TargetInstrInfo.cpp 51.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cctype>

using namespace llvm;

static cl::opt<bool> DisableHazardRecognizer(
  "disable-sched-hazard", cl::Hidden, cl::init(false),
  cl::desc("Disable hazard detection during preRA scheduling"));

TargetInstrInfo::~TargetInstrInfo() {
}

const TargetRegisterClass*
TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
                             const TargetRegisterInfo *TRI,
                             const MachineFunction &MF) const {
  if (OpNum >= MCID.getNumOperands())
    return nullptr;

  short RegClass = MCID.OpInfo[OpNum].RegClass;
  if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
    return TRI->getPointerRegClass(MF, RegClass);

  // Instructions like INSERT_SUBREG do not have fixed register classes.
  if (RegClass < 0)
    return nullptr;

  // Otherwise just look it up normally.
  return TRI->getRegClass(RegClass);
}

/// insertNoop - Insert a noop into the instruction stream at the specified
/// point.
void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MI) const {
  llvm_unreachable("Target didn't implement insertNoop!");
}

static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
  return strncmp(Str, MAI.getCommentString().data(),
                 MAI.getCommentString().size()) == 0;
}

/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
/// We implement a special case of the .space directive which takes only a
/// single integer argument in base 10 that is the size in bytes. This is a
/// restricted form of the GAS directive in that we only interpret
/// simple--i.e. not a logical or arithmetic expression--size values without
/// the optional fill value. This is primarily used for creating arbitrary
/// sized inline asm blocks for testing purposes.
unsigned TargetInstrInfo::getInlineAsmLength(
  const char *Str,
  const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
  // Count the number of instructions in the asm.
  bool AtInsnStart = true;
  unsigned Length = 0;
  const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
  for (; *Str; ++Str) {
    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
                                strlen(MAI.getSeparatorString())) == 0) {
      AtInsnStart = true;
    } else if (isAsmComment(Str, MAI)) {
      // Stop counting as an instruction after a comment until the next
      // separator.
      AtInsnStart = false;
    }

    if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
      unsigned AddLength = MaxInstLength;
      if (strncmp(Str, ".space", 6) == 0) {
        char *EStr;
        int SpaceSize;
        SpaceSize = strtol(Str + 6, &EStr, 10);
        SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
        while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
          ++EStr;
        if (*EStr == '\0' || *EStr == '\n' ||
            isAsmComment(EStr, MAI)) // Successfully parsed .space argument
          AddLength = SpaceSize;
      }
      Length += AddLength;
      AtInsnStart = false;
    }
  }

  return Length;
}

/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.
void
TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
                                         MachineBasicBlock *NewDest) const {
  MachineBasicBlock *MBB = Tail->getParent();

  // Remove all the old successors of MBB from the CFG.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_begin());

  // Save off the debug loc before erasing the instruction.
  DebugLoc DL = Tail->getDebugLoc();

  // Update call site info and remove all the dead instructions
  // from the end of MBB.
  while (Tail != MBB->end()) {
    auto MI = Tail++;
    if (MI->shouldUpdateCallSiteInfo())
      MBB->getParent()->eraseCallSiteInfo(&*MI);
    MBB->erase(MI);
  }

  // If MBB isn't immediately before MBB, insert a branch to it.
  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
    insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
  MBB->addSuccessor(NewDest);
}

MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
                                                      bool NewMI, unsigned Idx1,
                                                      unsigned Idx2) const {
  const MCInstrDesc &MCID = MI.getDesc();
  bool HasDef = MCID.getNumDefs();
  if (HasDef && !MI.getOperand(0).isReg())
    // No idea how to commute this instruction. Target should implement its own.
    return nullptr;

  unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
  unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
  assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
         CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
         "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
  assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
         "This only knows how to commute register operands so far");

  Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
  Register Reg1 = MI.getOperand(Idx1).getReg();
  Register Reg2 = MI.getOperand(Idx2).getReg();
  unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
  unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
  unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
  bool Reg1IsKill = MI.getOperand(Idx1).isKill();
  bool Reg2IsKill = MI.getOperand(Idx2).isKill();
  bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
  bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
  bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
  bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
  // Avoid calling isRenamable for virtual registers since we assert that
  // renamable property is only queried/set for physical registers.
  bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
                             ? MI.getOperand(Idx1).isRenamable()
                             : false;
  bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
                             ? MI.getOperand(Idx2).isRenamable()
                             : false;
  // If destination is tied to either of the commuted source register, then
  // it must be updated.
  if (HasDef && Reg0 == Reg1 &&
      MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
    Reg2IsKill = false;
    Reg0 = Reg2;
    SubReg0 = SubReg2;
  } else if (HasDef && Reg0 == Reg2 &&
             MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
    Reg1IsKill = false;
    Reg0 = Reg1;
    SubReg0 = SubReg1;
  }

