VirtRegMap.cpp 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
//===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumSpillSlots, "Number of spill slots allocated");
STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");

//===----------------------------------------------------------------------===//
//  VirtRegMap implementation
//===----------------------------------------------------------------------===//

char VirtRegMap::ID = 0;

INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)

bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
  MRI = &mf.getRegInfo();
  TII = mf.getSubtarget().getInstrInfo();
  TRI = mf.getSubtarget().getRegisterInfo();
  MF = &mf;

  Virt2PhysMap.clear();
  Virt2StackSlotMap.clear();
  Virt2SplitMap.clear();

  grow();
  return false;
}

void VirtRegMap::grow() {
  unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
  Virt2PhysMap.resize(NumRegs);
  Virt2StackSlotMap.resize(NumRegs);
  Virt2SplitMap.resize(NumRegs);
}

void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
  assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
  assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
         "attempt to assign physical register to already mapped "
         "virtual register");
  assert(!getRegInfo().isReserved(physReg) &&
         "Attempt to map virtReg to a reserved physReg");
  Virt2PhysMap[virtReg.id()] = physReg;
}

unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
  unsigned Size = TRI->getSpillSize(*RC);
  Align Alignment = TRI->getSpillAlign(*RC);
  int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
  ++NumSpillSlots;
  return SS;
}

bool VirtRegMap::hasPreferredPhys(Register VirtReg) {
  Register Hint = MRI->getSimpleHint(VirtReg);
  if (!Hint.isValid())
    return false;
  if (Hint.isVirtual())
    Hint = getPhys(Hint);
  return getPhys(VirtReg) == Hint;
}

bool VirtRegMap::hasKnownPreference(Register VirtReg) {
  std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
  if (Register::isPhysicalRegister(Hint.second))
    return true;
  if (Register::isVirtualRegister(Hint.second))
    return hasPhys(Hint.second);
  return false;
}

int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
  assert(virtReg.isVirtual());
  assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
  return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
}

void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
  assert(virtReg.isVirtual());
  assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  assert((SS >= 0 ||
          (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
         "illegal fixed frame index");
  Virt2StackSlotMap[virtReg.id()] = SS;
}

void VirtRegMap::print(raw_ostream &OS, const Module*) const {
  OS << "********** REGISTER MAP **********\n";
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = Register::index2VirtReg(i);
    if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
      OS << '[' << printReg(Reg, TRI) << " -> "
         << printReg(Virt2PhysMap[Reg], TRI) << "] "
         << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
    }
  }

  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = Register::index2VirtReg(i);
    if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
      OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
         << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
    }
  }
  OS << '\n';
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void VirtRegMap::dump() const {
  print(dbgs());
}
#endif

//===----------------------------------------------------------------------===//
//                              VirtRegRewriter
//===----------------------------------------------------------------------===//
//
// The VirtRegRewriter is the last of the register allocator passes.
// It rewrites virtual registers to physical registers as specified in the
// VirtRegMap analysis. It also updates live-in information on basic blocks
// according to LiveIntervals.
//
namespace {

class VirtRegRewriter : public MachineFunctionPass {
  MachineFunction *MF;
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  MachineRegisterInfo *MRI;
  SlotIndexes *Indexes;
  LiveIntervals *LIS;
  VirtRegMap *VRM;

  void rewrite();
  void addMBBLiveIns();
  bool readsUndefSubreg(const MachineOperand &MO) const;
  void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const;
  void handleIdentityCopy(MachineInstr &MI) const;
  void expandCopyBundle(MachineInstr &MI) const;
  bool subRegLiveThrough(const MachineInstr &MI, Register SuperPhysReg) const;

public:
  static char ID;

  VirtRegRewriter() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  bool runOnMachineFunction(MachineFunction&) override;

  MachineFunctionProperties getSetProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
};

} // end anonymous namespace

char VirtRegRewriter::ID = 0;

char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;

INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
                      "Virtual Register Rewriter", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
                    "Virtual Register Rewriter", false, false)

void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveDebugVariables>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<VirtRegMap>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
  MF = &fn;
  TRI = MF->getSubtarget().getRegisterInfo();
  TII = MF->getSubtarget().getInstrInfo();
  MRI = &MF->getRegInfo();
  Indexes = &getAnalysis<SlotIndexes>();
  LIS = &getAnalysis<LiveIntervals>();
  VRM = &getAnalysis<VirtRegMap>();
  LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
                    << "********** Function: " << MF->getName() << '\n');
  LLVM_DEBUG(VRM->dump());

  // Add kill flags while we still have virtual registers.
  LIS->addKillFlags(VRM);

  // Live-in lists on basic blocks are required for physregs.
  addMBBLiveIns();

  // Rewrite virtual registers.
  rewrite();

  // Write out new DBG_VALUE instructions.
  getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);

  // All machine operands and other references to virtual registers have been
  // replaced. Remove the virtual registers and release all the transient data.
  VRM->clearAllVirt();
  MRI->clearVirtRegs();
  return true;
}

void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
                                             Register PhysReg) const {
  assert(!LI.empty());
  assert(LI.hasSubRanges());

  using SubRangeIteratorPair =
      std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;

  SmallVector<SubRangeIteratorPair, 4> SubRanges;
  SlotIndex First;
  SlotIndex Last;
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    SubRanges.push_back(std::make_pair(&SR, SR.begin()));
    if (!First.isValid() || SR.segments.front().start < First)
      First = SR.segments.front().start;
    if (!Last.isValid() || SR.segments.back().end > Last)
      Last = SR.segments.back().end;
  }

  // Check all mbb start positions between First and Last while
  // simulatenously advancing an iterator for each subrange.
  for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
       MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
    SlotIndex MBBBegin = MBBI->first;
    // Advance all subrange iterators so that their end position is just
    // behind MBBBegin (or the iterator is at the end).
    LaneBitmask LaneMask;
    for (auto &RangeIterPair : SubRanges) {
      const LiveInterval::SubRange *SR = RangeIterPair.first;
      LiveInterval::const_iterator &SRI = RangeIterPair.second;
      while (SRI != SR->end() && SRI->end <= MBBBegin)
        ++SRI;
      if (SRI == SR->end())
        continue;
      if (SRI->start <= MBBBegin)
        LaneMask |= SR->LaneMask;
    }
    if (LaneMask.none())
      continue;
    MachineBasicBlock *MBB = MBBI->second;
    MBB->addLiveIn(PhysReg, LaneMask);
  }
}

// Compute MBB live-in lists from virtual register live ranges and their
// assignments.
void VirtRegRewriter::addMBBLiveIns() {
  for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
    Register VirtReg = Register::index2VirtReg(Idx);
    if (MRI->reg_nodbg_empty(VirtReg))
      continue;
    LiveInterval &LI = LIS->getInterval(VirtReg);
    if (LI.empty() || LIS->intervalIsInOneMBB(LI))
      continue;
    // This is a virtual register that is live across basic blocks. Its
    // assigned PhysReg must be marked as live-in to those blocks.
    Register PhysReg = VRM->getPhys(VirtReg);
    assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");

    if (LI.hasSubRanges()) {
      addLiveInsForSubRanges(LI, PhysReg);
    } else {
      // Go over MBB begin positions and see if we have segments covering them.
      // The following works because segments and the MBBIndex list are both
      // sorted by slot indexes.
      SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
      for (const auto &Seg : LI) {
        I = Indexes->advanceMBBIndex(I, Seg.start);
        for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
          MachineBasicBlock *MBB = I->second;
          MBB->addLiveIn(PhysReg);
        }
      }
    }
  }

  // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
  // each MBB's LiveIns set before calling addLiveIn on them.
  for (MachineBasicBlock &MBB : *MF)
    MBB.sortUniqueLiveIns();
}

/// Returns true if the given machine operand \p MO only reads undefined lanes.
/// The function only works for use operands with a subregister set.
bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
  // Shortcut if the operand is already marked undef.
  if (MO.isUndef())
    return true;

  Register Reg = MO.getReg();
  const LiveInterval &LI = LIS->getInterval(Reg);
  const MachineInstr &MI = *MO.getParent();
  SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
  // This code is only meant to handle reading undefined subregisters which
  // we couldn't properly detect before.
  assert(LI.liveAt(BaseIndex) &&
         "Reads of completely dead register should be marked undef already");
  unsigned SubRegIdx = MO.getSubReg();
  assert(SubRegIdx != 0 && LI.hasSubRanges());
  LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
  // See if any of the relevant subregister liveranges is defined at this point.
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
      return false;
  }
  return true;
}

void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
  if (!MI.isIdentityCopy())
    return;
  LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
  ++NumIdCopies;

  // Copies like:
  //    %r0 = COPY undef %r0
  //    %al = COPY %al, implicit-def %eax
  // give us additional liveness information: The target (super-)register
  // must not be valid before this point. Replace the COPY with a KILL
  // instruction to maintain this information.
  if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
    MI.setDesc(TII->get(TargetOpcode::KILL));
    LLVM_DEBUG(dbgs() << "  replace by: " << MI);
    return;
  }

  if (Indexes)
    Indexes->removeSingleMachineInstrFromMaps(MI);
  MI.eraseFromBundle();
  LLVM_DEBUG(dbgs() << "  deleted.\n");
}

/// The liverange splitting logic sometimes produces bundles of copies when
/// subregisters are involved. Expand these into a sequence of copy instructions
/// after processing the last in the bundle. Does not update LiveIntervals
/// which we shouldn't need for this instruction anymore.
void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
  if (!MI.isCopy())
    return;

  if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
    SmallVector<MachineInstr *, 2> MIs({&MI});

    // Only do this when the complete bundle is made out of COPYs.
    MachineBasicBlock &MBB = *MI.getParent();
    for (MachineBasicBlock::reverse_instr_iterator I =
         std::next(MI.getReverseIterator()), E = MBB.instr_rend();
         I != E && I->isBundledWithSucc(); ++I) {
      if (!I->isCopy())
        return;
      MIs.push_back(&*I);
    }
    MachineInstr *FirstMI = MIs.back();

    auto anyRegsAlias = [](const MachineInstr *Dst,
                           ArrayRef<MachineInstr *> Srcs,
                           const TargetRegisterInfo *TRI) {
      for (const MachineInstr *Src : Srcs)
        if (Src != Dst)
          if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
                               Src->getOperand(1).getReg()))
            return true;
      return false;
    };

    // If any of the destination registers in the bundle of copies alias any of
    // the source registers, try to schedule the instructions to avoid any
    // clobbering.
    for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
      for (int I = E; I--; )
        if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
          if (I + 1 != E)
            std::swap(MIs[I], MIs[E - 1]);
          --E;
        }
      if (PrevE == E) {
        MF->getFunction().getContext().emitError(
            "register rewriting failed: cycle in copy bundle");
        break;
      }
    }

    MachineInstr *BundleStart = FirstMI;
    for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
      // If instruction is in the middle of the bundle, move it before the
      // bundle starts, otherwise, just unbundle it. When we get to the last
      // instruction, the bundle will have been completely undone.
      if (BundledMI != BundleStart) {
        BundledMI->removeFromBundle();
        MBB.insert(FirstMI, BundledMI);
      } else if (BundledMI->isBundledWithSucc()) {
        BundledMI->unbundleFromSucc();
        BundleStart = &*std::next(BundledMI->getIterator());
      }

      if (Indexes && BundledMI != FirstMI)
        Indexes->insertMachineInstrInMaps(*BundledMI);
    }
  }
}

