
using namespace llvm::object;
namespace llvm {
#define UNIMPLEMENTED_RELOC(RelType) \
case RelType: \
return make_error<RuntimeDyldError>("Unimplemented relocation: " #RelType)
/// SectionEntry - represents a section emitted into memory by the dynamic
/// linker.
class SectionEntry {
/// Name - section name.
std::string Name;
/// Address - address in the linker's memory where the section resides.
uint8_t *Address;
/// Size - section size. Doesn't include the stubs.
size_t Size;
/// LoadAddress - the address of the section in the target process's memory.
/// Used for situations in which JIT-ed code is being executed in the address
/// space of a separate process. If the code executes in the same address
/// space where it was JIT-ed, this just equals Address.
uint64_t LoadAddress;
/// StubOffset - used for architectures with stub functions for far
/// relocations (like ARM).
uintptr_t StubOffset;
/// The total amount of space allocated for this section. This includes the
/// section size and the maximum amount of space that the stubs can occupy.
size_t AllocationSize;
/// ObjAddress - address of the section in the in-memory object file. Used
/// for calculating relocations in some object formats (like MachO).
uintptr_t ObjAddress;
public:
SectionEntry(StringRef name, uint8_t *address, size_t size,
size_t allocationSize, uintptr_t objAddress)
: Name(std::string(name)), Address(address), Size(size),
LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
AllocationSize(allocationSize), ObjAddress(objAddress) {
// AllocationSize is used only in asserts, prevent an "unused private field"
// warning:
(void)AllocationSize;
}
StringRef getName() const { return Name; }
uint8_t *getAddress() const { return Address; }
/// Return the address of this section with an offset.
uint8_t *getAddressWithOffset(unsigned OffsetBytes) const {
assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
return Address + OffsetBytes;
}
size_t getSize() const { return Size; }
uint64_t getLoadAddress() const { return LoadAddress; }
void setLoadAddress(uint64_t LA) { LoadAddress = LA; }
/// Return the load address of this section with an offset.
uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const {
assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
return LoadAddress + OffsetBytes;
}
uintptr_t getStubOffset() const { return StubOffset; }
void advanceStubOffset(unsigned StubSize) {
StubOffset += StubSize;
assert(StubOffset <= AllocationSize && "Not enough space allocated!");
}
uintptr_t getObjAddress() const { return ObjAddress; }
};
/// RelocationEntry - used to represent relocations internally in the dynamic
/// linker.
class RelocationEntry {
public:
/// SectionID - the section this relocation points to.
unsigned SectionID;
/// Offset - offset into the section.
uint64_t Offset;
/// RelType - relocation type.
uint32_t RelType;
/// Addend - the relocation addend encoded in the instruction itself. Also
/// used to make a relocation section relative instead of symbol relative.
int64_t Addend;
struct SectionPair {
uint32_t SectionA;
uint32_t SectionB;
};
/// SymOffset - Section offset of the relocation entry's symbol (used for GOT
/// lookup).
union {
uint64_t SymOffset;
SectionPair Sections;
};
/// True if this is a PCRel relocation (MachO specific).
bool IsPCRel;
/// The size of this relocation (MachO specific).
unsigned Size;
// ARM (MachO and COFF) specific.