  MachineInstr *CommutedMI = nullptr;
  if (NewMI) {
    // Create a new instruction.
    MachineFunction &MF = *MI.getMF();
    CommutedMI = MF.CloneMachineInstr(&MI);
  } else {
    CommutedMI = &MI;
  }

  if (HasDef) {
    CommutedMI->getOperand(0).setReg(Reg0);
    CommutedMI->getOperand(0).setSubReg(SubReg0);
  }
  CommutedMI->getOperand(Idx2).setReg(Reg1);
  CommutedMI->getOperand(Idx1).setReg(Reg2);
  CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
  CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
  CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
  CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
  CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
  CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
  CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
  CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
  // Avoid calling setIsRenamable for virtual registers since we assert that
  // renamable property is only queried/set for physical registers.
  if (Register::isPhysicalRegister(Reg1))
    CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
  if (Register::isPhysicalRegister(Reg2))
    CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
  return CommutedMI;
}

MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
                                                  unsigned OpIdx1,
                                                  unsigned OpIdx2) const {
  // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
  // any commutable operand, which is done in findCommutedOpIndices() method
  // called below.
  if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
      !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
    assert(MI.isCommutable() &&
           "Precondition violation: MI must be commutable.");
    return nullptr;
  }
  return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}

bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
                                           unsigned &ResultIdx2,
                                           unsigned CommutableOpIdx1,
                                           unsigned CommutableOpIdx2) {
  if (ResultIdx1 == CommuteAnyOperandIndex &&
      ResultIdx2 == CommuteAnyOperandIndex) {
    ResultIdx1 = CommutableOpIdx1;
    ResultIdx2 = CommutableOpIdx2;
  } else if (ResultIdx1 == CommuteAnyOperandIndex) {
    if (ResultIdx2 == CommutableOpIdx1)
      ResultIdx1 = CommutableOpIdx2;
    else if (ResultIdx2 == CommutableOpIdx2)
      ResultIdx1 = CommutableOpIdx1;
    else
      return false;
  } else if (ResultIdx2 == CommuteAnyOperandIndex) {
    if (ResultIdx1 == CommutableOpIdx1)
      ResultIdx2 = CommutableOpIdx2;
    else if (ResultIdx1 == CommutableOpIdx2)
      ResultIdx2 = CommutableOpIdx1;
    else
      return false;
  } else
    // Check that the result operand indices match the given commutable
    // operand indices.
    return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
           (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);

  return true;
}

bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
                                            unsigned &SrcOpIdx1,
                                            unsigned &SrcOpIdx2) const {
  assert(!MI.isBundle() &&
         "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");

  const MCInstrDesc &MCID = MI.getDesc();
  if (!MCID.isCommutable())
    return false;

  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
  // is not true, then the target must implement this.
  unsigned CommutableOpIdx1 = MCID.getNumDefs();
  unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
  if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
                            CommutableOpIdx1, CommutableOpIdx2))
    return false;

  if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
    // No idea.
    return false;
  return true;
}

bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
  if (!MI.isTerminator()) return false;

  // Conditional branch is a special case.
  if (MI.isBranch() && !MI.isBarrier())
    return true;
  if (!MI.isPredicable())
    return true;
  return !isPredicated(MI);
}

bool TargetInstrInfo::PredicateInstruction(
    MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
  bool MadeChange = false;

  assert(!MI.isBundle() &&
         "TargetInstrInfo::PredicateInstruction() can't handle bundles");

  const MCInstrDesc &MCID = MI.getDesc();
  if (!MI.isPredicable())
    return false;

  for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
    if (MCID.OpInfo[i].isPredicate()) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg()) {
        MO.setReg(Pred[j].getReg());
        MadeChange = true;
      } else if (MO.isImm()) {
        MO.setImm(Pred[j].getImm());
        MadeChange = true;
      } else if (MO.isMBB()) {
        MO.setMBB(Pred[j].getMBB());
        MadeChange = true;
      }
      ++j;
    }
  }
  return MadeChange;
}

bool TargetInstrInfo::hasLoadFromStackSlot(
    const MachineInstr &MI,
    SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
  size_t StartSize = Accesses.size();
  for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
                                  oe = MI.memoperands_end();
       o != oe; ++o) {
    if ((*o)->isLoad() &&
        dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
      Accesses.push_back(*o);
  }
  return Accesses.size() != StartSize;
}

bool TargetInstrInfo::hasStoreToStackSlot(
    const MachineInstr &MI,
    SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
  size_t StartSize = Accesses.size();
  for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
                                  oe = MI.memoperands_end();
       o != oe; ++o) {
    if ((*o)->isStore() &&
        dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
      Accesses.push_back(*o);
  }
  return Accesses.size() != StartSize;
}

bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
                                        unsigned SubIdx, unsigned &Size,
                                        unsigned &Offset,
                                        const MachineFunction &MF) const {
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  if (!SubIdx) {
    Size = TRI->getSpillSize(*RC);
    Offset = 0;
    return true;
  }
  unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
  // Convert bit size to byte size.
  if (BitSize % 8)
    return false;

  int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
  if (BitOffset < 0 || BitOffset % 8)
    return false;

