DWARFDebugFrame.cpp 21.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
//===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <string>
#include <vector>

using namespace llvm;
using namespace dwarf;


// See DWARF standard v3, section 7.23
const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;

Error CFIProgram::parse(DWARFDataExtractor Data, uint64_t *Offset,
                        uint64_t EndOffset) {
  DataExtractor::Cursor C(*Offset);
  while (C && C.tell() < EndOffset) {
    uint8_t Opcode = Data.getRelocatedValue(C, 1);
    if (!C)
      break;

    // Some instructions have a primary opcode encoded in the top bits.
    if (uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) {
      // If it's a primary opcode, the first operand is encoded in the bottom
      // bits of the opcode itself.
      uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
      switch (Primary) {
      case DW_CFA_advance_loc:
      case DW_CFA_restore:
        addInstruction(Primary, Op1);
        break;
      case DW_CFA_offset:
        addInstruction(Primary, Op1, Data.getULEB128(C));
        break;
      default:
        llvm_unreachable("invalid primary CFI opcode");
      }
      continue;
    }

    // Extended opcode - its value is Opcode itself.
    switch (Opcode) {
    default:
      return createStringError(errc::illegal_byte_sequence,
                               "invalid extended CFI opcode 0x%" PRIx8, Opcode);
    case DW_CFA_nop:
    case DW_CFA_remember_state:
    case DW_CFA_restore_state:
    case DW_CFA_GNU_window_save:
      // No operands
      addInstruction(Opcode);
      break;
    case DW_CFA_set_loc:
      // Operands: Address
      addInstruction(Opcode, Data.getRelocatedAddress(C));
      break;
    case DW_CFA_advance_loc1:
      // Operands: 1-byte delta
      addInstruction(Opcode, Data.getRelocatedValue(C, 1));
      break;
    case DW_CFA_advance_loc2:
      // Operands: 2-byte delta
      addInstruction(Opcode, Data.getRelocatedValue(C, 2));
      break;
    case DW_CFA_advance_loc4:
      // Operands: 4-byte delta
      addInstruction(Opcode, Data.getRelocatedValue(C, 4));
      break;
    case DW_CFA_restore_extended:
    case DW_CFA_undefined:
    case DW_CFA_same_value:
    case DW_CFA_def_cfa_register:
    case DW_CFA_def_cfa_offset:
    case DW_CFA_GNU_args_size:
      // Operands: ULEB128
      addInstruction(Opcode, Data.getULEB128(C));
      break;
    case DW_CFA_def_cfa_offset_sf:
      // Operands: SLEB128
      addInstruction(Opcode, Data.getSLEB128(C));
      break;
    case DW_CFA_offset_extended:
    case DW_CFA_register:
    case DW_CFA_def_cfa:
    case DW_CFA_val_offset: {
      // Operands: ULEB128, ULEB128
      // Note: We can not embed getULEB128 directly into function
      // argument list. getULEB128 changes Offset and order of evaluation
      // for arguments is unspecified.
      uint64_t op1 = Data.getULEB128(C);
      uint64_t op2 = Data.getULEB128(C);
      addInstruction(Opcode, op1, op2);
      break;
    }
    case DW_CFA_offset_extended_sf:
    case DW_CFA_def_cfa_sf:
    case DW_CFA_val_offset_sf: {
      // Operands: ULEB128, SLEB128
      // Note: see comment for the previous case
      uint64_t op1 = Data.getULEB128(C);
      uint64_t op2 = (uint64_t)Data.getSLEB128(C);
      addInstruction(Opcode, op1, op2);
      break;
    }
    case DW_CFA_def_cfa_expression: {
      uint64_t ExprLength = Data.getULEB128(C);
      addInstruction(Opcode, 0);
      StringRef Expression = Data.getBytes(C, ExprLength);