bool IsTargetThumbFunc = false;
RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
: SectionID(id), Offset(offset), RelType(type), Addend(addend),
SymOffset(0), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {}
RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
uint64_t symoffset)
: SectionID(id), Offset(offset), RelType(type), Addend(addend),
SymOffset(symoffset), IsPCRel(false), Size(0),
IsTargetThumbFunc(false) {}
RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
bool IsPCRel, unsigned Size)
: SectionID(id), Offset(offset), RelType(type), Addend(addend),
SymOffset(0), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) {}
RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
: SectionID(id), Offset(offset), RelType(type),
Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
Size(Size), IsTargetThumbFunc(false) {
Sections.SectionA = SectionA;
Sections.SectionB = SectionB;
}
RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
uint64_t SectionBOffset, bool IsPCRel, unsigned Size,
bool IsTargetThumbFunc)
: SectionID(id), Offset(offset), RelType(type),
Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
Size(Size), IsTargetThumbFunc(IsTargetThumbFunc) {
Sections.SectionA = SectionA;
Sections.SectionB = SectionB;
}
};
class RelocationValueRef {
public:
unsigned SectionID = 0;
uint64_t Offset = 0;
int64_t Addend = 0;
const char *SymbolName = nullptr;
bool IsStubThumb = false;
inline bool operator==(const RelocationValueRef &Other) const {
return SectionID == Other.SectionID && Offset == Other.Offset &&
Addend == Other.Addend && SymbolName == Other.SymbolName &&
IsStubThumb == Other.IsStubThumb;
}
inline bool operator<(const RelocationValueRef &Other) const {
if (SectionID != Other.SectionID)
return SectionID < Other.SectionID;
if (Offset != Other.Offset)
return Offset < Other.Offset;
if (Addend != Other.Addend)
return Addend < Other.Addend;
if (IsStubThumb != Other.IsStubThumb)
return IsStubThumb < Other.IsStubThumb;
return SymbolName < Other.SymbolName;
}
};
/// Symbol info for RuntimeDyld.
class SymbolTableEntry {
public:
SymbolTableEntry() = default;
SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
: Offset(Offset), SectionID(SectionID), Flags(Flags) {}
unsigned getSectionID() const { return SectionID; }
uint64_t getOffset() const { return Offset; }
void setOffset(uint64_t NewOffset) { Offset = NewOffset; }
JITSymbolFlags getFlags() const { return Flags; }
private:
uint64_t Offset = 0;
unsigned SectionID = 0;
JITSymbolFlags Flags = JITSymbolFlags::None;
};
typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;
class RuntimeDyldImpl {
friend class RuntimeDyld::LoadedObjectInfo;
protected:
static const unsigned AbsoluteSymbolSection = ~0U;
// The MemoryManager to load objects into.
RuntimeDyld::MemoryManager &MemMgr;
// The symbol resolver to use for external symbols.
JITSymbolResolver &Resolver;
// A list of all sections emitted by the dynamic linker. These sections are
// referenced in the code by means of their index in this list - SectionID.
// Because references may be kept while the list grows, use a container that
// guarantees reference stability.
typedef std::deque<SectionEntry> SectionList;
SectionList Sections;
typedef unsigned SID; // Type for SectionIDs
#define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1))
// Keep a map of sections from object file to the SectionID which
// references it.
typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
// A global symbol table for symbols from all loaded modules.
RTDyldSymbolTable GlobalSymbolTable;
// Keep a map of common symbols to their info pairs
typedef std::vector<SymbolRef> CommonSymbolList;
// For each symbol, keep a list of relocations based on it. Anytime
// its address is reassigned (the JIT re-compiled the function, e.g.),
// the relocations get re-resolved.
// The symbol (or section) the relocation is sourced from is the Key
// in the relocation list where it's stored.
typedef SmallVector<RelocationEntry, 64> RelocationList;
// Relocations to sections already loaded. Indexed by SectionID which is the
// source of the address. The target where the address will be written is
// SectionID/Offset in the relocation itself.
std::unordered_map<unsigned, RelocationList> Relocations;
// Relocations to external symbols that are not yet resolved. Symbols are
// external when they aren't found in the global symbol table of all loaded
// modules. This map is indexed by symbol name.
StringMap<RelocationList> ExternalSymbolRelocations;
typedef std::map<RelocationValueRef, uintptr_t> StubMap;
Triple::ArchType Arch;
bool IsTargetLittleEndian;
bool IsMipsO32ABI;
bool IsMipsN32ABI;
bool IsMipsN64ABI;
// True if all sections should be passed to the memory manager, false if only
// sections containing relocations should be. Defaults to 'false'.
bool ProcessAllSections;
// This mutex prevents simultaneously loading objects from two different
// threads. This keeps us from having to protect individual data structures
// and guarantees that section allocation requests to the memory manager
// won't be interleaved between modules. It is also used in mapSectionAddress
// and resolveRelocations to protect write access to internal data structures.