  Size = BitSize / 8;
  Offset = (unsigned)BitOffset / 8;

  assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");

  if (!MF.getDataLayout().isLittleEndian()) {
    Offset = TRI->getSpillSize(*RC) - (Offset + Size);
  }
  return true;
}

void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator I,
                                    Register DestReg, unsigned SubIdx,
                                    const MachineInstr &Orig,
                                    const TargetRegisterInfo &TRI) const {
  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
  MBB.insert(I, MI);
}

bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
                                       const MachineInstr &MI1,
                                       const MachineRegisterInfo *MRI) const {
  return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
}

MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
    MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
  assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
  MachineFunction &MF = *MBB.getParent();
  return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
}

// If the COPY instruction in MI can be folded to a stack operation, return
// the register class to use.
static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
                                              unsigned FoldIdx) {
  assert(MI.isCopy() && "MI must be a COPY instruction");
  if (MI.getNumOperands() != 2)
    return nullptr;
  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");

  const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
  const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);

  if (FoldOp.getSubReg() || LiveOp.getSubReg())
    return nullptr;

  Register FoldReg = FoldOp.getReg();
  Register LiveReg = LiveOp.getReg();

  assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs");

  const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);

  if (Register::isPhysicalRegister(LiveOp.getReg()))
    return RC->contains(LiveOp.getReg()) ? RC : nullptr;

  if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
    return RC;

  // FIXME: Allow folding when register classes are memory compatible.
  return nullptr;
}

void TargetInstrInfo::getNoop(MCInst &NopInst) const {
  llvm_unreachable("Not implemented");
}

static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
                                    ArrayRef<unsigned> Ops, int FrameIndex,
                                    const TargetInstrInfo &TII) {
  unsigned StartIdx = 0;
  switch (MI.getOpcode()) {
  case TargetOpcode::STACKMAP: {
    // StackMapLiveValues are foldable
    StartIdx = StackMapOpers(&MI).getVarIdx();
    break;
  }
  case TargetOpcode::PATCHPOINT: {
    // For PatchPoint, the call args are not foldable (even if reported in the
    // stackmap e.g. via anyregcc).
    StartIdx = PatchPointOpers(&MI).getVarIdx();
    break;
  }
  case TargetOpcode::STATEPOINT: {
    // For statepoints, fold deopt and gc arguments, but not call arguments.
    StartIdx = StatepointOpers(&MI).getVarIdx();
    break;
  }
  default:
    llvm_unreachable("unexpected stackmap opcode");
  }

  // Return false if any operands requested for folding are not foldable (not
  // part of the stackmap's live values).
  for (unsigned Op : Ops) {
    if (Op < StartIdx)
      return nullptr;
  }

  MachineInstr *NewMI =
      MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
  MachineInstrBuilder MIB(MF, NewMI);

  // No need to fold return, the meta data, and function arguments
  for (unsigned i = 0; i < StartIdx; ++i)
    MIB.add(MI.getOperand(i));

  for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (is_contained(Ops, i)) {
      unsigned SpillSize;
      unsigned SpillOffset;
      // Compute the spill slot size and offset.
      const TargetRegisterClass *RC =
        MF.getRegInfo().getRegClass(MO.getReg());
      bool Valid =
          TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
      if (!Valid)
        report_fatal_error("cannot spill patchpoint subregister operand");
      MIB.addImm(StackMaps::IndirectMemRefOp);
      MIB.addImm(SpillSize);
      MIB.addFrameIndex(FrameIndex);
      MIB.addImm(SpillOffset);
    }
    else
      MIB.add(MO);
  }
  return NewMI;
}

MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
                                                 ArrayRef<unsigned> Ops, int FI,
                                                 LiveIntervals *LIS,
                                                 VirtRegMap *VRM) const {
  auto Flags = MachineMemOperand::MONone;
  for (unsigned OpIdx : Ops)
    Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
                                          : MachineMemOperand::MOLoad;

  MachineBasicBlock *MBB = MI.getParent();
  assert(MBB && "foldMemoryOperand needs an inserted instruction");
  MachineFunction &MF = *MBB->getParent();