      DataExtractor Extractor(Expression, Data.isLittleEndian(),
                              Data.getAddressSize());
      // Note. We do not pass the DWARF format to DWARFExpression, because
      // DW_OP_call_ref, the only operation which depends on the format, is
      // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
      Instructions.back().Expression =
          DWARFExpression(Extractor, Data.getAddressSize());
      break;
    }
    case DW_CFA_expression:
    case DW_CFA_val_expression: {
      uint64_t RegNum = Data.getULEB128(C);
      addInstruction(Opcode, RegNum, 0);

      uint64_t BlockLength = Data.getULEB128(C);
      StringRef Expression = Data.getBytes(C, BlockLength);
      DataExtractor Extractor(Expression, Data.isLittleEndian(),
                              Data.getAddressSize());
      // Note. We do not pass the DWARF format to DWARFExpression, because
      // DW_OP_call_ref, the only operation which depends on the format, is
      // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
      Instructions.back().Expression =
          DWARFExpression(Extractor, Data.getAddressSize());
      break;
    }
    }
  }

  *Offset = C.tell();
  return C.takeError();
}

namespace {


} // end anonymous namespace

ArrayRef<CFIProgram::OperandType[2]> CFIProgram::getOperandTypes() {
  static OperandType OpTypes[DW_CFA_restore+1][2];
  static bool Initialized = false;
  if (Initialized) {
    return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
  }
  Initialized = true;

#define DECLARE_OP2(OP, OPTYPE0, OPTYPE1)       \
  do {                                          \
    OpTypes[OP][0] = OPTYPE0;                   \
    OpTypes[OP][1] = OPTYPE1;                   \
  } while (false)
#define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
#define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)

  DECLARE_OP1(DW_CFA_set_loc, OT_Address);
  DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
  DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
  DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
  DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
  DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
  DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
  DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
  DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
  DECLARE_OP1(DW_CFA_undefined, OT_Register);
  DECLARE_OP1(DW_CFA_same_value, OT_Register);
  DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
  DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
  DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
  DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
  DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
  DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
  DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
  DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
  DECLARE_OP1(DW_CFA_restore, OT_Register);
  DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
  DECLARE_OP0(DW_CFA_remember_state);
  DECLARE_OP0(DW_CFA_restore_state);
  DECLARE_OP0(DW_CFA_GNU_window_save);
  DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
  DECLARE_OP0(DW_CFA_nop);

#undef DECLARE_OP0
#undef DECLARE_OP1
#undef DECLARE_OP2

  return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
}

/// Print \p Opcode's operand number \p OperandIdx which has value \p Operand.
void CFIProgram::printOperand(raw_ostream &OS, const MCRegisterInfo *MRI,
                              bool IsEH, const Instruction &Instr,
                              unsigned OperandIdx, uint64_t Operand) const {
  assert(OperandIdx < 2);
  uint8_t Opcode = Instr.Opcode;
  OperandType Type = getOperandTypes()[Opcode][OperandIdx];

  switch (Type) {
  case OT_Unset: {
    OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
    auto OpcodeName = CallFrameString(Opcode, Arch);
    if (!OpcodeName.empty())
      OS << " " << OpcodeName;
    else
      OS << format(" Opcode %x",  Opcode);
    break;
  }
  case OT_None:
    break;
  case OT_Address:
    OS << format(" %" PRIx64, Operand);
    break;
  case OT_Offset:
    // The offsets are all encoded in a unsigned form, but in practice
    // consumers use them signed. It's most certainly legacy due to
    // the lack of signed variants in the first Dwarf standards.
    OS << format(" %+" PRId64, int64_t(Operand));
    break;
  case OT_FactoredCodeOffset: // Always Unsigned
    if (CodeAlignmentFactor)
      OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
    else
      OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
    break;
  case OT_SignedFactDataOffset:
    if (DataAlignmentFactor)
      OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
    else
      OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
    break;
  case OT_UnsignedFactDataOffset:
    if (DataAlignmentFactor)
      OS << format(" %" PRId64, Operand * DataAlignmentFactor);
    else
      OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
    break;
  case OT_Register:
    OS << format(" reg%" PRId64, Operand);
    break;
  case OT_Expression:
    assert(Instr.Expression && "missing DWARFExpression object");
    OS << " ";
    Instr.Expression->print(OS, MRI, nullptr, IsEH);
    break;
  }
}