//
// loadObject may be called on the same thread during the handling of of
// processRelocations, and that's OK. The handling of the relocation lists
// is written in such a way as to work correctly if new elements are added to
// the end of the list while the list is being processed.
sys::Mutex lock;
using NotifyStubEmittedFunction =
RuntimeDyld::NotifyStubEmittedFunction;
NotifyStubEmittedFunction NotifyStubEmitted;
virtual unsigned getMaxStubSize() const = 0;
virtual unsigned getStubAlignment() = 0;
bool HasError;
std::string ErrorStr;
void writeInt16BE(uint8_t *Addr, uint16_t Value) {
llvm::support::endian::write<uint16_t, llvm::support::unaligned>(
Addr, Value, IsTargetLittleEndian ? support::little : support::big);
}
void writeInt32BE(uint8_t *Addr, uint32_t Value) {
llvm::support::endian::write<uint32_t, llvm::support::unaligned>(
Addr, Value, IsTargetLittleEndian ? support::little : support::big);
}
void writeInt64BE(uint8_t *Addr, uint64_t Value) {
llvm::support::endian::write<uint64_t, llvm::support::unaligned>(
Addr, Value, IsTargetLittleEndian ? support::little : support::big);
}
virtual void setMipsABI(const ObjectFile &Obj) {
IsMipsO32ABI = false;
IsMipsN32ABI = false;
IsMipsN64ABI = false;
}
/// Endian-aware read Read the least significant Size bytes from Src.
uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
/// Endian-aware write. Write the least significant Size bytes from Value to
/// Dst.
void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
/// Generate JITSymbolFlags from a libObject symbol.
virtual Expected<JITSymbolFlags> getJITSymbolFlags(const SymbolRef &Sym);
/// Modify the given target address based on the given symbol flags.
/// This can be used by subclasses to tweak addresses based on symbol flags,
/// For example: the MachO/ARM target uses it to set the low bit if the target
/// is a thumb symbol.
virtual uint64_t modifyAddressBasedOnFlags(uint64_t Addr,
JITSymbolFlags Flags) const {
return Addr;
}
/// Given the common symbols discovered in the object file, emit a
/// new section for them and update the symbol mappings in the object and
/// symbol table.
Error emitCommonSymbols(const ObjectFile &Obj,
CommonSymbolList &CommonSymbols, uint64_t CommonSize,
uint32_t CommonAlign);
/// Emits section data from the object file to the MemoryManager.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emits, else allocateDataSection() will be used.
/// \return SectionID.
Expected<unsigned> emitSection(const ObjectFile &Obj,
const SectionRef &Section,
bool IsCode);
/// Find Section in LocalSections. If the secton is not found - emit
/// it and store in LocalSections.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emmits, else allocateDataSection() will be used.
/// \return SectionID.
Expected<unsigned> findOrEmitSection(const ObjectFile &Obj,
const SectionRef &Section, bool IsCode,
ObjSectionToIDMap &LocalSections);
// Add a relocation entry that uses the given section.
void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
// Add a relocation entry that uses the given symbol. This symbol may
// be found in the global symbol table, or it may be external.
void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
/// Emits long jump instruction to Addr.
/// \return Pointer to the memory area for emitting target address.
uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);
/// Resolves relocations from Relocs list with address from Value.
void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
/// A object file specific relocation resolver
/// \param RE The relocation to be resolved
/// \param Value Target symbol address to apply the relocation action
virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
/// Parses one or more object file relocations (some object files use
/// relocation pairs) and stores it to Relocations or SymbolRelocations
/// (this depends on the object file type).
/// \return Iterator to the next relocation that needs to be parsed.
virtual Expected<relocation_iterator>
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
StubMap &Stubs) = 0;
void applyExternalSymbolRelocations(
const StringMap<JITEvaluatedSymbol> ExternalSymbolMap);
/// Resolve relocations to external symbols.
Error resolveExternalSymbols();
// Compute an upper bound of the memory that is required to load all
// sections
Error computeTotalAllocSize(const ObjectFile &Obj,
uint64_t &CodeSize, uint32_t &CodeAlign,
uint64_t &RODataSize, uint32_t &RODataAlign,
uint64_t &RWDataSize, uint32_t &RWDataAlign);
// Compute GOT size
unsigned computeGOTSize(const ObjectFile &Obj);
// Compute the stub buffer size required for a section
unsigned computeSectionStubBufSize(const ObjectFile &Obj,
const SectionRef &Section);
// Implementation of the generic part of the loadObject algorithm.