  // If we're not folding a load into a subreg, the size of the load is the
  // size of the spill slot. But if we are, we need to figure out what the
  // actual load size is.
  int64_t MemSize = 0;
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();

  if (Flags & MachineMemOperand::MOStore) {
    MemSize = MFI.getObjectSize(FI);
  } else {
    for (unsigned OpIdx : Ops) {
      int64_t OpSize = MFI.getObjectSize(FI);

      if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
        unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
        if (SubRegSize > 0 && !(SubRegSize % 8))
          OpSize = SubRegSize / 8;
      }

      MemSize = std::max(MemSize, OpSize);
    }
  }

  assert(MemSize && "Did not expect a zero-sized stack slot");

  MachineInstr *NewMI = nullptr;

  if (MI.getOpcode() == TargetOpcode::STACKMAP ||
      MI.getOpcode() == TargetOpcode::PATCHPOINT ||
      MI.getOpcode() == TargetOpcode::STATEPOINT) {
    // Fold stackmap/patchpoint.
    NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
    if (NewMI)
      MBB->insert(MI, NewMI);
  } else {
    // Ask the target to do the actual folding.
    NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
  }

  if (NewMI) {
    NewMI->setMemRefs(MF, MI.memoperands());
    // Add a memory operand, foldMemoryOperandImpl doesn't do that.
    assert((!(Flags & MachineMemOperand::MOStore) ||
            NewMI->mayStore()) &&
           "Folded a def to a non-store!");
    assert((!(Flags & MachineMemOperand::MOLoad) ||
            NewMI->mayLoad()) &&
           "Folded a use to a non-load!");
    assert(MFI.getObjectOffset(FI) != -1);
    MachineMemOperand *MMO =
        MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
                                Flags, MemSize, MFI.getObjectAlign(FI));
    NewMI->addMemOperand(MF, MMO);

    // The pass "x86 speculative load hardening" always attaches symbols to
    // call instructions. We need copy it form old instruction.
    NewMI->cloneInstrSymbols(MF, MI);

    return NewMI;
  }

  // Straight COPY may fold as load/store.
  if (!MI.isCopy() || Ops.size() != 1)
    return nullptr;

  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
  if (!RC)
    return nullptr;

  const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
  MachineBasicBlock::iterator Pos = MI;

  if (Flags == MachineMemOperand::MOStore)
    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
  else
    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
  return &*--Pos;
}

MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
                                                 ArrayRef<unsigned> Ops,
                                                 MachineInstr &LoadMI,
                                                 LiveIntervals *LIS) const {
  assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
#ifndef NDEBUG
  for (unsigned OpIdx : Ops)
    assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
#endif

  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();

  // Ask the target to do the actual folding.
  MachineInstr *NewMI = nullptr;
  int FrameIndex = 0;

  if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
       MI.getOpcode() == TargetOpcode::STATEPOINT) &&
      isLoadFromStackSlot(LoadMI, FrameIndex)) {
    // Fold stackmap/patchpoint.
    NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
    if (NewMI)
      NewMI = &*MBB.insert(MI, NewMI);
  } else {
    // Ask the target to do the actual folding.
    NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
  }

  if (!NewMI)
    return nullptr;

  // Copy the memoperands from the load to the folded instruction.
  if (MI.memoperands_empty()) {
    NewMI->setMemRefs(MF, LoadMI.memoperands());
  } else {
    // Handle the rare case of folding multiple loads.
    NewMI->setMemRefs(MF, MI.memoperands());
    for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
                                    E = LoadMI.memoperands_end();
         I != E; ++I) {
      NewMI->addMemOperand(MF, *I);
    }
  }
  return NewMI;
}

bool TargetInstrInfo::hasReassociableOperands(
    const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
  const MachineOperand &Op1 = Inst.getOperand(1);
  const MachineOperand &Op2 = Inst.getOperand(2);
  const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();

  // We need virtual register definitions for the operands that we will
  // reassociate.
  MachineInstr *MI1 = nullptr;
  MachineInstr *MI2 = nullptr;
  if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
    MI1 = MRI.getUniqueVRegDef(Op1.getReg());
  if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
    MI2 = MRI.getUniqueVRegDef(Op2.getReg());

  // And they need to be in the trace (otherwise, they won't have a depth).
  return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
}

bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
                                             bool &Commuted) const {
  const MachineBasicBlock *MBB = Inst.getParent();
  const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
  MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
  unsigned AssocOpcode = Inst.getOpcode();

  // If only one operand has the same opcode and it's the second source operand,
  // the operands must be commuted.
  Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
  if (Commuted)
    std::swap(MI1, MI2);

  // 1. The previous instruction must be the same type as Inst.
  // 2. The previous instruction must also be associative/commutative (this can
  //    be different even for instructions with the same opcode if traits like
  //    fast-math-flags are included).
  // 3. The previous instruction must have virtual register definitions for its
  //    operands in the same basic block as Inst.
  // 4. The previous instruction's result must only be used by Inst.
  return MI1->getOpcode() == AssocOpcode && isAssociativeAndCommutative(*MI1) &&
         hasReassociableOperands(*MI1, MBB) &&
         MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
}