void CFIProgram::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
                      unsigned IndentLevel) const {
  for (const auto &Instr : Instructions) {
    uint8_t Opcode = Instr.Opcode;
    if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
      Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
    OS.indent(2 * IndentLevel);
    OS << CallFrameString(Opcode, Arch) << ":";
    for (unsigned i = 0; i < Instr.Ops.size(); ++i)
      printOperand(OS, MRI, IsEH, Instr, i, Instr.Ops[i]);
    OS << '\n';
  }
}

// Returns the CIE identifier to be used by the requested format.
// CIE ids for .debug_frame sections are defined in Section 7.24 of DWARFv5.
// For CIE ID in .eh_frame sections see
// https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
constexpr uint64_t getCIEId(bool IsDWARF64, bool IsEH) {
  if (IsEH)
    return 0;
  if (IsDWARF64)
    return DW64_CIE_ID;
  return DW_CIE_ID;
}

void CIE::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const {
  // A CIE with a zero length is a terminator entry in the .eh_frame section.
  if (IsEH && Length == 0) {
    OS << format("%08" PRIx64, Offset) << " ZERO terminator\n";
    return;
  }

  OS << format("%08" PRIx64, Offset)
     << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
     << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8,
               getCIEId(IsDWARF64, IsEH))
     << " CIE\n"
     << "  Format:                " << FormatString(IsDWARF64) << "\n"
     << format("  Version:               %d\n", Version)
     << "  Augmentation:          \"" << Augmentation << "\"\n";
  if (Version >= 4) {
    OS << format("  Address size:          %u\n", (uint32_t)AddressSize);
    OS << format("  Segment desc size:     %u\n",
                 (uint32_t)SegmentDescriptorSize);
  }
  OS << format("  Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor);
  OS << format("  Data alignment factor: %d\n", (int32_t)DataAlignmentFactor);
  OS << format("  Return address column: %d\n", (int32_t)ReturnAddressRegister);
  if (Personality)
    OS << format("  Personality Address: %016" PRIx64 "\n", *Personality);
  if (!AugmentationData.empty()) {
    OS << "  Augmentation data:    ";
    for (uint8_t Byte : AugmentationData)
      OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
    OS << "\n";
  }
  OS << "\n";
  CFIs.dump(OS, MRI, IsEH);
  OS << "\n";
}

void FDE::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const {
  OS << format("%08" PRIx64, Offset)
     << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
     << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8, CIEPointer)
     << " FDE cie=";
  if (LinkedCIE)
    OS << format("%08" PRIx64, LinkedCIE->getOffset());
  else
    OS << "<invalid offset>";
  OS << format(" pc=%08" PRIx64 "...%08" PRIx64 "\n", InitialLocation,
               InitialLocation + AddressRange);
  OS << "  Format:       " << FormatString(IsDWARF64) << "\n";
  if (LSDAAddress)
    OS << format("  LSDA Address: %016" PRIx64 "\n", *LSDAAddress);
  CFIs.dump(OS, MRI, IsEH);
  OS << "\n";
}

DWARFDebugFrame::DWARFDebugFrame(Triple::ArchType Arch,
    bool IsEH, uint64_t EHFrameAddress)
    : Arch(Arch), IsEH(IsEH), EHFrameAddress(EHFrameAddress) {}

DWARFDebugFrame::~DWARFDebugFrame() = default;

static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
                                              uint64_t Offset, int Length) {
  errs() << "DUMP: ";
  for (int i = 0; i < Length; ++i) {
    uint8_t c = Data.getU8(&Offset);
    errs().write_hex(c); errs() << " ";
  }
  errs() << "\n";
}

Error DWARFDebugFrame::parse(DWARFDataExtractor Data) {
  uint64_t Offset = 0;
  DenseMap<uint64_t, CIE *> CIEs;

  while (Data.isValidOffset(Offset)) {
    uint64_t StartOffset = Offset;

    uint64_t Length;
    DwarfFormat Format;
    std::tie(Length, Format) = Data.getInitialLength(&Offset);
    bool IsDWARF64 = Format == DWARF64;

    // If the Length is 0, then this CIE is a terminator. We add it because some
    // dumper tools might need it to print something special for such entries
    // (e.g. llvm-objdump --dwarf=frames prints "ZERO terminator").
    if (Length == 0) {
      auto Cie = std::make_unique<CIE>(
          IsDWARF64, StartOffset, 0, 0, SmallString<8>(), 0, 0, 0, 0, 0,
          SmallString<8>(), 0, 0, None, None, Arch);
      CIEs[StartOffset] = Cie.get();
      Entries.push_back(std::move(Cie));
      break;
    }

    // At this point, Offset points to the next field after Length.
    // Length is the structure size excluding itself. Compute an offset one
    // past the end of the structure (needed to know how many instructions to
    // read).
    uint64_t StartStructureOffset = Offset;
    uint64_t EndStructureOffset = Offset + Length;

    // The Id field's size depends on the DWARF format
    Error Err = Error::success();
    uint64_t Id = Data.getRelocatedValue((IsDWARF64 && !IsEH) ? 8 : 4, &Offset,
                                         /*SectionIndex=*/nullptr, &Err);
    if (Err)
      return Err;

    if (Id == getCIEId(IsDWARF64, IsEH)) {
      uint8_t Version = Data.getU8(&Offset);
      const char *Augmentation = Data.getCStr(&Offset);
      StringRef AugmentationString(Augmentation ? Augmentation : "");
      // TODO: we should provide a way to report a warning and continue dumping.
      if (IsEH && Version != 1)
        return createStringError(errc::not_supported,
                                 "unsupported CIE version: %" PRIu8, Version);

      uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
                                          Data.getU8(&Offset);
      Data.setAddressSize(AddressSize);
      uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
      uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
      int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
      uint64_t ReturnAddressRegister =
          Version == 1 ? Data.getU8(&Offset) : Data.getULEB128(&Offset);

      // Parse the augmentation data for EH CIEs
      StringRef AugmentationData("");
      uint32_t FDEPointerEncoding = DW_EH_PE_absptr;
      uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
      Optional<uint64_t> Personality;
      Optional<uint32_t> PersonalityEncoding;
      if (IsEH) {
        Optional<uint64_t> AugmentationLength;
        uint64_t StartAugmentationOffset;
        uint64_t EndAugmentationOffset;

        // Walk the augmentation string to get all the augmentation data.
        for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
          switch (AugmentationString[i]) {
          default:
            return createStringError(
                errc::invalid_argument,
                "unknown augmentation character in entry at 0x%" PRIx64,
                StartOffset);
          case 'L':
            LSDAPointerEncoding = Data.getU8(&Offset);
            break;
          case 'P': {
            if (Personality)
              return createStringError(
                  errc::invalid_argument,
                  "duplicate personality in entry at 0x%" PRIx64, StartOffset);
            PersonalityEncoding = Data.getU8(&Offset);
            Personality = Data.getEncodedPointer(
                &Offset, *PersonalityEncoding,
                EHFrameAddress ? EHFrameAddress + Offset : 0);
            break;
          }
          case 'R':
            FDEPointerEncoding = Data.getU8(&Offset);
            break;
          case 'S':
            // Current frame is a signal trampoline.
            break;
          case 'z':
            if (i)
              return createStringError(
                  errc::invalid_argument,
                  "'z' must be the first character at 0x%" PRIx64, StartOffset);
            // Parse the augmentation length first.  We only parse it if
            // the string contains a 'z'.
            AugmentationLength = Data.getULEB128(&Offset);
            StartAugmentationOffset = Offset;
            EndAugmentationOffset = Offset + *AugmentationLength;
            break;
          case 'B':
            // B-Key is used for signing functions associated with this
            // augmentation string
            break;
          }
        }

        if (AugmentationLength.hasValue()) {
          if (Offset != EndAugmentationOffset)
            return createStringError(errc::invalid_argument,
                                     "parsing augmentation data at 0x%" PRIx64
                                     " failed",
                                     StartOffset);
          AugmentationData = Data.getData().slice(StartAugmentationOffset,
                                                  EndAugmentationOffset);
        }
      }

      auto Cie = std::make_unique<CIE>(
          IsDWARF64, StartOffset, Length, Version, AugmentationString,
          AddressSize, SegmentDescriptorSize, CodeAlignmentFactor,
          DataAlignmentFactor, ReturnAddressRegister, AugmentationData,
          FDEPointerEncoding, LSDAPointerEncoding, Personality,
          PersonalityEncoding, Arch);
      CIEs[StartOffset] = Cie.get();
      Entries.emplace_back(std::move(Cie));
    } else {
      // FDE
      uint64_t CIEPointer = Id;
      uint64_t InitialLocation = 0;
      uint64_t AddressRange = 0;
      Optional<uint64_t> LSDAAddress;
      CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];

      if (IsEH) {
        // The address size is encoded in the CIE we reference.
        if (!Cie)
          return createStringError(errc::invalid_argument,
                                   "parsing FDE data at 0x%" PRIx64
                                   " failed due to missing CIE",
                                   StartOffset);
        if (auto Val = Data.getEncodedPointer(
                &Offset, Cie->getFDEPointerEncoding(),
                EHFrameAddress ? EHFrameAddress + Offset : 0)) {
          InitialLocation = *Val;
        }
        if (auto Val = Data.getEncodedPointer(
                &Offset, Cie->getFDEPointerEncoding(), 0)) {
          AddressRange = *Val;
        }

        StringRef AugmentationString = Cie->getAugmentationString();
        if (!AugmentationString.empty()) {
          // Parse the augmentation length and data for this FDE.
          uint64_t AugmentationLength = Data.getULEB128(&Offset);

          uint64_t EndAugmentationOffset = Offset + AugmentationLength;

          // Decode the LSDA if the CIE augmentation string said we should.
          if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit) {
            LSDAAddress = Data.getEncodedPointer(
                &Offset, Cie->getLSDAPointerEncoding(),
                EHFrameAddress ? Offset + EHFrameAddress : 0);
          }

          if (Offset != EndAugmentationOffset)
            return createStringError(errc::invalid_argument,
                                     "parsing augmentation data at 0x%" PRIx64
                                     " failed",
                                     StartOffset);
        }
      } else {
        InitialLocation = Data.getRelocatedAddress(&Offset);
        AddressRange = Data.getRelocatedAddress(&Offset);
      }

      Entries.emplace_back(new FDE(IsDWARF64, StartOffset, Length, CIEPointer,
                                   InitialLocation, AddressRange, Cie,
                                   LSDAAddress, Arch));
    }

    if (Error E =
            Entries.back()->cfis().parse(Data, &Offset, EndStructureOffset))
      return E;

    if (Offset != EndStructureOffset)
      return createStringError(
          errc::invalid_argument,
          "parsing entry instructions at 0x%" PRIx64 " failed", StartOffset);
  }

  return Error::success();
}

FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const {
  auto It = partition_point(Entries, [=](const std::unique_ptr<FrameEntry> &E) {
    return E->getOffset() < Offset;
  });
  if (It != Entries.end() && (*It)->getOffset() == Offset)
    return It->get();
  return nullptr;
}

void DWARFDebugFrame::dump(raw_ostream &OS, const MCRegisterInfo *MRI,
                           Optional<uint64_t> Offset) const {
  if (Offset) {
    if (auto *Entry = getEntryAtOffset(*Offset))
      Entry->dump(OS, MRI, IsEH);
    return;
  }

  OS << "\n";
  for (const auto &Entry : Entries)
    Entry->dump(OS, MRI, IsEH);
}