Expected<ObjSectionToIDMap> loadObjectImpl(const object::ObjectFile &Obj);
// Return size of Global Offset Table (GOT) entry
virtual size_t getGOTEntrySize() { return 0; }
// Return true if the relocation R may require allocating a GOT entry.
virtual bool relocationNeedsGot(const RelocationRef &R) const {
return false;
}
// Return true if the relocation R may require allocating a stub.
virtual bool relocationNeedsStub(const RelocationRef &R) const {
return true; // Conservative answer
}
public:
RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
JITSymbolResolver &Resolver)
: MemMgr(MemMgr), Resolver(Resolver),
ProcessAllSections(false), HasError(false) {
}
virtual ~RuntimeDyldImpl();
void setProcessAllSections(bool ProcessAllSections) {
this->ProcessAllSections = ProcessAllSections;
}
virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile &Obj) = 0;
uint64_t getSectionLoadAddress(unsigned SectionID) const {
return Sections[SectionID].getLoadAddress();
}
uint8_t *getSectionAddress(unsigned SectionID) const {
return Sections[SectionID].getAddress();
}
StringRef getSectionContent(unsigned SectionID) const {
return StringRef(reinterpret_cast<char *>(Sections[SectionID].getAddress()),
Sections[SectionID].getStubOffset() + getMaxStubSize());
}
uint8_t* getSymbolLocalAddress(StringRef Name) const {
// FIXME: Just look up as a function for now. Overly simple of course.
// Work in progress.
RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
if (pos == GlobalSymbolTable.end())
return nullptr;
const auto &SymInfo = pos->second;
// Absolute symbols do not have a local address.
if (SymInfo.getSectionID() == AbsoluteSymbolSection)
return nullptr;
return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
}
unsigned getSymbolSectionID(StringRef Name) const {
auto GSTItr = GlobalSymbolTable.find(Name);
if (GSTItr == GlobalSymbolTable.end())
return ~0U;
return GSTItr->second.getSectionID();
}
JITEvaluatedSymbol getSymbol(StringRef Name) const {
// FIXME: Just look up as a function for now. Overly simple of course.
// Work in progress.
RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
if (pos == GlobalSymbolTable.end())
return nullptr;
const auto &SymEntry = pos->second;
uint64_t SectionAddr = 0;
if (SymEntry.getSectionID() != AbsoluteSymbolSection)
SectionAddr = getSectionLoadAddress(SymEntry.getSectionID());
uint64_t TargetAddr = SectionAddr + SymEntry.getOffset();
// FIXME: Have getSymbol should return the actual address and the client
// modify it based on the flags. This will require clients to be
// aware of the target architecture, which we should build
// infrastructure for.
TargetAddr = modifyAddressBasedOnFlags(TargetAddr, SymEntry.getFlags());
return JITEvaluatedSymbol(TargetAddr, SymEntry.getFlags());
}
std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const {
std::map<StringRef, JITEvaluatedSymbol> Result;
for (auto &KV : GlobalSymbolTable) {
auto SectionID = KV.second.getSectionID();
uint64_t SectionAddr = 0;
if (SectionID != AbsoluteSymbolSection)
SectionAddr = getSectionLoadAddress(SectionID);
Result[KV.first()] =
JITEvaluatedSymbol(SectionAddr + KV.second.getOffset(), KV.second.getFlags());
}
return Result;
}
void resolveRelocations();
void resolveLocalRelocations();
static void finalizeAsync(
std::unique_ptr<RuntimeDyldImpl> This,
unique_function<void(object::OwningBinary<object::ObjectFile>, Error)>
OnEmitted,
object::OwningBinary<object::ObjectFile> O);
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
// Is the linker in an error state?
bool hasError() { return HasError; }
// Mark the error condition as handled and continue.
void clearError() { HasError = false; }
// Get the error message.
StringRef getErrorString() { return ErrorStr; }
virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) {
this->NotifyStubEmitted = std::move(NotifyStubEmitted);
}
virtual void registerEHFrames();
void deregisterEHFrames();
virtual Error finalizeLoad(const ObjectFile &ObjImg,
ObjSectionToIDMap &SectionMap) {
return Error::success();
}
};
} // end namespace llvm
#endif