// 1. The operation must be associative and commutative.
// 2. The instruction must have virtual register definitions for its
//    operands in the same basic block.
// 3. The instruction must have a reassociable sibling.
bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
                                               bool &Commuted) const {
  return isAssociativeAndCommutative(Inst) &&
         hasReassociableOperands(Inst, Inst.getParent()) &&
         hasReassociableSibling(Inst, Commuted);
}

// The concept of the reassociation pass is that these operations can benefit
// from this kind of transformation:
//
// A = ? op ?
// B = A op X (Prev)
// C = B op Y (Root)
// -->
// A = ? op ?
// B = X op Y
// C = A op B
//
// breaking the dependency between A and B, allowing them to be executed in
// parallel (or back-to-back in a pipeline) instead of depending on each other.

// FIXME: This has the potential to be expensive (compile time) while not
// improving the code at all. Some ways to limit the overhead:
// 1. Track successful transforms; bail out if hit rate gets too low.
// 2. Only enable at -O3 or some other non-default optimization level.
// 3. Pre-screen pattern candidates here: if an operand of the previous
//    instruction is known to not increase the critical path, then don't match
//    that pattern.
bool TargetInstrInfo::getMachineCombinerPatterns(
    MachineInstr &Root,
    SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
  bool Commute;
  if (isReassociationCandidate(Root, Commute)) {
    // We found a sequence of instructions that may be suitable for a
    // reassociation of operands to increase ILP. Specify each commutation
    // possibility for the Prev instruction in the sequence and let the
    // machine combiner decide if changing the operands is worthwhile.
    if (Commute) {
      Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
      Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
    } else {
      Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
      Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
    }
    return true;
  }

  return false;
}

/// Return true when a code sequence can improve loop throughput.
bool
TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
  return false;
}

/// Attempt the reassociation transformation to reduce critical path length.
/// See the above comments before getMachineCombinerPatterns().
void TargetInstrInfo::reassociateOps(
    MachineInstr &Root, MachineInstr &Prev,
    MachineCombinerPattern Pattern,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
  MachineFunction *MF = Root.getMF();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);

  // This array encodes the operand index for each parameter because the
  // operands may be commuted. Each row corresponds to a pattern value,
  // and each column specifies the index of A, B, X, Y.
  unsigned OpIdx[4][4] = {
    { 1, 1, 2, 2 },
    { 1, 2, 2, 1 },
    { 2, 1, 1, 2 },
    { 2, 2, 1, 1 }
  };

  int Row;
  switch (Pattern) {
  case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
  case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
  case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
  case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
  default: llvm_unreachable("unexpected MachineCombinerPattern");
  }

  MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
  MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
  MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
  MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
  MachineOperand &OpC = Root.getOperand(0);

  Register RegA = OpA.getReg();
  Register RegB = OpB.getReg();
  Register RegX = OpX.getReg();
  Register RegY = OpY.getReg();
  Register RegC = OpC.getReg();

  if (Register::isVirtualRegister(RegA))
    MRI.constrainRegClass(RegA, RC);
  if (Register::isVirtualRegister(RegB))
    MRI.constrainRegClass(RegB, RC);
  if (Register::isVirtualRegister(RegX))
    MRI.constrainRegClass(RegX, RC);
  if (Register::isVirtualRegister(RegY))
    MRI.constrainRegClass(RegY, RC);
  if (Register::isVirtualRegister(RegC))
    MRI.constrainRegClass(RegC, RC);

  // Create a new virtual register for the result of (X op Y) instead of
  // recycling RegB because the MachineCombiner's computation of the critical
  // path requires a new register definition rather than an existing one.
  Register NewVR = MRI.createVirtualRegister(RC);
  InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));

  unsigned Opcode = Root.getOpcode();
  bool KillA = OpA.isKill();
  bool KillX = OpX.isKill();
  bool KillY = OpY.isKill();

  // Create new instructions for insertion.
  MachineInstrBuilder MIB1 =
      BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
          .addReg(RegX, getKillRegState(KillX))
          .addReg(RegY, getKillRegState(KillY));
  MachineInstrBuilder MIB2 =
      BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
          .addReg(RegA, getKillRegState(KillA))
          .addReg(NewVR, getKillRegState(true));

  setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);

  // Record new instructions for insertion and old instructions for deletion.
  InsInstrs.push_back(MIB1);
  InsInstrs.push_back(MIB2);
  DelInstrs.push_back(&Prev);
  DelInstrs.push_back(&Root);
}

void TargetInstrInfo::genAlternativeCodeSequence(
    MachineInstr &Root, MachineCombinerPattern Pattern,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
  MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();