/// Check whether (part of) \p SuperPhysReg is live through \p MI.
/// \pre \p MI defines a subregister of a virtual register that
/// has been assigned to \p SuperPhysReg.
bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
                                        Register SuperPhysReg) const {
  SlotIndex MIIndex = LIS->getInstructionIndex(MI);
  SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
  SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
  for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
    const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
    // If the regunit is live both before and after MI,
    // we assume it is live through.
    // Generally speaking, this is not true, because something like
    // "RU = op RU" would match that description.
    // However, we know that we are trying to assess whether
    // a def of a virtual reg, vreg, is live at the same time of RU.
    // If we are in the "RU = op RU" situation, that means that vreg
    // is defined at the same time as RU (i.e., "vreg, RU = op RU").
    // Thus, vreg and RU interferes and vreg cannot be assigned to
    // SuperPhysReg. Therefore, this situation cannot happen.
    if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
      return true;
  }
  return false;
}

void VirtRegRewriter::rewrite() {
  bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
  SmallVector<Register, 8> SuperDeads;
  SmallVector<Register, 8> SuperDefs;
  SmallVector<Register, 8> SuperKills;

  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
       MBBI != MBBE; ++MBBI) {
    LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
    for (MachineBasicBlock::instr_iterator
           MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
      MachineInstr *MI = &*MII;
      ++MII;

      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
           MOE = MI->operands_end(); MOI != MOE; ++MOI) {
        MachineOperand &MO = *MOI;

        // Make sure MRI knows about registers clobbered by regmasks.
        if (MO.isRegMask())
          MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());

        if (!MO.isReg() || !MO.getReg().isVirtual())
          continue;
        Register VirtReg = MO.getReg();
        Register PhysReg = VRM->getPhys(VirtReg);
        assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
               "Instruction uses unmapped VirtReg");
        assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");

        // Preserve semantics of sub-register operands.
        unsigned SubReg = MO.getSubReg();
        if (SubReg != 0) {
          if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
            // A virtual register kill refers to the whole register, so we may
            // have to add implicit killed operands for the super-register.  A
            // partial redef always kills and redefines the super-register.
            if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
                (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
              SuperKills.push_back(PhysReg);

            if (MO.isDef()) {
              // Also add implicit defs for the super-register.
              if (MO.isDead())
                SuperDeads.push_back(PhysReg);
              else
                SuperDefs.push_back(PhysReg);
            }
          } else {
            if (MO.isUse()) {
              if (readsUndefSubreg(MO))
                // We need to add an <undef> flag if the subregister is
                // completely undefined (and we are not adding super-register
                // defs).
                MO.setIsUndef(true);
            } else if (!MO.isDead()) {
              assert(MO.isDef());
            }
          }

          // The def undef and def internal flags only make sense for
          // sub-register defs, and we are substituting a full physreg.  An
          // implicit killed operand from the SuperKills list will represent the
          // partial read of the super-register.
          if (MO.isDef()) {
            MO.setIsUndef(false);
            MO.setIsInternalRead(false);
          }

          // PhysReg operands cannot have subregister indexes.
          PhysReg = TRI->getSubReg(PhysReg, SubReg);
          assert(PhysReg.isValid() && "Invalid SubReg for physical register");
          MO.setSubReg(0);
        }
        // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
        // we need the inlining here.
        MO.setReg(PhysReg);
        MO.setIsRenamable(true);
      }

      // Add any missing super-register kills after rewriting the whole
      // instruction.
      while (!SuperKills.empty())
        MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);

      while (!SuperDeads.empty())
        MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);

      while (!SuperDefs.empty())
        MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);

      LLVM_DEBUG(dbgs() << "> " << *MI);

      expandCopyBundle(*MI);

      // We can remove identity copies right now.
      handleIdentityCopy(*MI);
    }
  }
}