  // Select the previous instruction in the sequence based on the input pattern.
  MachineInstr *Prev = nullptr;
  switch (Pattern) {
  case MachineCombinerPattern::REASSOC_AX_BY:
  case MachineCombinerPattern::REASSOC_XA_BY:
    Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
    break;
  case MachineCombinerPattern::REASSOC_AX_YB:
  case MachineCombinerPattern::REASSOC_XA_YB:
    Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
    break;
  default:
    break;
  }

  assert(Prev && "Unknown pattern for machine combiner");

  reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
}

bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
    const MachineInstr &MI, AAResults *AA) const {
  const MachineFunction &MF = *MI.getMF();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  // Remat clients assume operand 0 is the defined register.
  if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
    return false;
  Register DefReg = MI.getOperand(0).getReg();

  // A sub-register definition can only be rematerialized if the instruction
  // doesn't read the other parts of the register.  Otherwise it is really a
  // read-modify-write operation on the full virtual register which cannot be
  // moved safely.
  if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
      MI.readsVirtualRegister(DefReg))
    return false;

  // A load from a fixed stack slot can be rematerialized. This may be
  // redundant with subsequent checks, but it's target-independent,
  // simple, and a common case.
  int FrameIdx = 0;
  if (isLoadFromStackSlot(MI, FrameIdx) &&
      MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
    return true;

  // Avoid instructions obviously unsafe for remat.
  if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
      MI.hasUnmodeledSideEffects())
    return false;

  // Don't remat inline asm. We have no idea how expensive it is
  // even if it's side effect free.
  if (MI.isInlineAsm())
    return false;

  // Avoid instructions which load from potentially varying memory.
  if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
    return false;

  // If any of the registers accessed are non-constant, conservatively assume
  // the instruction is not rematerializable.
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (Reg == 0)
      continue;

    // Check for a well-behaved physical register.
    if (Register::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!MRI.isConstantPhysReg(Reg))
          return false;
      } else {
        // A physreg def. We can't remat it.
        return false;
      }
      continue;
    }

    // Only allow one virtual-register def.  There may be multiple defs of the
    // same virtual register, though.
    if (MO.isDef() && Reg != DefReg)
      return false;

    // Don't allow any virtual-register uses. Rematting an instruction with
    // virtual register uses would length the live ranges of the uses, which
    // is not necessarily a good idea, certainly not "trivial".
    if (MO.isUse())
      return false;
  }

  // Everything checked out.
  return true;
}

int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
  const MachineFunction *MF = MI.getMF();
  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
  bool StackGrowsDown =
    TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;

  unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();

  if (!isFrameInstr(MI))
    return 0;

  int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));

  if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
      (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
    SPAdj = -SPAdj;

  return SPAdj;
}

/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels
/// and terminators.
bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
                                           const MachineBasicBlock *MBB,
                                           const MachineFunction &MF) const {
  // Terminators and labels can't be scheduled around.
  if (MI.isTerminator() || MI.isPosition())
    return true;

  // INLINEASM_BR can jump to another block
  if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
    return true;

  // Don't attempt to schedule around any instruction that defines
  // a stack-oriented pointer, as it's unlikely to be profitable. This
  // saves compile time, because it doesn't require every single
  // stack slot reference to depend on the instruction that does the
  // modification.
  const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
}

// Provide a global flag for disabling the PreRA hazard recognizer that targets
// may choose to honor.
bool TargetInstrInfo::usePreRAHazardRecognizer() const {
  return !DisableHazardRecognizer;
}

// Default implementation of CreateTargetRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                             const ScheduleDAG *DAG) const {
  // Dummy hazard recognizer allows all instructions to issue.
  return new ScheduleHazardRecognizer();
}

// Default implementation of CreateTargetMIHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
    const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
  return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
}

// Default implementation of CreateTargetPostRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                   const ScheduleDAG *DAG) const {
  return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
}

// Default implementation of getMemOperandWithOffset.
bool TargetInstrInfo::getMemOperandWithOffset(
    const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
    bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
  SmallVector<const MachineOperand *, 4> BaseOps;
  unsigned Width;
  if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
                                     Width, TRI) ||
      BaseOps.size() != 1)
    return false;
  BaseOp = BaseOps.front();
  return true;
}

//===----------------------------------------------------------------------===//
//  SelectionDAG latency interface.
//===----------------------------------------------------------------------===//

int
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                   SDNode *DefNode, unsigned DefIdx,
                                   SDNode *UseNode, unsigned UseIdx) const {
  if (!ItinData || ItinData->isEmpty())
    return -1;

  if (!DefNode->isMachineOpcode())
    return -1;

  unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
  if (!UseNode->isMachineOpcode())
    return ItinData->getOperandCycle(DefClass, DefIdx);
  unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}

int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                     SDNode *N) const {
  if (!ItinData || ItinData->isEmpty())
    return 1;

  if (!N->isMachineOpcode())
    return 1;

  return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
}

//===----------------------------------------------------------------------===//
//  MachineInstr latency interface.
//===----------------------------------------------------------------------===//

unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
                                         const MachineInstr &MI) const {
  if (!ItinData || ItinData->isEmpty())
    return 1;

  unsigned Class = MI.getDesc().getSchedClass();
  int UOps = ItinData->Itineraries[Class].NumMicroOps;
  if (UOps >= 0)
    return UOps;

  // The # of u-ops is dynamically determined. The specific target should
  // override this function to return the right number.
  return 1;
}

/// Return the default expected latency for a def based on it's opcode.
unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
                                            const MachineInstr &DefMI) const {
  if (DefMI.isTransient())
    return 0;
  if (DefMI.mayLoad())
    return SchedModel.LoadLatency;
  if (isHighLatencyDef(DefMI.getOpcode()))
    return SchedModel.HighLatency;
  return 1;
}

unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
  return 0;
}

unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                          const MachineInstr &MI,
                                          unsigned *PredCost) const {
  // Default to one cycle for no itinerary. However, an "empty" itinerary may
  // still have a MinLatency property, which getStageLatency checks.
  if (!ItinData)
    return MI.mayLoad() ? 2 : 1;

  return ItinData->getStageLatency(MI.getDesc().getSchedClass());
}

bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
                                       const MachineInstr &DefMI,
                                       unsigned DefIdx) const {
  const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
  if (!ItinData || ItinData->isEmpty())
    return false;

  unsigned DefClass = DefMI.getDesc().getSchedClass();
  int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
  return (DefCycle != -1 && DefCycle <= 1);
}

Optional<ParamLoadedValue>
TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
                                     Register Reg) const {
  const MachineFunction *MF = MI.getMF();
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
  int64_t Offset;
  bool OffsetIsScalable;

  // To simplify the sub-register handling, verify that we only need to
  // consider physical registers.
  assert(MF->getProperties().hasProperty(
      MachineFunctionProperties::Property::NoVRegs));

  if (auto DestSrc = isCopyInstr(MI)) {
    Register DestReg = DestSrc->Destination->getReg();

    // If the copy destination is the forwarding reg, describe the forwarding
    // reg using the copy source as the backup location. Example:
    //
    //   x0 = MOV x7
    //   call callee(x0)      ; x0 described as x7
    if (Reg == DestReg)
      return ParamLoadedValue(*DestSrc->Source, Expr);

    // Cases where super- or sub-registers needs to be described should
    // be handled by the target's hook implementation.
    assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) &&
           "TargetInstrInfo::describeLoadedValue can't describe super- or "
           "sub-regs for copy instructions");
    return None;
  } else if (auto RegImm = isAddImmediate(MI, Reg)) {
    Register SrcReg = RegImm->Reg;
    Offset = RegImm->Imm;
    Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
    return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
  } else if (MI.hasOneMemOperand()) {
    // Only describe memory which provably does not escape the function. As
    // described in llvm.org/PR43343, escaped memory may be clobbered by the
    // callee (or by another thread).
    const auto &TII = MF->getSubtarget().getInstrInfo();
    const MachineFrameInfo &MFI = MF->getFrameInfo();
    const MachineMemOperand *MMO = MI.memoperands()[0];
    const PseudoSourceValue *PSV = MMO->getPseudoValue();

    // If the address points to "special" memory (e.g. a spill slot), it's
    // sufficient to check that it isn't aliased by any high-level IR value.
    if (!PSV || PSV->mayAlias(&MFI))
      return None;

    const MachineOperand *BaseOp;
    if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
                                      TRI))
      return None;

    // FIXME: Scalable offsets are not yet handled in the offset code below.
    if (OffsetIsScalable)
      return None;

    // TODO: Can currently only handle mem instructions with a single define.
    // An example from the x86 target:
    //    ...
    //    DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
    //    ...
    //
    if (MI.getNumExplicitDefs() != 1)
      return None;

    // TODO: In what way do we need to take Reg into consideration here?

    SmallVector<uint64_t, 8> Ops;
    DIExpression::appendOffset(Ops, Offset);
    Ops.push_back(dwarf::DW_OP_deref_size);
    Ops.push_back(MMO->getSize());
    Expr = DIExpression::prependOpcodes(Expr, Ops);
    return ParamLoadedValue(*BaseOp, Expr);
  }

  return None;
}

/// Both DefMI and UseMI must be valid.  By default, call directly to the
/// itinerary. This may be overriden by the target.
int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                       const MachineInstr &DefMI,
                                       unsigned DefIdx,
                                       const MachineInstr &UseMI,
                                       unsigned UseIdx) const {
  unsigned DefClass = DefMI.getDesc().getSchedClass();
  unsigned UseClass = UseMI.getDesc().getSchedClass();
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}

/// If we can determine the operand latency from the def only, without itinerary
/// lookup, do so. Otherwise return -1.
int TargetInstrInfo::computeDefOperandLatency(
    const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {

  // Let the target hook getInstrLatency handle missing itineraries.
  if (!ItinData)
    return getInstrLatency(ItinData, DefMI);

  if(ItinData->isEmpty())
    return defaultDefLatency(ItinData->SchedModel, DefMI);

  // ...operand lookup required
  return -1;
}

bool TargetInstrInfo::getRegSequenceInputs(
    const MachineInstr &MI, unsigned DefIdx,
    SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
  assert((MI.isRegSequence() ||
          MI.isRegSequenceLike()) && "Instruction do not have the proper type");

  if (!MI.isRegSequence())
    return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);

  // We are looking at:
  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
  assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
  for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
       OpIdx += 2) {
    const MachineOperand &MOReg = MI.getOperand(OpIdx);
    if (MOReg.isUndef())
      continue;
    const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
    assert(MOSubIdx.isImm() &&
           "One of the subindex of the reg_sequence is not an immediate");
    // Record Reg:SubReg, SubIdx.
    InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
                                            (unsigned)MOSubIdx.getImm()));
  }
  return true;
}

bool TargetInstrInfo::getExtractSubregInputs(
    const MachineInstr &MI, unsigned DefIdx,
    RegSubRegPairAndIdx &InputReg) const {
  assert((MI.isExtractSubreg() ||
      MI.isExtractSubregLike()) && "Instruction do not have the proper type");

  if (!MI.isExtractSubreg())
    return getExtractSubregLikeInputs(MI, DefIdx, InputReg);

  // We are looking at:
  // Def = EXTRACT_SUBREG v0.sub1, sub0.
  assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
  const MachineOperand &MOReg = MI.getOperand(1);
  if (MOReg.isUndef())
    return false;
  const MachineOperand &MOSubIdx = MI.getOperand(2);
  assert(MOSubIdx.isImm() &&
         "The subindex of the extract_subreg is not an immediate");

  InputReg.Reg = MOReg.getReg();
  InputReg.SubReg = MOReg.getSubReg();
  InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
  return true;
}

bool TargetInstrInfo::getInsertSubregInputs(
    const MachineInstr &MI, unsigned DefIdx,
    RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
  assert((MI.isInsertSubreg() ||
      MI.isInsertSubregLike()) && "Instruction do not have the proper type");

  if (!MI.isInsertSubreg())
    return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);

  // We are looking at:
  // Def = INSERT_SEQUENCE v0, v1, sub0.
  assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
  const MachineOperand &MOBaseReg = MI.getOperand(1);
  const MachineOperand &MOInsertedReg = MI.getOperand(2);
  if (MOInsertedReg.isUndef())
    return false;
  const MachineOperand &MOSubIdx = MI.getOperand(3);
  assert(MOSubIdx.isImm() &&
         "One of the subindex of the reg_sequence is not an immediate");
  BaseReg.Reg = MOBaseReg.getReg();
  BaseReg.SubReg = MOBaseReg.getSubReg();

  InsertedReg.Reg = MOInsertedReg.getReg();
  InsertedReg.SubReg = MOInsertedReg.getSubReg();
  InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
  return true;
}

// Returns a MIRPrinter comment for this machine operand.
std::string TargetInstrInfo::createMIROperandComment(
    const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
    const TargetRegisterInfo *TRI) const {

  if (!MI.isInlineAsm())
    return "";

  std::string Flags;
  raw_string_ostream OS(Flags);

  if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
    // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
    unsigned ExtraInfo = Op.getImm();
    bool First = true;
    for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
      if (!First)
        OS << " ";
      First = false;
      OS << Info;
    }

    return OS.str();
  }

  int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
  if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
    return "";

  assert(Op.isImm() && "Expected flag operand to be an immediate");
  // Pretty print the inline asm operand descriptor.
  unsigned Flag = Op.getImm();
  unsigned Kind = InlineAsm::getKind(Flag);
  OS << InlineAsm::getKindName(Kind);

  unsigned RCID = 0;
  if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
      InlineAsm::hasRegClassConstraint(Flag, RCID)) {
    if (TRI) {
      OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
    } else
      OS << ":RC" << RCID;
  }

  if (InlineAsm::isMemKind(Flag)) {
    unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
    OS << ":" << InlineAsm::getMemConstraintName(MCID);
  }

  unsigned TiedTo = 0;
  if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
    OS << " tiedto:$" << TiedTo;

  return OS.str();
}

TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {}