SelectionDAGISel.cpp 141 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/SelectionDAGISel.h"
#include "ScheduleDAGSDNodes.h"
#include "SelectionDAGBuilder.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/SwiftErrorValueTracking.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "isel"

STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
STATISTIC(NumFastIselFailLowerArguments,
          "Number of entry blocks where fast isel failed to lower arguments");

static cl::opt<int> EnableFastISelAbort(
    "fast-isel-abort", cl::Hidden,
    cl::desc("Enable abort calls when \"fast\" instruction selection "
             "fails to lower an instruction: 0 disable the abort, 1 will "
             "abort but for args, calls and terminators, 2 will also "
             "abort for argument lowering, and 3 will never fallback "
             "to SelectionDAG."));

static cl::opt<bool> EnableFastISelFallbackReport(
    "fast-isel-report-on-fallback", cl::Hidden,
    cl::desc("Emit a diagnostic when \"fast\" instruction selection "
             "falls back to SelectionDAG."));

static cl::opt<bool>
UseMBPI("use-mbpi",
        cl::desc("use Machine Branch Probability Info"),
        cl::init(true), cl::Hidden);

#ifndef NDEBUG
static cl::opt<std::string>
FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
                        cl::desc("Only display the basic block whose name "
                                 "matches this for all view-*-dags options"));
static cl::opt<bool>
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
          cl::desc("Pop up a window to show dags before the first "
                   "dag combine pass"));
static cl::opt<bool>
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
          cl::desc("Pop up a window to show dags before legalize types"));
static cl::opt<bool>
    ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
                     cl::desc("Pop up a window to show dags before the post "
                              "legalize types dag combine pass"));
static cl::opt<bool>
    ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
                     cl::desc("Pop up a window to show dags before legalize"));
static cl::opt<bool>
ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
          cl::desc("Pop up a window to show dags before the second "
                   "dag combine pass"));
static cl::opt<bool>
ViewISelDAGs("view-isel-dags", cl::Hidden,
          cl::desc("Pop up a window to show isel dags as they are selected"));
static cl::opt<bool>
ViewSchedDAGs("view-sched-dags", cl::Hidden,
          cl::desc("Pop up a window to show sched dags as they are processed"));
static cl::opt<bool>
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
      cl::desc("Pop up a window to show SUnit dags after they are processed"));
#else
static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
                  ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
                  ViewDAGCombine2 = false, ViewISelDAGs = false,
                  ViewSchedDAGs = false, ViewSUnitDAGs = false;
#endif

//===---------------------------------------------------------------------===//
///
/// RegisterScheduler class - Track the registration of instruction schedulers.
///
//===---------------------------------------------------------------------===//
MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
    RegisterScheduler::Registry;

//===---------------------------------------------------------------------===//
///
/// ISHeuristic command line option for instruction schedulers.
///
//===---------------------------------------------------------------------===//
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
               RegisterPassParser<RegisterScheduler>>
ISHeuristic("pre-RA-sched",
            cl::init(&createDefaultScheduler), cl::Hidden,
            cl::desc("Instruction schedulers available (before register"
                     " allocation):"));

static RegisterScheduler
defaultListDAGScheduler("default", "Best scheduler for the target",
                        createDefaultScheduler);

namespace llvm {

  //===--------------------------------------------------------------------===//
  /// This class is used by SelectionDAGISel to temporarily override
  /// the optimization level on a per-function basis.
  class OptLevelChanger {
    SelectionDAGISel &IS;
    CodeGenOpt::Level SavedOptLevel;
    bool SavedFastISel;

  public:
    OptLevelChanger(SelectionDAGISel &ISel,
                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
      SavedOptLevel = IS.OptLevel;
      SavedFastISel = IS.TM.Options.EnableFastISel;
      if (NewOptLevel == SavedOptLevel)
        return;
      IS.OptLevel = NewOptLevel;
      IS.TM.setOptLevel(NewOptLevel);
      LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
                        << IS.MF->getFunction().getName() << "\n");
      LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
                        << NewOptLevel << "\n");
      if (NewOptLevel == CodeGenOpt::None) {
        IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
        LLVM_DEBUG(
            dbgs() << "\tFastISel is "
                   << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
                   << "\n");
      }
    }

    ~OptLevelChanger() {
      if (IS.OptLevel == SavedOptLevel)
        return;
      LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
                        << IS.MF->getFunction().getName() << "\n");
      LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
                        << SavedOptLevel << "\n");
      IS.OptLevel = SavedOptLevel;
      IS.TM.setOptLevel(SavedOptLevel);
      IS.TM.setFastISel(SavedFastISel);
    }
  };

  //===--------------------------------------------------------------------===//
  /// createDefaultScheduler - This creates an instruction scheduler appropriate
  /// for the target.
  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
                                             CodeGenOpt::Level OptLevel) {
    const TargetLowering *TLI = IS->TLI;
    const TargetSubtargetInfo &ST = IS->MF->getSubtarget();

    // Try first to see if the Target has its own way of selecting a scheduler
    if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
      return SchedulerCtor(IS, OptLevel);
    }

    if (OptLevel == CodeGenOpt::None ||
        (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
        TLI->getSchedulingPreference() == Sched::Source)
      return createSourceListDAGScheduler(IS, OptLevel);
    if (TLI->getSchedulingPreference() == Sched::RegPressure)
      return createBURRListDAGScheduler(IS, OptLevel);
    if (TLI->getSchedulingPreference() == Sched::Hybrid)
      return createHybridListDAGScheduler(IS, OptLevel);
    if (TLI->getSchedulingPreference() == Sched::VLIW)
      return createVLIWDAGScheduler(IS, OptLevel);
    assert(TLI->getSchedulingPreference() == Sched::ILP &&
           "Unknown sched type!");
    return createILPListDAGScheduler(IS, OptLevel);
  }

} // end namespace llvm

// EmitInstrWithCustomInserter - This method should be implemented by targets
// that mark instructions with the 'usesCustomInserter' flag.  These
// instructions are special in various ways, which require special support to
// insert.  The specified MachineInstr is created but not inserted into any
// basic blocks, and this method is called to expand it into a sequence of
// instructions, potentially also creating new basic blocks and control flow.
// When new basic blocks are inserted and the edges from MBB to its successors
// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
// DenseMap.
MachineBasicBlock *
TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                            MachineBasicBlock *MBB) const {
#ifndef NDEBUG
  dbgs() << "If a target marks an instruction with "
          "'usesCustomInserter', it must implement "
          "TargetLowering::EmitInstrWithCustomInserter!";
#endif
  llvm_unreachable(nullptr);
}

void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
                                                   SDNode *Node) const {
  assert(!MI.hasPostISelHook() &&
         "If a target marks an instruction with 'hasPostISelHook', "
         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
}

//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//

SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
    : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
      SwiftError(new SwiftErrorValueTracking()),
      CurDAG(new SelectionDAG(tm, OL)),
      SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
                                                OL)),
      AA(), GFI(), OptLevel(OL), DAGSize(0) {
  initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
  initializeBranchProbabilityInfoWrapperPassPass(
      *PassRegistry::getPassRegistry());
  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
  initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}

SelectionDAGISel::~SelectionDAGISel() {
  delete CurDAG;
  delete SwiftError;
}

void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
  if (OptLevel != CodeGenOpt::None)
    AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<GCModuleInfo>();
  AU.addRequired<StackProtector>();
  AU.addPreserved<GCModuleInfo>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addRequired<TargetTransformInfoWrapperPass>();
  if (UseMBPI && OptLevel != CodeGenOpt::None)
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
  if (OptLevel != CodeGenOpt::None)
    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
/// may trap on it.  In this case we have to split the edge so that the path
/// through the predecessor block that doesn't go to the phi block doesn't
/// execute the possibly trapping instruction. If available, we pass domtree
/// and loop info to be updated when we split critical edges. This is because
/// SelectionDAGISel preserves these analyses.
/// This is required for correctness, so it must be done at -O0.
///
static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
                                         LoopInfo *LI) {
  // Loop for blocks with phi nodes.
  for (BasicBlock &BB : Fn) {
    PHINode *PN = dyn_cast<PHINode>(BB.begin());
    if (!PN) continue;

  ReprocessBlock:
    // For each block with a PHI node, check to see if any of the input values
    // are potentially trapping constant expressions.  Constant expressions are
    // the only potentially trapping value that can occur as the argument to a
    // PHI.
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
        if (!CE || !CE->canTrap()) continue;

        // The only case we have to worry about is when the edge is critical.
        // Since this block has a PHI Node, we assume it has multiple input
        // edges: check to see if the pred has multiple successors.
        BasicBlock *Pred = PN->getIncomingBlock(i);
        if (Pred->getTerminator()->getNumSuccessors() == 1)
          continue;

        // Okay, we have to split this edge.
        SplitCriticalEdge(
            Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
            CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
        goto ReprocessBlock;
      }
  }
}

static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
                                         MachineModuleInfo &MMI) {
  // Only needed for MSVC
  if (!TT.isWindowsMSVCEnvironment())
    return;

  // If it's already set, nothing to do.
  if (MMI.usesMSVCFloatingPoint())
    return;

  for (const Instruction &I : instructions(F)) {
    if (I.getType()->isFPOrFPVectorTy()) {
      MMI.setUsesMSVCFloatingPoint(true);
      return;
    }
    for (const auto &Op : I.operands()) {
      if (Op->getType()->isFPOrFPVectorTy()) {
        MMI.setUsesMSVCFloatingPoint(true);
        return;
      }
    }
  }
}

bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
  // If we already selected that function, we do not need to run SDISel.
  if (mf.getProperties().hasProperty(
          MachineFunctionProperties::Property::Selected))
    return false;
  // Do some sanity-checking on the command-line options.
  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
         "-fast-isel-abort > 0 requires -fast-isel");

  const Function &Fn = mf.getFunction();
  MF = &mf;

  // Reset the target options before resetting the optimization
  // level below.
  // FIXME: This is a horrible hack and should be processed via
  // codegen looking at the optimization level explicitly when
  // it wants to look at it.
  TM.resetTargetOptions(Fn);
  // Reset OptLevel to None for optnone functions.
  CodeGenOpt::Level NewOptLevel = OptLevel;
  if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
    NewOptLevel = CodeGenOpt::None;
  OptLevelChanger OLC(*this, NewOptLevel);

  TII = MF->getSubtarget().getInstrInfo();
  TLI = MF->getSubtarget().getTargetLowering();
  RegInfo = &MF->getRegInfo();
  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
  ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
  LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  BlockFrequencyInfo *BFI = nullptr;
  if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
    BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();

  LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");

  SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);

  CurDAG->init(*MF, *ORE, this, LibInfo,
               getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
  FuncInfo->set(Fn, *MF, CurDAG);
  SwiftError->setFunction(*MF);

  // Now get the optional analyzes if we want to.
  // This is based on the possibly changed OptLevel (after optnone is taken
  // into account).  That's unfortunate but OK because it just means we won't
  // ask for passes that have been required anyway.

  if (UseMBPI && OptLevel != CodeGenOpt::None)
    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
  else
    FuncInfo->BPI = nullptr;

  if (OptLevel != CodeGenOpt::None)
    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  else
    AA = nullptr;

  SDB->init(GFI, AA, LibInfo);

  MF->setHasInlineAsm(false);

  FuncInfo->SplitCSR = false;

  // We split CSR if the target supports it for the given function
  // and the function has only return exits.
  if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
    FuncInfo->SplitCSR = true;

    // Collect all the return blocks.
    for (const BasicBlock &BB : Fn) {
      if (!succ_empty(&BB))
        continue;

      const Instruction *Term = BB.getTerminator();
      if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
        continue;

      // Bail out if the exit block is not Return nor Unreachable.
      FuncInfo->SplitCSR = false;
      break;
    }
  }

  MachineBasicBlock *EntryMBB = &MF->front();
  if (FuncInfo->SplitCSR)
    // This performs initialization so lowering for SplitCSR will be correct.
    TLI->initializeSplitCSR(EntryMBB);

  SelectAllBasicBlocks(Fn);
  if (FastISelFailed && EnableFastISelFallbackReport) {
    DiagnosticInfoISelFallback DiagFallback(Fn);
    Fn.getContext().diagnose(DiagFallback);
  }

  // Replace forward-declared registers with the registers containing
  // the desired value.
  // Note: it is important that this happens **before** the call to
  // EmitLiveInCopies, since implementations can skip copies of unused
  // registers. If we don't apply the reg fixups before, some registers may
  // appear as unused and will be skipped, resulting in bad MI.
  MachineRegisterInfo &MRI = MF->getRegInfo();
  for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
                                              E = FuncInfo->RegFixups.end();
       I != E; ++I) {
    Register From = I->first;
    Register To = I->second;
    // If To is also scheduled to be replaced, find what its ultimate
    // replacement is.
    while (true) {
      DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
      if (J == E)
        break;
      To = J->second;
    }
    // Make sure the new register has a sufficiently constrained register class.
    if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
      MRI.constrainRegClass(To, MRI.getRegClass(From));
    // Replace it.

    // Replacing one register with another won't touch the kill flags.
    // We need to conservatively clear the kill flags as a kill on the old
    // register might dominate existing uses of the new register.
    if (!MRI.use_empty(To))
      MRI.clearKillFlags(From);
    MRI.replaceRegWith(From, To);
  }

  // If the first basic block in the function has live ins that need to be
  // copied into vregs, emit the copies into the top of the block before
  // emitting the code for the block.
  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
  RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);

  // Insert copies in the entry block and the return blocks.
  if (FuncInfo->SplitCSR) {
    SmallVector<MachineBasicBlock*, 4> Returns;
    // Collect all the return blocks.
    for (MachineBasicBlock &MBB : mf) {
      if (!MBB.succ_empty())
        continue;

      MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
      if (Term != MBB.end() && Term->isReturn()) {
        Returns.push_back(&MBB);
        continue;
      }
    }
    TLI->insertCopiesSplitCSR(EntryMBB, Returns);
  }

  DenseMap<unsigned, unsigned> LiveInMap;
  if (!FuncInfo->ArgDbgValues.empty())
    for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
      if (LI.second)
        LiveInMap.insert(LI);

  // Insert DBG_VALUE instructions for function arguments to the entry block.
  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
    bool hasFI = MI->getOperand(0).isFI();
    Register Reg =
        hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
    if (Register::isPhysicalRegister(Reg))
      EntryMBB->insert(EntryMBB->begin(), MI);
    else {
      MachineInstr *Def = RegInfo->getVRegDef(Reg);
      if (Def) {
        MachineBasicBlock::iterator InsertPos = Def;
        // FIXME: VR def may not be in entry block.
        Def->getParent()->insert(std::next(InsertPos), MI);
      } else
        LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
                          << Register::virtReg2Index(Reg) << "\n");
    }

    // If Reg is live-in then update debug info to track its copy in a vreg.
    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
    if (LDI != LiveInMap.end()) {
      assert(!hasFI && "There's no handling of frame pointer updating here yet "
                       "- add if needed");
      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
      MachineBasicBlock::iterator InsertPos = Def;
      const MDNode *Variable = MI->getDebugVariable();
      const MDNode *Expr = MI->getDebugExpression();
      DebugLoc DL = MI->getDebugLoc();
      bool IsIndirect = MI->isIndirectDebugValue();
      if (IsIndirect)
        assert(MI->getOperand(1).getImm() == 0 &&
               "DBG_VALUE with nonzero offset");
      assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
             "Expected inlined-at fields to agree");
      // Def is never a terminator here, so it is ok to increment InsertPos.
      BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
              IsIndirect, LDI->second, Variable, Expr);

      // If this vreg is directly copied into an exported register then
      // that COPY instructions also need DBG_VALUE, if it is the only
      // user of LDI->second.
      MachineInstr *CopyUseMI = nullptr;
      for (MachineRegisterInfo::use_instr_iterator
           UI = RegInfo->use_instr_begin(LDI->second),
           E = RegInfo->use_instr_end(); UI != E; ) {
        MachineInstr *UseMI = &*(UI++);
        if (UseMI->isDebugValue()) continue;
        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
          CopyUseMI = UseMI; continue;
        }
        // Otherwise this is another use or second copy use.
        CopyUseMI = nullptr; break;
      }
      if (CopyUseMI &&
          TRI.getRegSizeInBits(LDI->second, MRI) ==
              TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
        // Use MI's debug location, which describes where Variable was
        // declared, rather than whatever is attached to CopyUseMI.
        MachineInstr *NewMI =
            BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
                    CopyUseMI->getOperand(0).getReg(), Variable, Expr);
        MachineBasicBlock::iterator Pos = CopyUseMI;
        EntryMBB->insertAfter(Pos, NewMI);
      }
    }
  }

  // Determine if there are any calls in this machine function.
  MachineFrameInfo &MFI = MF->getFrameInfo();
  for (const auto &MBB : *MF) {
    if (MFI.hasCalls() && MF->hasInlineAsm())
      break;

    for (const auto &MI : MBB) {
      const MCInstrDesc &MCID = TII->get(MI.getOpcode());
      if ((MCID.isCall() && !MCID.isReturn()) ||
          MI.isStackAligningInlineAsm()) {
        MFI.setHasCalls(true);
      }
      if (MI.isInlineAsm()) {
        MF->setHasInlineAsm(true);
      }
    }
  }

  // Determine if there is a call to setjmp in the machine function.
  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());

  // Determine if floating point is used for msvc
  computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());

  // Release function-specific state. SDB and CurDAG are already cleared
  // at this point.
  FuncInfo->clear();

  LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
  LLVM_DEBUG(MF->print(dbgs()));

  return true;
}

static void reportFastISelFailure(MachineFunction &MF,
                                  OptimizationRemarkEmitter &ORE,
                                  OptimizationRemarkMissed &R,
                                  bool ShouldAbort) {
  // Print the function name explicitly if we don't have a debug location (which
  // makes the diagnostic less useful) or if we're going to emit a raw error.
  if (!R.getLocation().isValid() || ShouldAbort)
    R << (" (in function: " + MF.getName() + ")").str();

  if (ShouldAbort)
    report_fatal_error(R.getMsg());

  ORE.emit(R);
}

void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
                                        BasicBlock::const_iterator End,
                                        bool &HadTailCall) {
  // Allow creating illegal types during DAG building for the basic block.
  CurDAG->NewNodesMustHaveLegalTypes = false;

  // Lower the instructions. If a call is emitted as a tail call, cease emitting
  // nodes for this block.
  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
    if (!ElidedArgCopyInstrs.count(&*I))
      SDB->visit(*I);
  }

  // Make sure the root of the DAG is up-to-date.
  CurDAG->setRoot(SDB->getControlRoot());
  HadTailCall = SDB->HasTailCall;
  SDB->resolveOrClearDbgInfo();
  SDB->clear();

  // Final step, emit the lowered DAG as machine code.
  CodeGenAndEmitDAG();
}

void SelectionDAGISel::ComputeLiveOutVRegInfo() {
  SmallPtrSet<SDNode *, 16> Added;
  SmallVector<SDNode*, 128> Worklist;

  Worklist.push_back(CurDAG->getRoot().getNode());
  Added.insert(CurDAG->getRoot().getNode());

  KnownBits Known;

  do {
    SDNode *N = Worklist.pop_back_val();

    // Otherwise, add all chain operands to the worklist.
    for (const SDValue &Op : N->op_values())
      if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
        Worklist.push_back(Op.getNode());

    // If this is a CopyToReg with a vreg dest, process it.
    if (N->getOpcode() != ISD::CopyToReg)
      continue;

    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
    if (!Register::isVirtualRegister(DestReg))
      continue;

    // Ignore non-integer values.
    SDValue Src = N->getOperand(2);
    EVT SrcVT = Src.getValueType();
    if (!SrcVT.isInteger())
      continue;

    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
    Known = CurDAG->computeKnownBits(Src);
    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
  } while (!Worklist.empty());
}

void SelectionDAGISel::CodeGenAndEmitDAG() {
  StringRef GroupName = "sdag";
  StringRef GroupDescription = "Instruction Selection and Scheduling";
  std::string BlockName;
  bool MatchFilterBB = false; (void)MatchFilterBB;
#ifndef NDEBUG
  TargetTransformInfo &TTI =
      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
#endif

  // Pre-type legalization allow creation of any node types.
  CurDAG->NewNodesMustHaveLegalTypes = false;

#ifndef NDEBUG
  MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
                   FilterDAGBasicBlockName ==
                       FuncInfo->MBB->getBasicBlock()->getName());
#endif
#ifdef NDEBUG
  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
      ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
      ViewSUnitDAGs)
#endif
  {
    BlockName =
        (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
  }
  LLVM_DEBUG(dbgs() << "Initial selection DAG: "
                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                    << "'\n";
             CurDAG->dump());

  if (ViewDAGCombine1 && MatchFilterBB)
    CurDAG->viewGraph("dag-combine1 input for " + BlockName);

  // Run the DAG combiner in pre-legalize mode.
  {
    NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
  }

#ifndef NDEBUG
  if (TTI.hasBranchDivergence())
    CurDAG->VerifyDAGDiverence();
#endif

  LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                    << "'\n";
             CurDAG->dump());

  // Second step, hack on the DAG until it only uses operations and types that
  // the target supports.
  if (ViewLegalizeTypesDAGs && MatchFilterBB)
    CurDAG->viewGraph("legalize-types input for " + BlockName);

  bool Changed;
  {
    NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    Changed = CurDAG->LegalizeTypes();
  }

#ifndef NDEBUG
  if (TTI.hasBranchDivergence())
    CurDAG->VerifyDAGDiverence();
#endif

  LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                    << "'\n";
             CurDAG->dump());

  // Only allow creation of legal node types.
  CurDAG->NewNodesMustHaveLegalTypes = true;

  if (Changed) {
    if (ViewDAGCombineLT && MatchFilterBB)
      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);

    // Run the DAG combiner in post-type-legalize mode.
    {
      NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
                         GroupName, GroupDescription, TimePassesIsEnabled);
      CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
    }

#ifndef NDEBUG
    if (TTI.hasBranchDivergence())
      CurDAG->VerifyDAGDiverence();
#endif

    LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                      << "'\n";
               CurDAG->dump());
  }

  {
    NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    Changed = CurDAG->LegalizeVectors();
  }

  if (Changed) {
    LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                      << "'\n";
               CurDAG->dump());

    {
      NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
                         GroupDescription, TimePassesIsEnabled);
      CurDAG->LegalizeTypes();
    }

    LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                      << "'\n";
               CurDAG->dump());

    if (ViewDAGCombineLT && MatchFilterBB)
      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);

    // Run the DAG combiner in post-type-legalize mode.
    {
      NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
                         GroupName, GroupDescription, TimePassesIsEnabled);
      CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
    }

    LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                      << "'\n";
               CurDAG->dump());

#ifndef NDEBUG
    if (TTI.hasBranchDivergence())
      CurDAG->VerifyDAGDiverence();
#endif
  }

  if (ViewLegalizeDAGs && MatchFilterBB)
    CurDAG->viewGraph("legalize input for " + BlockName);

  {
    NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    CurDAG->Legalize();
  }

#ifndef NDEBUG
  if (TTI.hasBranchDivergence())
    CurDAG->VerifyDAGDiverence();
#endif

  LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                    << "'\n";
             CurDAG->dump());

  if (ViewDAGCombine2 && MatchFilterBB)
    CurDAG->viewGraph("dag-combine2 input for " + BlockName);

  // Run the DAG combiner in post-legalize mode.
  {
    NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
  }

#ifndef NDEBUG
  if (TTI.hasBranchDivergence())
    CurDAG->VerifyDAGDiverence();
#endif

  LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                    << "'\n";
             CurDAG->dump());

  if (OptLevel != CodeGenOpt::None)
    ComputeLiveOutVRegInfo();

  if (ViewISelDAGs && MatchFilterBB)
    CurDAG->viewGraph("isel input for " + BlockName);

  // Third, instruction select all of the operations to machine code, adding the
  // code to the MachineBasicBlock.
  {
    NamedRegionTimer T("isel", "Instruction Selection", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    DoInstructionSelection();
  }

  LLVM_DEBUG(dbgs() << "Selected selection DAG: "
                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
                    << "'\n";
             CurDAG->dump());

  if (ViewSchedDAGs && MatchFilterBB)
    CurDAG->viewGraph("scheduler input for " + BlockName);

  // Schedule machine code.
  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
  {
    NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    Scheduler->Run(CurDAG, FuncInfo->MBB);
  }

  if (ViewSUnitDAGs && MatchFilterBB)
    Scheduler->viewGraph();

  // Emit machine code to BB.  This can change 'BB' to the last block being
  // inserted into.
  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
  {
    NamedRegionTimer T("emit", "Instruction Creation", GroupName,
                       GroupDescription, TimePassesIsEnabled);

    // FuncInfo->InsertPt is passed by reference and set to the end of the
    // scheduled instructions.
    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
  }

  // If the block was split, make sure we update any references that are used to
  // update PHI nodes later on.
  if (FirstMBB != LastMBB)
    SDB->UpdateSplitBlock(FirstMBB, LastMBB);

  // Free the scheduler state.
  {
    NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
                       GroupDescription, TimePassesIsEnabled);
    delete Scheduler;
  }

  // Free the SelectionDAG state, now that we're finished with it.
  CurDAG->clear();
}

namespace {

/// ISelUpdater - helper class to handle updates of the instruction selection
/// graph.
class ISelUpdater : public SelectionDAG::DAGUpdateListener {
  SelectionDAG::allnodes_iterator &ISelPosition;

public:
  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}

  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
  /// deleted is the current ISelPosition node, update ISelPosition.
  ///
  void NodeDeleted(SDNode *N, SDNode *E) override {
    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
      ++ISelPosition;
  }
};

} // end anonymous namespace

// This function is used to enforce the topological node id property
// property leveraged during Instruction selection. Before selection all
// nodes are given a non-negative id such that all nodes have a larger id than
// their operands. As this holds transitively we can prune checks that a node N
// is a predecessor of M another by not recursively checking through M's
// operands if N's ID is larger than M's ID. This is significantly improves
// performance of for various legality checks (e.g. IsLegalToFold /
// UpdateChains).

// However, when we fuse multiple nodes into a single node
// during selection we may induce a predecessor relationship between inputs and
// outputs of distinct nodes being merged violating the topological property.
// Should a fused node have a successor which has yet to be selected, our
// legality checks would be incorrect. To avoid this we mark all unselected
// sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
// (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
// We use bit-negation to more clearly enforce that node id -1 can only be
// achieved by selected nodes). As the conversion is reversable the original Id,
// topological pruning can still be leveraged when looking for unselected nodes.
// This method is call internally in all ISel replacement calls.
void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
  SmallVector<SDNode *, 4> Nodes;
  Nodes.push_back(Node);

  while (!Nodes.empty()) {
    SDNode *N = Nodes.pop_back_val();
    for (auto *U : N->uses()) {
      auto UId = U->getNodeId();
      if (UId > 0) {
        InvalidateNodeId(U);
        Nodes.push_back(U);
      }
    }
  }
}

// InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
// NodeId with the equivalent node id which is invalid for topological
// pruning.
void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
  int InvalidId = -(N->getNodeId() + 1);
  N->setNodeId(InvalidId);
}

// getUninvalidatedNodeId - get original uninvalidated node id.
int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
  int Id = N->getNodeId();
  if (Id < -1)
    return -(Id + 1);
  return Id;
}

void SelectionDAGISel::DoInstructionSelection() {
  LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
                    << printMBBReference(*FuncInfo->MBB) << " '"
                    << FuncInfo->MBB->getName() << "'\n");

  PreprocessISelDAG();

  // Select target instructions for the DAG.
  {
    // Number all nodes with a topological order and set DAGSize.
    DAGSize = CurDAG->AssignTopologicalOrder();

    // Create a dummy node (which is not added to allnodes), that adds
    // a reference to the root node, preventing it from being deleted,
    // and tracking any changes of the root.
    HandleSDNode Dummy(CurDAG->getRoot());
    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
    ++ISelPosition;

    // Make sure that ISelPosition gets properly updated when nodes are deleted
    // in calls made from this function.
    ISelUpdater ISU(*CurDAG, ISelPosition);

    // The AllNodes list is now topological-sorted. Visit the
    // nodes by starting at the end of the list (the root of the
    // graph) and preceding back toward the beginning (the entry
    // node).
    while (ISelPosition != CurDAG->allnodes_begin()) {
      SDNode *Node = &*--ISelPosition;
      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
      // but there are currently some corner cases that it misses. Also, this
      // makes it theoretically possible to disable the DAGCombiner.
      if (Node->use_empty())
        continue;

#ifndef NDEBUG
      SmallVector<SDNode *, 4> Nodes;
      Nodes.push_back(Node);

      while (!Nodes.empty()) {
        auto N = Nodes.pop_back_val();
        if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
          continue;
        for (const SDValue &Op : N->op_values()) {
          if (Op->getOpcode() == ISD::TokenFactor)
            Nodes.push_back(Op.getNode());
          else {
            // We rely on topological ordering of node ids for checking for
            // cycles when fusing nodes during selection. All unselected nodes
            // successors of an already selected node should have a negative id.
            // This assertion will catch such cases. If this assertion triggers
            // it is likely you using DAG-level Value/Node replacement functions
            // (versus equivalent ISEL replacement) in backend-specific
            // selections. See comment in EnforceNodeIdInvariant for more
            // details.
            assert(Op->getNodeId() != -1 &&
                   "Node has already selected predecessor node");
          }
        }
      }
#endif

      // When we are using non-default rounding modes or FP exception behavior
      // FP operations are represented by StrictFP pseudo-operations.  For
      // targets that do not (yet) understand strict FP operations directly,
      // we convert them to normal FP opcodes instead at this point.  This
      // will allow them to be handled by existing target-specific instruction
      // selectors.
      if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
        // For some opcodes, we need to call TLI->getOperationAction using
        // the first operand type instead of the result type.  Note that this
        // must match what SelectionDAGLegalize::LegalizeOp is doing.
        EVT ActionVT;
        switch (Node->getOpcode()) {
        case ISD::STRICT_SINT_TO_FP:
        case ISD::STRICT_UINT_TO_FP:
        case ISD::STRICT_LRINT:
        case ISD::STRICT_LLRINT:
        case ISD::STRICT_LROUND:
        case ISD::STRICT_LLROUND:
        case ISD::STRICT_FSETCC:
        case ISD::STRICT_FSETCCS:
          ActionVT = Node->getOperand(1).getValueType();
          break;
        default:
          ActionVT = Node->getValueType(0);
          break;
        }
        if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
            == TargetLowering::Expand)
          Node = CurDAG->mutateStrictFPToFP(Node);
      }

      LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
                 Node->dump(CurDAG));

      Select(Node);
    }

    CurDAG->setRoot(Dummy.getValue());
  }

  LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");

  PostprocessISelDAG();
}

static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
  for (const User *U : CPI->users()) {
    if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
      Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
      if (IID == Intrinsic::eh_exceptionpointer ||
          IID == Intrinsic::eh_exceptioncode)
        return true;
    }
  }
  return false;
}

// wasm.landingpad.index intrinsic is for associating a landing pad index number
// with a catchpad instruction. Retrieve the landing pad index in the intrinsic
// and store the mapping in the function.
static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
                                   const CatchPadInst *CPI) {
  MachineFunction *MF = MBB->getParent();
  // In case of single catch (...), we don't emit LSDA, so we don't need
  // this information.
  bool IsSingleCatchAllClause =
      CPI->getNumArgOperands() == 1 &&
      cast<Constant>(CPI->getArgOperand(0))->isNullValue();
  if (!IsSingleCatchAllClause) {
    // Create a mapping from landing pad label to landing pad index.
    bool IntrFound = false;
    for (const User *U : CPI->users()) {
      if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
        Intrinsic::ID IID = Call->getIntrinsicID();
        if (IID == Intrinsic::wasm_landingpad_index) {
          Value *IndexArg = Call->getArgOperand(1);
          int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
          MF->setWasmLandingPadIndex(MBB, Index);
          IntrFound = true;
          break;
        }
      }
    }
    assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
    (void)IntrFound;
  }
}

/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
/// do other setup for EH landing-pad blocks.
bool SelectionDAGISel::PrepareEHLandingPad() {
  MachineBasicBlock *MBB = FuncInfo->MBB;
  const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
  const BasicBlock *LLVMBB = MBB->getBasicBlock();
  const TargetRegisterClass *PtrRC =
      TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));

  auto Pers = classifyEHPersonality(PersonalityFn);

  // Catchpads have one live-in register, which typically holds the exception
  // pointer or code.
  if (isFuncletEHPersonality(Pers)) {
    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
      if (hasExceptionPointerOrCodeUser(CPI)) {
        // Get or create the virtual register to hold the pointer or code.  Mark
        // the live in physreg and copy into the vreg.
        MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
        assert(EHPhysReg && "target lacks exception pointer register");
        MBB->addLiveIn(EHPhysReg);
        unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
        BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
                TII->get(TargetOpcode::COPY), VReg)
            .addReg(EHPhysReg, RegState::Kill);
      }
    }
    return true;
  }

  // Add a label to mark the beginning of the landing pad.  Deletion of the
  // landing pad can thus be detected via the MachineModuleInfo.
  MCSymbol *Label = MF->addLandingPad(MBB);

  const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
    .addSym(Label);

  if (Pers == EHPersonality::Wasm_CXX) {
    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
      mapWasmLandingPadIndex(MBB, CPI);
  } else {
    // Assign the call site to the landing pad's begin label.
    MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
    // Mark exception register as live in.
    if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
      FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
    // Mark exception selector register as live in.
    if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
      FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
  }

  return true;
}

/// isFoldedOrDeadInstruction - Return true if the specified instruction is
/// side-effect free and is either dead or folded into a generated instruction.
/// Return false if it needs to be emitted.
static bool isFoldedOrDeadInstruction(const Instruction *I,
                                      const FunctionLoweringInfo &FuncInfo) {
  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
         !I->isTerminator() &&     // Terminators aren't folded.
         !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
         !I->isEHPad() &&             // EH pad instructions aren't folded.
         !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
}

/// Collect llvm.dbg.declare information. This is done after argument lowering
/// in case the declarations refer to arguments.
static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
  MachineFunction *MF = FuncInfo.MF;
  const DataLayout &DL = MF->getDataLayout();
  for (const BasicBlock &BB : *FuncInfo.Fn) {
    for (const Instruction &I : BB) {
      const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
      if (!DI)
        continue;

      assert(DI->getVariable() && "Missing variable");
      assert(DI->getDebugLoc() && "Missing location");
      const Value *Address = DI->getAddress();
      if (!Address) {
        LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
                          << " (bad address)\n");
        continue;
      }

      // Look through casts and constant offset GEPs. These mostly come from
      // inalloca.
      APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
      Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);

      // Check if the variable is a static alloca or a byval or inalloca
      // argument passed in memory. If it is not, then we will ignore this
      // intrinsic and handle this during isel like dbg.value.
      int FI = std::numeric_limits<int>::max();
      if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
        auto SI = FuncInfo.StaticAllocaMap.find(AI);
        if (SI != FuncInfo.StaticAllocaMap.end())
          FI = SI->second;
      } else if (const auto *Arg = dyn_cast<Argument>(Address))
        FI = FuncInfo.getArgumentFrameIndex(Arg);

      if (FI == std::numeric_limits<int>::max())
        continue;

      DIExpression *Expr = DI->getExpression();
      if (Offset.getBoolValue())
        Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
                                     Offset.getZExtValue());
      LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
                        << ", " << *DI << "\n");
      MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
    }
  }
}

void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
  FastISelFailed = false;
  // Initialize the Fast-ISel state, if needed.
  FastISel *FastIS = nullptr;
  if (TM.Options.EnableFastISel) {
    LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
    FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
  }

  ReversePostOrderTraversal<const Function*> RPOT(&Fn);

  // Lower arguments up front. An RPO iteration always visits the entry block
  // first.
  assert(*RPOT.begin() == &Fn.getEntryBlock());
  ++NumEntryBlocks;

  // Set up FuncInfo for ISel. Entry blocks never have PHIs.
  FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
  FuncInfo->InsertPt = FuncInfo->MBB->begin();

  CurDAG->setFunctionLoweringInfo(FuncInfo.get());

  if (!FastIS) {
    LowerArguments(Fn);
  } else {
    // See if fast isel can lower the arguments.
    FastIS->startNewBlock();
    if (!FastIS->lowerArguments()) {
      FastISelFailed = true;
      // Fast isel failed to lower these arguments
      ++NumFastIselFailLowerArguments;

      OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
                                 Fn.getSubprogram(),
                                 &Fn.getEntryBlock());
      R << "FastISel didn't lower all arguments: "
        << ore::NV("Prototype", Fn.getType());
      reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);

      // Use SelectionDAG argument lowering
      LowerArguments(Fn);
      CurDAG->setRoot(SDB->getControlRoot());
      SDB->clear();
      CodeGenAndEmitDAG();
    }

    // If we inserted any instructions at the beginning, make a note of
    // where they are, so we can be sure to emit subsequent instructions
    // after them.
    if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
      FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
    else
      FastIS->setLastLocalValue(nullptr);
  }

  bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());

  if (FastIS && Inserted)
    FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));

  processDbgDeclares(*FuncInfo);

  // Iterate over all basic blocks in the function.
  StackProtector &SP = getAnalysis<StackProtector>();
  for (const BasicBlock *LLVMBB : RPOT) {
    if (OptLevel != CodeGenOpt::None) {
      bool AllPredsVisited = true;
      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
           PI != PE; ++PI) {
        if (!FuncInfo->VisitedBBs.count(*PI)) {
          AllPredsVisited = false;
          break;
        }
      }

      if (AllPredsVisited) {
        for (const PHINode &PN : LLVMBB->phis())
          FuncInfo->ComputePHILiveOutRegInfo(&PN);
      } else {
        for (const PHINode &PN : LLVMBB->phis())
          FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
      }

      FuncInfo->VisitedBBs.insert(LLVMBB);
    }

    BasicBlock::const_iterator const Begin =
        LLVMBB->getFirstNonPHI()->getIterator();
    BasicBlock::const_iterator const End = LLVMBB->end();
    BasicBlock::const_iterator BI = End;

    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
    if (!FuncInfo->MBB)
      continue; // Some blocks like catchpads have no code or MBB.

    // Insert new instructions after any phi or argument setup code.
    FuncInfo->InsertPt = FuncInfo->MBB->end();

    // Setup an EH landing-pad block.
    FuncInfo->ExceptionPointerVirtReg = 0;
    FuncInfo->ExceptionSelectorVirtReg = 0;
    if (LLVMBB->isEHPad())
      if (!PrepareEHLandingPad())
        continue;

    // Before doing SelectionDAG ISel, see if FastISel has been requested.
    if (FastIS) {
      if (LLVMBB != &Fn.getEntryBlock())
        FastIS->startNewBlock();

      unsigned NumFastIselRemaining = std::distance(Begin, End);

      // Pre-assign swifterror vregs.
      SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);

      // Do FastISel on as many instructions as possible.
      for (; BI != Begin; --BI) {
        const Instruction *Inst = &*std::prev(BI);

        // If we no longer require this instruction, skip it.
        if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
            ElidedArgCopyInstrs.count(Inst)) {
          --NumFastIselRemaining;
          continue;
        }

        // Bottom-up: reset the insert pos at the top, after any local-value
        // instructions.
        FastIS->recomputeInsertPt();

        // Try to select the instruction with FastISel.
        if (FastIS->selectInstruction(Inst)) {
          --NumFastIselRemaining;
          ++NumFastIselSuccess;
          // If fast isel succeeded, skip over all the folded instructions, and
          // then see if there is a load right before the selected instructions.
          // Try to fold the load if so.
          const Instruction *BeforeInst = Inst;
          while (BeforeInst != &*Begin) {
            BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
            if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
              break;
          }
          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
              BeforeInst->hasOneUse() &&
              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
            // If we succeeded, don't re-select the load.
            BI = std::next(BasicBlock::const_iterator(BeforeInst));
            --NumFastIselRemaining;
            ++NumFastIselSuccess;
          }
          continue;
        }

        FastISelFailed = true;

        // Then handle certain instructions as single-LLVM-Instruction blocks.
        // We cannot separate out GCrelocates to their own blocks since we need
        // to keep track of gc-relocates for a particular gc-statepoint. This is
        // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
        // visitGCRelocate.
        if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
            !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
          OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
                                     Inst->getDebugLoc(), LLVMBB);

          R << "FastISel missed call";

          if (R.isEnabled() || EnableFastISelAbort) {
            std::string InstStrStorage;
            raw_string_ostream InstStr(InstStrStorage);
            InstStr << *Inst;

            R << ": " << InstStr.str();
          }

          reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);

          if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
              !Inst->use_empty()) {
            Register &R = FuncInfo->ValueMap[Inst];
            if (!R)
              R = FuncInfo->CreateRegs(Inst);
          }

          bool HadTailCall = false;
          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
          SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);

          // If the call was emitted as a tail call, we're done with the block.
          // We also need to delete any previously emitted instructions.
          if (HadTailCall) {
            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
            --BI;
            break;
          }

          // Recompute NumFastIselRemaining as Selection DAG instruction
          // selection may have handled the call, input args, etc.
          unsigned RemainingNow = std::distance(Begin, BI);
          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
          NumFastIselRemaining = RemainingNow;
          continue;
        }

        OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
                                   Inst->getDebugLoc(), LLVMBB);

        bool ShouldAbort = EnableFastISelAbort;
        if (Inst->isTerminator()) {
          // Use a different message for terminator misses.
          R << "FastISel missed terminator";
          // Don't abort for terminator unless the level is really high
          ShouldAbort = (EnableFastISelAbort > 2);
        } else {
          R << "FastISel missed";
        }

        if (R.isEnabled() || EnableFastISelAbort) {
          std::string InstStrStorage;
          raw_string_ostream InstStr(InstStrStorage);
          InstStr << *Inst;
          R << ": " << InstStr.str();
        }

        reportFastISelFailure(*MF, *ORE, R, ShouldAbort);

        NumFastIselFailures += NumFastIselRemaining;
        break;
      }

      FastIS->recomputeInsertPt();
    }

    if (SP.shouldEmitSDCheck(*LLVMBB)) {
      bool FunctionBasedInstrumentation =
          TLI->getSSPStackGuardCheck(*Fn.getParent());
      SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
                                   FunctionBasedInstrumentation);
    }

    if (Begin != BI)
      ++NumDAGBlocks;
    else
      ++NumFastIselBlocks;

    if (Begin != BI) {
      // Run SelectionDAG instruction selection on the remainder of the block
      // not handled by FastISel. If FastISel is not run, this is the entire
      // block.
      bool HadTailCall;
      SelectBasicBlock(Begin, BI, HadTailCall);

      // But if FastISel was run, we already selected some of the block.
      // If we emitted a tail-call, we need to delete any previously emitted
      // instruction that follows it.
      if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
        FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
    }

    if (FastIS)
      FastIS->finishBasicBlock();
    FinishBasicBlock();
    FuncInfo->PHINodesToUpdate.clear();
    ElidedArgCopyInstrs.clear();
  }

  SP.copyToMachineFrameInfo(MF->getFrameInfo());

  SwiftError->propagateVRegs();

  delete FastIS;
  SDB->clearDanglingDebugInfo();
  SDB->SPDescriptor.resetPerFunctionState();
}

/// Given that the input MI is before a partial terminator sequence TSeq, return
/// true if M + TSeq also a partial terminator sequence.
///
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
/// lowering copy vregs into physical registers, which are then passed into
/// terminator instructors so we can satisfy ABI constraints. A partial
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
/// may be the whole terminator sequence).
static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
  // If we do not have a copy or an implicit def, we return true if and only if
  // MI is a debug value.
  if (!MI.isCopy() && !MI.isImplicitDef())
    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
    // physical registers if there is debug info associated with the terminator
    // of our mbb. We want to include said debug info in our terminator
    // sequence, so we return true in that case.
    return MI.isDebugValue();

  // We have left the terminator sequence if we are not doing one of the
  // following:
  //
  // 1. Copying a vreg into a physical register.
  // 2. Copying a vreg into a vreg.
  // 3. Defining a register via an implicit def.

  // OPI should always be a register definition...
  MachineInstr::const_mop_iterator OPI = MI.operands_begin();
  if (!OPI->isReg() || !OPI->isDef())
    return false;

  // Defining any register via an implicit def is always ok.
  if (MI.isImplicitDef())
    return true;

  // Grab the copy source...
  MachineInstr::const_mop_iterator OPI2 = OPI;
  ++OPI2;
  assert(OPI2 != MI.operands_end()
         && "Should have a copy implying we should have 2 arguments.");

  // Make sure that the copy dest is not a vreg when the copy source is a
  // physical register.
  if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
                         Register::isPhysicalRegister(OPI2->getReg())))
    return false;

  return true;
}

/// Find the split point at which to splice the end of BB into its success stack
/// protector check machine basic block.
///
/// On many platforms, due to ABI constraints, terminators, even before register
/// allocation, use physical registers. This creates an issue for us since
/// physical registers at this point can not travel across basic
/// blocks. Luckily, selectiondag always moves physical registers into vregs
/// when they enter functions and moves them through a sequence of copies back
/// into the physical registers right before the terminator creating a
/// ``Terminator Sequence''. This function is searching for the beginning of the
/// terminator sequence so that we can ensure that we splice off not just the
/// terminator, but additionally the copies that move the vregs into the
/// physical registers.
static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock *BB) {
  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
  //
  if (SplitPoint == BB->begin())
    return SplitPoint;

  MachineBasicBlock::iterator Start = BB->begin();
  MachineBasicBlock::iterator Previous = SplitPoint;
  --Previous;

  while (MIIsInTerminatorSequence(*Previous)) {
    SplitPoint = Previous;
    if (Previous == Start)
      break;
    --Previous;
  }

  return SplitPoint;
}

void
SelectionDAGISel::FinishBasicBlock() {
  LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
                    << FuncInfo->PHINodesToUpdate.size() << "\n";
             for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
                  ++i) dbgs()
             << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
             << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");

  // Next, now that we know what the last MBB the LLVM BB expanded is, update
  // PHI nodes in successors.
  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
    assert(PHI->isPHI() &&
           "This is not a machine PHI node that we are updating!");
    if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
      continue;
    PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
  }

  // Handle stack protector.
  if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
    // The target provides a guard check function. There is no need to
    // generate error handling code or to split current basic block.
    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();

    // Add load and check to the basicblock.
    FuncInfo->MBB = ParentMBB;
    FuncInfo->InsertPt =
        FindSplitPointForStackProtector(ParentMBB);
    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
    CurDAG->setRoot(SDB->getRoot());
    SDB->clear();
    CodeGenAndEmitDAG();

    // Clear the Per-BB State.
    SDB->SPDescriptor.resetPerBBState();
  } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();

    // Find the split point to split the parent mbb. At the same time copy all
    // physical registers used in the tail of parent mbb into virtual registers
    // before the split point and back into physical registers after the split
    // point. This prevents us needing to deal with Live-ins and many other
    // register allocation issues caused by us splitting the parent mbb. The
    // register allocator will clean up said virtual copies later on.
    MachineBasicBlock::iterator SplitPoint =
        FindSplitPointForStackProtector(ParentMBB);

    // Splice the terminator of ParentMBB into SuccessMBB.
    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
                       SplitPoint,
                       ParentMBB->end());

    // Add compare/jump on neq/jump to the parent BB.
    FuncInfo->MBB = ParentMBB;
    FuncInfo->InsertPt = ParentMBB->end();
    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
    CurDAG->setRoot(SDB->getRoot());
    SDB->clear();
    CodeGenAndEmitDAG();

    // CodeGen Failure MBB if we have not codegened it yet.
    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
    if (FailureMBB->empty()) {
      FuncInfo->MBB = FailureMBB;
      FuncInfo->InsertPt = FailureMBB->end();
      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
      CurDAG->setRoot(SDB->getRoot());
      SDB->clear();
      CodeGenAndEmitDAG();
    }

    // Clear the Per-BB State.
    SDB->SPDescriptor.resetPerBBState();
  }

  // Lower each BitTestBlock.
  for (auto &BTB : SDB->SL->BitTestCases) {
    // Lower header first, if it wasn't already lowered
    if (!BTB.Emitted) {
      // Set the current basic block to the mbb we wish to insert the code into
      FuncInfo->MBB = BTB.Parent;
      FuncInfo->InsertPt = FuncInfo->MBB->end();
      // Emit the code
      SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
      CurDAG->setRoot(SDB->getRoot());
      SDB->clear();
      CodeGenAndEmitDAG();
    }

    BranchProbability UnhandledProb = BTB.Prob;
    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
      UnhandledProb -= BTB.Cases[j].ExtraProb;
      // Set the current basic block to the mbb we wish to insert the code into
      FuncInfo->MBB = BTB.Cases[j].ThisBB;
      FuncInfo->InsertPt = FuncInfo->MBB->end();
      // Emit the code

      // If all cases cover a contiguous range, it is not necessary to jump to
      // the default block after the last bit test fails. This is because the
      // range check during bit test header creation has guaranteed that every
      // case here doesn't go outside the range. In this case, there is no need
      // to perform the last bit test, as it will always be true. Instead, make
      // the second-to-last bit-test fall through to the target of the last bit
      // test, and delete the last bit test.

      MachineBasicBlock *NextMBB;
      if (BTB.ContiguousRange && j + 2 == ej) {
        // Second-to-last bit-test with contiguous range: fall through to the
        // target of the final bit test.
        NextMBB = BTB.Cases[j + 1].TargetBB;
      } else if (j + 1 == ej) {
        // For the last bit test, fall through to Default.
        NextMBB = BTB.Default;
      } else {
        // Otherwise, fall through to the next bit test.
        NextMBB = BTB.Cases[j + 1].ThisBB;
      }

      SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
                            FuncInfo->MBB);

      CurDAG->setRoot(SDB->getRoot());
      SDB->clear();
      CodeGenAndEmitDAG();

      if (BTB.ContiguousRange && j + 2 == ej) {
        // Since we're not going to use the final bit test, remove it.
        BTB.Cases.pop_back();
        break;
      }
    }

    // Update PHI Nodes
    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
         pi != pe; ++pi) {
      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
      MachineBasicBlock *PHIBB = PHI->getParent();
      assert(PHI->isPHI() &&
             "This is not a machine PHI node that we are updating!");
      // This is "default" BB. We have two jumps to it. From "header" BB and
      // from last "case" BB, unless the latter was skipped.
      if (PHIBB == BTB.Default) {
        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
        if (!BTB.ContiguousRange) {
          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
              .addMBB(BTB.Cases.back().ThisBB);
         }
      }
      // One of "cases" BB.
      for (unsigned j = 0, ej = BTB.Cases.size();
           j != ej; ++j) {
        MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
        if (cBB->isSuccessor(PHIBB))
          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
      }
    }
  }
  SDB->SL->BitTestCases.clear();

  // If the JumpTable record is filled in, then we need to emit a jump table.
  // Updating the PHI nodes is tricky in this case, since we need to determine
  // whether the PHI is a successor of the range check MBB or the jump table MBB
  for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
    // Lower header first, if it wasn't already lowered
    if (!SDB->SL->JTCases[i].first.Emitted) {
      // Set the current basic block to the mbb we wish to insert the code into
      FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
      FuncInfo->InsertPt = FuncInfo->MBB->end();
      // Emit the code
      SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
                                SDB->SL->JTCases[i].first, FuncInfo->MBB);
      CurDAG->setRoot(SDB->getRoot());
      SDB->clear();
      CodeGenAndEmitDAG();
    }

    // Set the current basic block to the mbb we wish to insert the code into
    FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
    FuncInfo->InsertPt = FuncInfo->MBB->end();
    // Emit the code
    SDB->visitJumpTable(SDB->SL->JTCases[i].second);
    CurDAG->setRoot(SDB->getRoot());
    SDB->clear();
    CodeGenAndEmitDAG();

    // Update PHI Nodes
    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
         pi != pe; ++pi) {
      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
      MachineBasicBlock *PHIBB = PHI->getParent();
      assert(PHI->isPHI() &&
             "This is not a machine PHI node that we are updating!");
      // "default" BB. We can go there only from header BB.
      if (PHIBB == SDB->SL->JTCases[i].second.Default)
        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
           .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
      // JT BB. Just iterate over successors here
      if (FuncInfo->MBB->isSuccessor(PHIBB))
        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
    }
  }
  SDB->SL->JTCases.clear();

  // If we generated any switch lowering information, build and codegen any
  // additional DAGs necessary.
  for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
    // Set the current basic block to the mbb we wish to insert the code into
    FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
    FuncInfo->InsertPt = FuncInfo->MBB->end();

    // Determine the unique successors.
    SmallVector<MachineBasicBlock *, 2> Succs;
    Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
    if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
      Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);

    // Emit the code. Note that this could result in FuncInfo->MBB being split.
    SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
    CurDAG->setRoot(SDB->getRoot());
    SDB->clear();
    CodeGenAndEmitDAG();

    // Remember the last block, now that any splitting is done, for use in
    // populating PHI nodes in successors.
    MachineBasicBlock *ThisBB = FuncInfo->MBB;

    // Handle any PHI nodes in successors of this chunk, as if we were coming
    // from the original BB before switch expansion.  Note that PHI nodes can
    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
    // handle them the right number of times.
    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
      FuncInfo->MBB = Succs[i];
      FuncInfo->InsertPt = FuncInfo->MBB->end();
      // FuncInfo->MBB may have been removed from the CFG if a branch was
      // constant folded.
      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
        for (MachineBasicBlock::iterator
             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
          MachineInstrBuilder PHI(*MF, MBBI);
          // This value for this PHI node is recorded in PHINodesToUpdate.
          for (unsigned pn = 0; ; ++pn) {
            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
                   "Didn't find PHI entry!");
            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
              break;
            }
          }
        }
      }
    }
  }
  SDB->SL->SwitchCases.clear();
}

/// Create the scheduler. If a specific scheduler was specified
/// via the SchedulerRegistry, use it, otherwise select the
/// one preferred by the target.
///
ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
  return ISHeuristic(this, OptLevel);
}

//===----------------------------------------------------------------------===//
// Helper functions used by the generated instruction selector.
//===----------------------------------------------------------------------===//
// Calls to these methods are generated by tblgen.

/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
/// the dag combiner simplified the 255, we still want to match.  RHS is the
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
                                    int64_t DesiredMaskS) const {
  const APInt &ActualMask = RHS->getAPIntValue();
  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);

  // If the actual mask exactly matches, success!
  if (ActualMask == DesiredMask)
    return true;

  // If the actual AND mask is allowing unallowed bits, this doesn't match.
  if (!ActualMask.isSubsetOf(DesiredMask))
    return false;

  // Otherwise, the DAG Combiner may have proven that the value coming in is
  // either already zero or is not demanded.  Check for known zero input bits.
  APInt NeededMask = DesiredMask & ~ActualMask;
  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
    return true;

  // TODO: check to see if missing bits are just not demanded.

  // Otherwise, this pattern doesn't match.
  return false;
}

/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
/// the dag combiner simplified the 255, we still want to match.  RHS is the
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
                                   int64_t DesiredMaskS) const {
  const APInt &ActualMask = RHS->getAPIntValue();
  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);

  // If the actual mask exactly matches, success!
  if (ActualMask == DesiredMask)
    return true;

  // If the actual AND mask is allowing unallowed bits, this doesn't match.
  if (!ActualMask.isSubsetOf(DesiredMask))
    return false;

  // Otherwise, the DAG Combiner may have proven that the value coming in is
  // either already zero or is not demanded.  Check for known zero input bits.
  APInt NeededMask = DesiredMask & ~ActualMask;
  KnownBits Known = CurDAG->computeKnownBits(LHS);

  // If all the missing bits in the or are already known to be set, match!
  if (NeededMask.isSubsetOf(Known.One))
    return true;

  // TODO: check to see if missing bits are just not demanded.

  // Otherwise, this pattern doesn't match.
  return false;
}

/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
/// by tblgen.  Others should not call it.
void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
                                                     const SDLoc &DL) {
  std::vector<SDValue> InOps;
  std::swap(InOps, Ops);

  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)

  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
  if (InOps[e-1].getValueType() == MVT::Glue)
    --e;  // Don't process a glue operand if it is here.

  while (i != e) {
    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
    if (!InlineAsm::isMemKind(Flags)) {
      // Just skip over this operand, copying the operands verbatim.
      Ops.insert(Ops.end(), InOps.begin()+i,
                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
    } else {
      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
             "Memory operand with multiple values?");

      unsigned TiedToOperand;
      if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
        // We need the constraint ID from the operand this is tied to.
        unsigned CurOp = InlineAsm::Op_FirstOperand;
        Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
        for (; TiedToOperand; --TiedToOperand) {
          CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
          Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
        }
      }

      // Otherwise, this is a memory operand.  Ask the target to select it.
      std::vector<SDValue> SelOps;
      unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
      if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
        report_fatal_error("Could not match memory address.  Inline asm"
                           " failure!");

      // Add this to the output node.
      unsigned NewFlags =
        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
      NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
      Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
      i += 2;
    }
  }

  // Add the glue input back if present.
  if (e != InOps.size())
    Ops.push_back(InOps.back());
}

/// findGlueUse - Return use of MVT::Glue value produced by the specified
/// SDNode.
///
static SDNode *findGlueUse(SDNode *N) {
  unsigned FlagResNo = N->getNumValues()-1;
  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
    SDUse &Use = I.getUse();
    if (Use.getResNo() == FlagResNo)
      return Use.getUser();
  }
  return nullptr;
}

/// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
/// beyond "ImmedUse".  We may ignore chains as they are checked separately.
static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
                          bool IgnoreChains) {
  SmallPtrSet<const SDNode *, 16> Visited;
  SmallVector<const SDNode *, 16> WorkList;
  // Only check if we have non-immediate uses of Def.
  if (ImmedUse->isOnlyUserOf(Def))
    return false;

  // We don't care about paths to Def that go through ImmedUse so mark it
  // visited and mark non-def operands as used.
  Visited.insert(ImmedUse);
  for (const SDValue &Op : ImmedUse->op_values()) {
    SDNode *N = Op.getNode();
    // Ignore chain deps (they are validated by
    // HandleMergeInputChains) and immediate uses
    if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
      continue;
    if (!Visited.insert(N).second)
      continue;
    WorkList.push_back(N);
  }

  // Initialize worklist to operands of Root.
  if (Root != ImmedUse) {
    for (const SDValue &Op : Root->op_values()) {
      SDNode *N = Op.getNode();
      // Ignore chains (they are validated by HandleMergeInputChains)
      if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
        continue;
      if (!Visited.insert(N).second)
        continue;
      WorkList.push_back(N);
    }
  }

  return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
}

/// IsProfitableToFold - Returns true if it's profitable to fold the specific
/// operand node N of U during instruction selection that starts at Root.
bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
                                          SDNode *Root) const {
  if (OptLevel == CodeGenOpt::None) return false;
  return N.hasOneUse();
}

/// IsLegalToFold - Returns true if the specific operand node N of
/// U can be folded during instruction selection that starts at Root.
bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
                                     CodeGenOpt::Level OptLevel,
                                     bool IgnoreChains) {
  if (OptLevel == CodeGenOpt::None) return false;

  // If Root use can somehow reach N through a path that that doesn't contain
  // U then folding N would create a cycle. e.g. In the following
  // diagram, Root can reach N through X. If N is folded into Root, then
  // X is both a predecessor and a successor of U.
  //
  //          [N*]           //
  //         ^   ^           //
  //        /     \          //
  //      [U*]    [X]?       //
  //        ^     ^          //
  //         \   /           //
  //          \ /            //
  //         [Root*]         //
  //
  // * indicates nodes to be folded together.
  //
  // If Root produces glue, then it gets (even more) interesting. Since it
  // will be "glued" together with its glue use in the scheduler, we need to
  // check if it might reach N.
  //
  //          [N*]           //
  //         ^   ^           //
  //        /     \          //
  //      [U*]    [X]?       //
  //        ^       ^        //
  //         \       \       //
  //          \      |       //
  //         [Root*] |       //
  //          ^      |       //
  //          f      |       //
  //          |      /       //
  //         [Y]    /        //
  //           ^   /         //
  //           f  /          //
  //           | /           //
  //          [GU]           //
  //
  // If GU (glue use) indirectly reaches N (the load), and Root folds N
  // (call it Fold), then X is a predecessor of GU and a successor of
  // Fold. But since Fold and GU are glued together, this will create
  // a cycle in the scheduling graph.

  // If the node has glue, walk down the graph to the "lowest" node in the
  // glueged set.
  EVT VT = Root->getValueType(Root->getNumValues()-1);
  while (VT == MVT::Glue) {
    SDNode *GU = findGlueUse(Root);
    if (!GU)
      break;
    Root = GU;
    VT = Root->getValueType(Root->getNumValues()-1);

    // If our query node has a glue result with a use, we've walked up it.  If
    // the user (which has already been selected) has a chain or indirectly uses
    // the chain, HandleMergeInputChains will not consider it.  Because of
    // this, we cannot ignore chains in this predicate.
    IgnoreChains = false;
  }

  return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
}

void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
  SDLoc DL(N);

  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
  SelectInlineAsmMemoryOperands(Ops, DL);

  const EVT VTs[] = {MVT::Other, MVT::Glue};
  SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
  New->setNodeId(-1);
  ReplaceUses(N, New.getNode());
  CurDAG->RemoveDeadNode(N);
}

void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
  SDLoc dl(Op);
  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));

  EVT VT = Op->getValueType(0);
  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
  Register Reg =
      TLI->getRegisterByName(RegStr->getString().data(), Ty,
                             CurDAG->getMachineFunction());
  SDValue New = CurDAG->getCopyFromReg(
                        Op->getOperand(0), dl, Reg, Op->getValueType(0));
  New->setNodeId(-1);
  ReplaceUses(Op, New.getNode());
  CurDAG->RemoveDeadNode(Op);
}

void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
  SDLoc dl(Op);
  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));

  EVT VT = Op->getOperand(2).getValueType();
  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();

  Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
                                        CurDAG->getMachineFunction());
  SDValue New = CurDAG->getCopyToReg(
                        Op->getOperand(0), dl, Reg, Op->getOperand(2));
  New->setNodeId(-1);
  ReplaceUses(Op, New.getNode());
  CurDAG->RemoveDeadNode(Op);
}

void SelectionDAGISel::Select_UNDEF(SDNode *N) {
  CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
}

void SelectionDAGISel::Select_FREEZE(SDNode *N) {
  // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
  // If FREEZE instruction is added later, the code below must be changed as
  // well.
  CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
                       N->getOperand(0));
}

/// GetVBR - decode a vbr encoding whose top bit is set.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
  assert(Val >= 128 && "Not a VBR");
  Val &= 127;  // Remove first vbr bit.

  unsigned Shift = 7;
  uint64_t NextBits;
  do {
    NextBits = MatcherTable[Idx++];
    Val |= (NextBits&127) << Shift;
    Shift += 7;
  } while (NextBits & 128);

  return Val;
}

/// When a match is complete, this method updates uses of interior chain results
/// to use the new results.
void SelectionDAGISel::UpdateChains(
    SDNode *NodeToMatch, SDValue InputChain,
    SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
  SmallVector<SDNode*, 4> NowDeadNodes;

  // Now that all the normal results are replaced, we replace the chain and
  // glue results if present.
  if (!ChainNodesMatched.empty()) {
    assert(InputChain.getNode() &&
           "Matched input chains but didn't produce a chain");
    // Loop over all of the nodes we matched that produced a chain result.
    // Replace all the chain results with the final chain we ended up with.
    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
      SDNode *ChainNode = ChainNodesMatched[i];
      // If ChainNode is null, it's because we replaced it on a previous
      // iteration and we cleared it out of the map. Just skip it.
      if (!ChainNode)
        continue;

      assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
             "Deleted node left in chain");

      // Don't replace the results of the root node if we're doing a
      // MorphNodeTo.
      if (ChainNode == NodeToMatch && isMorphNodeTo)
        continue;

      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
      if (ChainVal.getValueType() == MVT::Glue)
        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
      SelectionDAG::DAGNodeDeletedListener NDL(
          *CurDAG, [&](SDNode *N, SDNode *E) {
            std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
                         static_cast<SDNode *>(nullptr));
          });
      if (ChainNode->getOpcode() != ISD::TokenFactor)
        ReplaceUses(ChainVal, InputChain);

      // If the node became dead and we haven't already seen it, delete it.
      if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
        NowDeadNodes.push_back(ChainNode);
    }
  }

  if (!NowDeadNodes.empty())
    CurDAG->RemoveDeadNodes(NowDeadNodes);

  LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
}

/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
/// operation for when the pattern matched at least one node with a chains.  The
/// input vector contains a list of all of the chained nodes that we match.  We
/// must determine if this is a valid thing to cover (i.e. matching it won't
/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
/// be used as the input node chain for the generated nodes.
static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
                       SelectionDAG *CurDAG) {

  SmallPtrSet<const SDNode *, 16> Visited;
  SmallVector<const SDNode *, 8> Worklist;
  SmallVector<SDValue, 3> InputChains;
  unsigned int Max = 8192;

  // Quick exit on trivial merge.
  if (ChainNodesMatched.size() == 1)
    return ChainNodesMatched[0]->getOperand(0);

  // Add chains that aren't already added (internal). Peek through
  // token factors.
  std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
    if (V.getValueType() != MVT::Other)
      return;
    if (V->getOpcode() == ISD::EntryToken)
      return;
    if (!Visited.insert(V.getNode()).second)
      return;
    if (V->getOpcode() == ISD::TokenFactor) {
      for (const SDValue &Op : V->op_values())
        AddChains(Op);
    } else
      InputChains.push_back(V);
  };

  for (auto *N : ChainNodesMatched) {
    Worklist.push_back(N);
    Visited.insert(N);
  }

  while (!Worklist.empty())
    AddChains(Worklist.pop_back_val()->getOperand(0));

  // Skip the search if there are no chain dependencies.
  if (InputChains.size() == 0)
    return CurDAG->getEntryNode();

  // If one of these chains is a successor of input, we must have a
  // node that is both the predecessor and successor of the
  // to-be-merged nodes. Fail.
  Visited.clear();
  for (SDValue V : InputChains)
    Worklist.push_back(V.getNode());

  for (auto *N : ChainNodesMatched)
    if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
      return SDValue();

  // Return merged chain.
  if (InputChains.size() == 1)
    return InputChains[0];
  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
                         MVT::Other, InputChains);
}

/// MorphNode - Handle morphing a node in place for the selector.
SDNode *SelectionDAGISel::
MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
          ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
  // It is possible we're using MorphNodeTo to replace a node with no
  // normal results with one that has a normal result (or we could be
  // adding a chain) and the input could have glue and chains as well.
  // In this case we need to shift the operands down.
  // FIXME: This is a horrible hack and broken in obscure cases, no worse
  // than the old isel though.
  int OldGlueResultNo = -1, OldChainResultNo = -1;

  unsigned NTMNumResults = Node->getNumValues();
  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
    OldGlueResultNo = NTMNumResults-1;
    if (NTMNumResults != 1 &&
        Node->getValueType(NTMNumResults-2) == MVT::Other)
      OldChainResultNo = NTMNumResults-2;
  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
    OldChainResultNo = NTMNumResults-1;

  // Call the underlying SelectionDAG routine to do the transmogrification. Note
  // that this deletes operands of the old node that become dead.
  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);

  // MorphNodeTo can operate in two ways: if an existing node with the
  // specified operands exists, it can just return it.  Otherwise, it
  // updates the node in place to have the requested operands.
  if (Res == Node) {
    // If we updated the node in place, reset the node ID.  To the isel,
    // this should be just like a newly allocated machine node.
    Res->setNodeId(-1);
  }

  unsigned ResNumResults = Res->getNumValues();
  // Move the glue if needed.
  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
      (unsigned)OldGlueResultNo != ResNumResults-1)
    ReplaceUses(SDValue(Node, OldGlueResultNo),
                SDValue(Res, ResNumResults - 1));

  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
    --ResNumResults;

  // Move the chain reference if needed.
  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
      (unsigned)OldChainResultNo != ResNumResults-1)
    ReplaceUses(SDValue(Node, OldChainResultNo),
                SDValue(Res, ResNumResults - 1));

  // Otherwise, no replacement happened because the node already exists. Replace
  // Uses of the old node with the new one.
  if (Res != Node) {
    ReplaceNode(Node, Res);
  } else {
    EnforceNodeIdInvariant(Res);
  }

  return Res;
}

/// CheckSame - Implements OP_CheckSame.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
          SDValue N,
          const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
  // Accept if it is exactly the same as a previously recorded node.
  unsigned RecNo = MatcherTable[MatcherIndex++];
  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
  return N == RecordedNodes[RecNo].first;
}

/// CheckChildSame - Implements OP_CheckChildXSame.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
              SDValue N,
              const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
              unsigned ChildNo) {
  if (ChildNo >= N.getNumOperands())
    return false;  // Match fails if out of range child #.
  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
                     RecordedNodes);
}

/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
                      const SelectionDAGISel &SDISel) {
  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
}

/// CheckNodePredicate - Implements OP_CheckNodePredicate.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
                   const SelectionDAGISel &SDISel, SDNode *N) {
  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
            SDNode *N) {
  uint16_t Opc = MatcherTable[MatcherIndex++];
  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
  return N->getOpcode() == Opc;
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
          const TargetLowering *TLI, const DataLayout &DL) {
  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
  if (N.getValueType() == VT) return true;

  // Handle the case when VT is iPTR.
  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
               SDValue N, const TargetLowering *TLI, const DataLayout &DL,
               unsigned ChildNo) {
  if (ChildNo >= N.getNumOperands())
    return false;  // Match fails if out of range child #.
  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
                     DL);
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
              SDValue N) {
  return cast<CondCodeSDNode>(N)->get() ==
      (ISD::CondCode)MatcherTable[MatcherIndex++];
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
                    SDValue N) {
  if (2 >= N.getNumOperands())
    return false;
  return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
               SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
  if (cast<VTSDNode>(N)->getVT() == VT)
    return true;

  // Handle the case when VT is iPTR.
  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
             SDValue N) {
  int64_t Val = MatcherTable[MatcherIndex++];
  if (Val & 128)
    Val = GetVBR(Val, MatcherTable, MatcherIndex);

  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
  return C && C->getSExtValue() == Val;
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
                  SDValue N, unsigned ChildNo) {
  if (ChildNo >= N.getNumOperands())
    return false;  // Match fails if out of range child #.
  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
            SDValue N, const SelectionDAGISel &SDISel) {
  int64_t Val = MatcherTable[MatcherIndex++];
  if (Val & 128)
    Val = GetVBR(Val, MatcherTable, MatcherIndex);

  if (N->getOpcode() != ISD::AND) return false;

  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
  return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
}

LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
           SDValue N, const SelectionDAGISel &SDISel) {
  int64_t Val = MatcherTable[MatcherIndex++];
  if (Val & 128)
    Val = GetVBR(Val, MatcherTable, MatcherIndex);

  if (N->getOpcode() != ISD::OR) return false;

  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
  return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
}

/// IsPredicateKnownToFail - If we know how and can do so without pushing a
/// scope, evaluate the current node.  If the current predicate is known to
/// fail, set Result=true and return anything.  If the current predicate is
/// known to pass, set Result=false and return the MatcherIndex to continue
/// with.  If the current predicate is unknown, set Result=false and return the
/// MatcherIndex to continue with.
static unsigned IsPredicateKnownToFail(const unsigned char *Table,
                                       unsigned Index, SDValue N,
                                       bool &Result,
                                       const SelectionDAGISel &SDISel,
                  SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
  switch (Table[Index++]) {
  default:
    Result = false;
    return Index-1;  // Could not evaluate this predicate.
  case SelectionDAGISel::OPC_CheckSame:
    Result = !::CheckSame(Table, Index, N, RecordedNodes);
    return Index;
  case SelectionDAGISel::OPC_CheckChild0Same:
  case SelectionDAGISel::OPC_CheckChild1Same:
  case SelectionDAGISel::OPC_CheckChild2Same:
  case SelectionDAGISel::OPC_CheckChild3Same:
    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
    return Index;
  case SelectionDAGISel::OPC_CheckPatternPredicate:
    Result = !::CheckPatternPredicate(Table, Index, SDISel);
    return Index;
  case SelectionDAGISel::OPC_CheckPredicate:
    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
    return Index;
  case SelectionDAGISel::OPC_CheckOpcode:
    Result = !::CheckOpcode(Table, Index, N.getNode());
    return Index;
  case SelectionDAGISel::OPC_CheckType:
    Result = !::CheckType(Table, Index, N, SDISel.TLI,
                          SDISel.CurDAG->getDataLayout());
    return Index;
  case SelectionDAGISel::OPC_CheckTypeRes: {
    unsigned Res = Table[Index++];
    Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
                          SDISel.CurDAG->getDataLayout());
    return Index;
  }
  case SelectionDAGISel::OPC_CheckChild0Type:
  case SelectionDAGISel::OPC_CheckChild1Type:
  case SelectionDAGISel::OPC_CheckChild2Type:
  case SelectionDAGISel::OPC_CheckChild3Type:
  case SelectionDAGISel::OPC_CheckChild4Type:
  case SelectionDAGISel::OPC_CheckChild5Type:
  case SelectionDAGISel::OPC_CheckChild6Type:
  case SelectionDAGISel::OPC_CheckChild7Type:
    Result = !::CheckChildType(
                 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
                 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
    return Index;
  case SelectionDAGISel::OPC_CheckCondCode:
    Result = !::CheckCondCode(Table, Index, N);
    return Index;
  case SelectionDAGISel::OPC_CheckChild2CondCode:
    Result = !::CheckChild2CondCode(Table, Index, N);
    return Index;
  case SelectionDAGISel::OPC_CheckValueType:
    Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
                               SDISel.CurDAG->getDataLayout());
    return Index;
  case SelectionDAGISel::OPC_CheckInteger:
    Result = !::CheckInteger(Table, Index, N);
    return Index;
  case SelectionDAGISel::OPC_CheckChild0Integer:
  case SelectionDAGISel::OPC_CheckChild1Integer:
  case SelectionDAGISel::OPC_CheckChild2Integer:
  case SelectionDAGISel::OPC_CheckChild3Integer:
  case SelectionDAGISel::OPC_CheckChild4Integer:
    Result = !::CheckChildInteger(Table, Index, N,
                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
    return Index;
  case SelectionDAGISel::OPC_CheckAndImm:
    Result = !::CheckAndImm(Table, Index, N, SDISel);
    return Index;
  case SelectionDAGISel::OPC_CheckOrImm:
    Result = !::CheckOrImm(Table, Index, N, SDISel);
    return Index;
  }
}

namespace {

struct MatchScope {
  /// FailIndex - If this match fails, this is the index to continue with.
  unsigned FailIndex;

  /// NodeStack - The node stack when the scope was formed.
  SmallVector<SDValue, 4> NodeStack;

  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
  unsigned NumRecordedNodes;

  /// NumMatchedMemRefs - The number of matched memref entries.
  unsigned NumMatchedMemRefs;

  /// InputChain/InputGlue - The current chain/glue
  SDValue InputChain, InputGlue;

  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
  bool HasChainNodesMatched;
};

/// \A DAG update listener to keep the matching state
/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
/// change the DAG while matching.  X86 addressing mode matcher is an example
/// for this.
class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
{
  SDNode **NodeToMatch;
  SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
  SmallVectorImpl<MatchScope> &MatchScopes;

public:
  MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
                    SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
                    SmallVectorImpl<MatchScope> &MS)
      : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
        RecordedNodes(RN), MatchScopes(MS) {}

  void NodeDeleted(SDNode *N, SDNode *E) override {
    // Some early-returns here to avoid the search if we deleted the node or
    // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
    // do, so it's unnecessary to update matching state at that point).
    // Neither of these can occur currently because we only install this
    // update listener during matching a complex patterns.
    if (!E || E->isMachineOpcode())
      return;
    // Check if NodeToMatch was updated.
    if (N == *NodeToMatch)
      *NodeToMatch = E;
    // Performing linear search here does not matter because we almost never
    // run this code.  You'd have to have a CSE during complex pattern
    // matching.
    for (auto &I : RecordedNodes)
      if (I.first.getNode() == N)
        I.first.setNode(E);

    for (auto &I : MatchScopes)
      for (auto &J : I.NodeStack)
        if (J.getNode() == N)
          J.setNode(E);
  }
};

} // end anonymous namespace

void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
                                        const unsigned char *MatcherTable,
                                        unsigned TableSize) {
  // FIXME: Should these even be selected?  Handle these cases in the caller?
  switch (NodeToMatch->getOpcode()) {
  default:
    break;
  case ISD::EntryToken:       // These nodes remain the same.
  case ISD::BasicBlock:
  case ISD::Register:
  case ISD::RegisterMask:
  case ISD::HANDLENODE:
  case ISD::MDNODE_SDNODE:
  case ISD::TargetConstant:
  case ISD::TargetConstantFP:
  case ISD::TargetConstantPool:
  case ISD::TargetFrameIndex:
  case ISD::TargetExternalSymbol:
  case ISD::MCSymbol:
  case ISD::TargetBlockAddress:
  case ISD::TargetJumpTable:
  case ISD::TargetGlobalTLSAddress:
  case ISD::TargetGlobalAddress:
  case ISD::TokenFactor:
  case ISD::CopyFromReg:
  case ISD::CopyToReg:
  case ISD::EH_LABEL:
  case ISD::ANNOTATION_LABEL:
  case ISD::LIFETIME_START:
  case ISD::LIFETIME_END:
    NodeToMatch->setNodeId(-1); // Mark selected.
    return;
  case ISD::AssertSext:
  case ISD::AssertZext:
  case ISD::AssertAlign:
    ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
    CurDAG->RemoveDeadNode(NodeToMatch);
    return;
  case ISD::INLINEASM:
  case ISD::INLINEASM_BR:
    Select_INLINEASM(NodeToMatch);
    return;
  case ISD::READ_REGISTER:
    Select_READ_REGISTER(NodeToMatch);
    return;
  case ISD::WRITE_REGISTER:
    Select_WRITE_REGISTER(NodeToMatch);
    return;
  case ISD::UNDEF:
    Select_UNDEF(NodeToMatch);
    return;
  case ISD::FREEZE:
    Select_FREEZE(NodeToMatch);
    return;
  }

  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");

  // Set up the node stack with NodeToMatch as the only node on the stack.
  SmallVector<SDValue, 8> NodeStack;
  SDValue N = SDValue(NodeToMatch, 0);
  NodeStack.push_back(N);

  // MatchScopes - Scopes used when matching, if a match failure happens, this
  // indicates where to continue checking.
  SmallVector<MatchScope, 8> MatchScopes;

  // RecordedNodes - This is the set of nodes that have been recorded by the
  // state machine.  The second value is the parent of the node, or null if the
  // root is recorded.
  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;

  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
  // pattern.
  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;

  // These are the current input chain and glue for use when generating nodes.
  // Various Emit operations change these.  For example, emitting a copytoreg
  // uses and updates these.
  SDValue InputChain, InputGlue;

  // ChainNodesMatched - If a pattern matches nodes that have input/output
  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
  // which ones they are.  The result is captured into this list so that we can
  // update the chain results when the pattern is complete.
  SmallVector<SDNode*, 3> ChainNodesMatched;

  LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");

  // Determine where to start the interpreter.  Normally we start at opcode #0,
  // but if the state machine starts with an OPC_SwitchOpcode, then we
  // accelerate the first lookup (which is guaranteed to be hot) with the
  // OpcodeOffset table.
  unsigned MatcherIndex = 0;

  if (!OpcodeOffset.empty()) {
    // Already computed the OpcodeOffset table, just index into it.
    if (N.getOpcode() < OpcodeOffset.size())
      MatcherIndex = OpcodeOffset[N.getOpcode()];
    LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");

  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
    // Otherwise, the table isn't computed, but the state machine does start
    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
    // is the first time we're selecting an instruction.
    unsigned Idx = 1;
    while (true) {
      // Get the size of this case.
      unsigned CaseSize = MatcherTable[Idx++];
      if (CaseSize & 128)
        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
      if (CaseSize == 0) break;

      // Get the opcode, add the index to the table.
      uint16_t Opc = MatcherTable[Idx++];
      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
      if (Opc >= OpcodeOffset.size())
        OpcodeOffset.resize((Opc+1)*2);
      OpcodeOffset[Opc] = Idx;
      Idx += CaseSize;
    }

    // Okay, do the lookup for the first opcode.
    if (N.getOpcode() < OpcodeOffset.size())
      MatcherIndex = OpcodeOffset[N.getOpcode()];
  }

  while (true) {
    assert(MatcherIndex < TableSize && "Invalid index");
#ifndef NDEBUG
    unsigned CurrentOpcodeIndex = MatcherIndex;
#endif
    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
    switch (Opcode) {
    case OPC_Scope: {
      // Okay, the semantics of this operation are that we should push a scope
      // then evaluate the first child.  However, pushing a scope only to have
      // the first check fail (which then pops it) is inefficient.  If we can
      // determine immediately that the first check (or first several) will
      // immediately fail, don't even bother pushing a scope for them.
      unsigned FailIndex;

      while (true) {
        unsigned NumToSkip = MatcherTable[MatcherIndex++];
        if (NumToSkip & 128)
          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
        // Found the end of the scope with no match.
        if (NumToSkip == 0) {
          FailIndex = 0;
          break;
        }

        FailIndex = MatcherIndex+NumToSkip;

        unsigned MatcherIndexOfPredicate = MatcherIndex;
        (void)MatcherIndexOfPredicate; // silence warning.

        // If we can't evaluate this predicate without pushing a scope (e.g. if
        // it is a 'MoveParent') or if the predicate succeeds on this node, we
        // push the scope and evaluate the full predicate chain.
        bool Result;
        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
                                              Result, *this, RecordedNodes);
        if (!Result)
          break;

        LLVM_DEBUG(
            dbgs() << "  Skipped scope entry (due to false predicate) at "
                   << "index " << MatcherIndexOfPredicate << ", continuing at "
                   << FailIndex << "\n");
        ++NumDAGIselRetries;

        // Otherwise, we know that this case of the Scope is guaranteed to fail,
        // move to the next case.
        MatcherIndex = FailIndex;
      }

      // If the whole scope failed to match, bail.
      if (FailIndex == 0) break;

      // Push a MatchScope which indicates where to go if the first child fails
      // to match.
      MatchScope NewEntry;
      NewEntry.FailIndex = FailIndex;
      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
      NewEntry.NumRecordedNodes = RecordedNodes.size();
      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
      NewEntry.InputChain = InputChain;
      NewEntry.InputGlue = InputGlue;
      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
      MatchScopes.push_back(NewEntry);
      continue;
    }
    case OPC_RecordNode: {
      // Remember this node, it may end up being an operand in the pattern.
      SDNode *Parent = nullptr;
      if (NodeStack.size() > 1)
        Parent = NodeStack[NodeStack.size()-2].getNode();
      RecordedNodes.push_back(std::make_pair(N, Parent));
      continue;
    }

    case OPC_RecordChild0: case OPC_RecordChild1:
    case OPC_RecordChild2: case OPC_RecordChild3:
    case OPC_RecordChild4: case OPC_RecordChild5:
    case OPC_RecordChild6: case OPC_RecordChild7: {
      unsigned ChildNo = Opcode-OPC_RecordChild0;
      if (ChildNo >= N.getNumOperands())
        break;  // Match fails if out of range child #.

      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
                                             N.getNode()));
      continue;
    }
    case OPC_RecordMemRef:
      if (auto *MN = dyn_cast<MemSDNode>(N))
        MatchedMemRefs.push_back(MN->getMemOperand());
      else {
        LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
                   dbgs() << '\n');
      }

      continue;

    case OPC_CaptureGlueInput:
      // If the current node has an input glue, capture it in InputGlue.
      if (N->getNumOperands() != 0 &&
          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
        InputGlue = N->getOperand(N->getNumOperands()-1);
      continue;

    case OPC_MoveChild: {
      unsigned ChildNo = MatcherTable[MatcherIndex++];
      if (ChildNo >= N.getNumOperands())
        break;  // Match fails if out of range child #.
      N = N.getOperand(ChildNo);
      NodeStack.push_back(N);
      continue;
    }

    case OPC_MoveChild0: case OPC_MoveChild1:
    case OPC_MoveChild2: case OPC_MoveChild3:
    case OPC_MoveChild4: case OPC_MoveChild5:
    case OPC_MoveChild6: case OPC_MoveChild7: {
      unsigned ChildNo = Opcode-OPC_MoveChild0;
      if (ChildNo >= N.getNumOperands())
        break;  // Match fails if out of range child #.
      N = N.getOperand(ChildNo);
      NodeStack.push_back(N);
      continue;
    }

    case OPC_MoveParent:
      // Pop the current node off the NodeStack.
      NodeStack.pop_back();
      assert(!NodeStack.empty() && "Node stack imbalance!");
      N = NodeStack.back();
      continue;

    case OPC_CheckSame:
      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
      continue;

    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
                            Opcode-OPC_CheckChild0Same))
        break;
      continue;

    case OPC_CheckPatternPredicate:
      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
      continue;
    case OPC_CheckPredicate:
      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
                                N.getNode()))
        break;
      continue;
    case OPC_CheckPredicateWithOperands: {
      unsigned OpNum = MatcherTable[MatcherIndex++];
      SmallVector<SDValue, 8> Operands;

      for (unsigned i = 0; i < OpNum; ++i)
        Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);

      unsigned PredNo = MatcherTable[MatcherIndex++];
      if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
        break;
      continue;
    }
    case OPC_CheckComplexPat: {
      unsigned CPNum = MatcherTable[MatcherIndex++];
      unsigned RecNo = MatcherTable[MatcherIndex++];
      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");

      // If target can modify DAG during matching, keep the matching state
      // consistent.
      std::unique_ptr<MatchStateUpdater> MSU;
      if (ComplexPatternFuncMutatesDAG())
        MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
                                        MatchScopes));

      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
                               RecordedNodes[RecNo].first, CPNum,
                               RecordedNodes))
        break;
      continue;
    }
    case OPC_CheckOpcode:
      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
      continue;

    case OPC_CheckType:
      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
                       CurDAG->getDataLayout()))
        break;
      continue;

    case OPC_CheckTypeRes: {
      unsigned Res = MatcherTable[MatcherIndex++];
      if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
                       CurDAG->getDataLayout()))
        break;
      continue;
    }

    case OPC_SwitchOpcode: {
      unsigned CurNodeOpcode = N.getOpcode();
      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
      unsigned CaseSize;
      while (true) {
        // Get the size of this case.
        CaseSize = MatcherTable[MatcherIndex++];
        if (CaseSize & 128)
          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
        if (CaseSize == 0) break;

        uint16_t Opc = MatcherTable[MatcherIndex++];
        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;

        // If the opcode matches, then we will execute this case.
        if (CurNodeOpcode == Opc)
          break;

        // Otherwise, skip over this case.
        MatcherIndex += CaseSize;
      }

      // If no cases matched, bail out.
      if (CaseSize == 0) break;

      // Otherwise, execute the case we found.
      LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
                        << MatcherIndex << "\n");
      continue;
    }

    case OPC_SwitchType: {
      MVT CurNodeVT = N.getSimpleValueType();
      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
      unsigned CaseSize;
      while (true) {
        // Get the size of this case.
        CaseSize = MatcherTable[MatcherIndex++];
        if (CaseSize & 128)
          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
        if (CaseSize == 0) break;

        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
        if (CaseVT == MVT::iPTR)
          CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());

        // If the VT matches, then we will execute this case.
        if (CurNodeVT == CaseVT)
          break;

        // Otherwise, skip over this case.
        MatcherIndex += CaseSize;
      }

      // If no cases matched, bail out.
      if (CaseSize == 0) break;

      // Otherwise, execute the case we found.
      LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
                        << "] from " << SwitchStart << " to " << MatcherIndex
                        << '\n');
      continue;
    }
    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
                            CurDAG->getDataLayout(),
                            Opcode - OPC_CheckChild0Type))
        break;
      continue;
    case OPC_CheckCondCode:
      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
      continue;
    case OPC_CheckChild2CondCode:
      if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
      continue;
    case OPC_CheckValueType:
      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
                            CurDAG->getDataLayout()))
        break;
      continue;
    case OPC_CheckInteger:
      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
      continue;
    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
    case OPC_CheckChild4Integer:
      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
                               Opcode-OPC_CheckChild0Integer)) break;
      continue;
    case OPC_CheckAndImm:
      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
      continue;
    case OPC_CheckOrImm:
      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
      continue;
    case OPC_CheckImmAllOnesV:
      if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
      continue;
    case OPC_CheckImmAllZerosV:
      if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
      continue;

    case OPC_CheckFoldableChainNode: {
      assert(NodeStack.size() != 1 && "No parent node");
      // Verify that all intermediate nodes between the root and this one have
      // a single use (ignoring chains, which are handled in UpdateChains).
      bool HasMultipleUses = false;
      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
        unsigned NNonChainUses = 0;
        SDNode *NS = NodeStack[i].getNode();
        for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
          if (UI.getUse().getValueType() != MVT::Other)
            if (++NNonChainUses > 1) {
              HasMultipleUses = true;
              break;
            }
        if (HasMultipleUses) break;
      }
      if (HasMultipleUses) break;

      // Check to see that the target thinks this is profitable to fold and that
      // we can fold it without inducing cycles in the graph.
      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
                              NodeToMatch) ||
          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
                         NodeToMatch, OptLevel,
                         true/*We validate our own chains*/))
        break;

      continue;
    }
    case OPC_EmitInteger: {
      MVT::SimpleValueType VT =
        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
      int64_t Val = MatcherTable[MatcherIndex++];
      if (Val & 128)
        Val = GetVBR(Val, MatcherTable, MatcherIndex);
      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
                              CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
                                                        VT), nullptr));
      continue;
    }
    case OPC_EmitRegister: {
      MVT::SimpleValueType VT =
        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
      unsigned RegNo = MatcherTable[MatcherIndex++];
      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
                              CurDAG->getRegister(RegNo, VT), nullptr));
      continue;
    }
    case OPC_EmitRegister2: {
      // For targets w/ more than 256 register names, the register enum
      // values are stored in two bytes in the matcher table (just like
      // opcodes).
      MVT::SimpleValueType VT =
        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
      unsigned RegNo = MatcherTable[MatcherIndex++];
      RegNo |= MatcherTable[MatcherIndex++] << 8;
      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
                              CurDAG->getRegister(RegNo, VT), nullptr));
      continue;
    }

    case OPC_EmitConvertToTarget:  {
      // Convert from IMM/FPIMM to target version.
      unsigned RecNo = MatcherTable[MatcherIndex++];
      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
      SDValue Imm = RecordedNodes[RecNo].first;

      if (Imm->getOpcode() == ISD::Constant) {
        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
        Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
                                        Imm.getValueType());
      } else if (Imm->getOpcode() == ISD::ConstantFP) {
        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
        Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
                                          Imm.getValueType());
      }

      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
      continue;
    }

    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
    case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
    case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
      // These are space-optimized forms of OPC_EmitMergeInputChains.
      assert(!InputChain.getNode() &&
             "EmitMergeInputChains should be the first chain producing node");
      assert(ChainNodesMatched.empty() &&
             "Should only have one EmitMergeInputChains per match");

      // Read all of the chained nodes.
      unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());

      // FIXME: What if other value results of the node have uses not matched
      // by this pattern?
      if (ChainNodesMatched.back() != NodeToMatch &&
          !RecordedNodes[RecNo].first.hasOneUse()) {
        ChainNodesMatched.clear();
        break;
      }

      // Merge the input chains if they are not intra-pattern references.
      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);

      if (!InputChain.getNode())
        break;  // Failed to merge.
      continue;
    }

    case OPC_EmitMergeInputChains: {
      assert(!InputChain.getNode() &&
             "EmitMergeInputChains should be the first chain producing node");
      // This node gets a list of nodes we matched in the input that have
      // chains.  We want to token factor all of the input chains to these nodes
      // together.  However, if any of the input chains is actually one of the
      // nodes matched in this pattern, then we have an intra-match reference.
      // Ignore these because the newly token factored chain should not refer to
      // the old nodes.
      unsigned NumChains = MatcherTable[MatcherIndex++];
      assert(NumChains != 0 && "Can't TF zero chains");

      assert(ChainNodesMatched.empty() &&
             "Should only have one EmitMergeInputChains per match");

      // Read all of the chained nodes.
      for (unsigned i = 0; i != NumChains; ++i) {
        unsigned RecNo = MatcherTable[MatcherIndex++];
        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());

        // FIXME: What if other value results of the node have uses not matched
        // by this pattern?
        if (ChainNodesMatched.back() != NodeToMatch &&
            !RecordedNodes[RecNo].first.hasOneUse()) {
          ChainNodesMatched.clear();
          break;
        }
      }

      // If the inner loop broke out, the match fails.
      if (ChainNodesMatched.empty())
        break;

      // Merge the input chains if they are not intra-pattern references.
      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);

      if (!InputChain.getNode())
        break;  // Failed to merge.

      continue;
    }

    case OPC_EmitCopyToReg:
    case OPC_EmitCopyToReg2: {
      unsigned RecNo = MatcherTable[MatcherIndex++];
      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
      if (Opcode == OPC_EmitCopyToReg2)
        DestPhysReg |= MatcherTable[MatcherIndex++] << 8;

      if (!InputChain.getNode())
        InputChain = CurDAG->getEntryNode();

      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
                                        DestPhysReg, RecordedNodes[RecNo].first,
                                        InputGlue);

      InputGlue = InputChain.getValue(1);
      continue;
    }

    case OPC_EmitNodeXForm: {
      unsigned XFormNo = MatcherTable[MatcherIndex++];
      unsigned RecNo = MatcherTable[MatcherIndex++];
      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
      continue;
    }
    case OPC_Coverage: {
      // This is emitted right before MorphNode/EmitNode.
      // So it should be safe to assume that this node has been selected
      unsigned index = MatcherTable[MatcherIndex++];
      index |= (MatcherTable[MatcherIndex++] << 8);
      dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
      dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
      continue;
    }

    case OPC_EmitNode:     case OPC_MorphNodeTo:
    case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
    case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
      // Get the result VT list.
      unsigned NumVTs;
      // If this is one of the compressed forms, get the number of VTs based
      // on the Opcode. Otherwise read the next byte from the table.
      if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
        NumVTs = Opcode - OPC_MorphNodeTo0;
      else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
        NumVTs = Opcode - OPC_EmitNode0;
      else
        NumVTs = MatcherTable[MatcherIndex++];
      SmallVector<EVT, 4> VTs;
      for (unsigned i = 0; i != NumVTs; ++i) {
        MVT::SimpleValueType VT =
          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
        if (VT == MVT::iPTR)
          VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
        VTs.push_back(VT);
      }

      if (EmitNodeInfo & OPFL_Chain)
        VTs.push_back(MVT::Other);
      if (EmitNodeInfo & OPFL_GlueOutput)
        VTs.push_back(MVT::Glue);

      // This is hot code, so optimize the two most common cases of 1 and 2
      // results.
      SDVTList VTList;
      if (VTs.size() == 1)
        VTList = CurDAG->getVTList(VTs[0]);
      else if (VTs.size() == 2)
        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
      else
        VTList = CurDAG->getVTList(VTs);

      // Get the operand list.
      unsigned NumOps = MatcherTable[MatcherIndex++];
      SmallVector<SDValue, 8> Ops;
      for (unsigned i = 0; i != NumOps; ++i) {
        unsigned RecNo = MatcherTable[MatcherIndex++];
        if (RecNo & 128)
          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);

        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
        Ops.push_back(RecordedNodes[RecNo].first);
      }

      // If there are variadic operands to add, handle them now.
      if (EmitNodeInfo & OPFL_VariadicInfo) {
        // Determine the start index to copy from.
        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
               "Invalid variadic node");
        // Copy all of the variadic operands, not including a potential glue
        // input.
        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
             i != e; ++i) {
          SDValue V = NodeToMatch->getOperand(i);
          if (V.getValueType() == MVT::Glue) break;
          Ops.push_back(V);
        }
      }

      // If this has chain/glue inputs, add them.
      if (EmitNodeInfo & OPFL_Chain)
        Ops.push_back(InputChain);
      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
        Ops.push_back(InputGlue);

      // Check whether any matched node could raise an FP exception.  Since all
      // such nodes must have a chain, it suffices to check ChainNodesMatched.
      // We need to perform this check before potentially modifying one of the
      // nodes via MorphNode.
      bool MayRaiseFPException = false;
      for (auto *N : ChainNodesMatched)
        if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
          MayRaiseFPException = true;
          break;
        }

      // Create the node.
      MachineSDNode *Res = nullptr;
      bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
                     (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
      if (!IsMorphNodeTo) {
        // If this is a normal EmitNode command, just create the new node and
        // add the results to the RecordedNodes list.
        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
                                     VTList, Ops);

        // Add all the non-glue/non-chain results to the RecordedNodes list.
        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
                                                             nullptr));
        }
      } else {
        assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
               "NodeToMatch was removed partway through selection");
        SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
                                                              SDNode *E) {
          CurDAG->salvageDebugInfo(*N);
          auto &Chain = ChainNodesMatched;
          assert((!E || !is_contained(Chain, N)) &&
                 "Chain node replaced during MorphNode");
          Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
        });
        Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
                                            Ops, EmitNodeInfo));
      }

      // Set the NoFPExcept flag when no original matched node could
      // raise an FP exception, but the new node potentially might.
      if (!MayRaiseFPException && mayRaiseFPException(Res)) {
        SDNodeFlags Flags = Res->getFlags();
        Flags.setNoFPExcept(true);
        Res->setFlags(Flags);
      }

      // If the node had chain/glue results, update our notion of the current
      // chain and glue.
      if (EmitNodeInfo & OPFL_GlueOutput) {
        InputGlue = SDValue(Res, VTs.size()-1);
        if (EmitNodeInfo & OPFL_Chain)
          InputChain = SDValue(Res, VTs.size()-2);
      } else if (EmitNodeInfo & OPFL_Chain)
        InputChain = SDValue(Res, VTs.size()-1);

      // If the OPFL_MemRefs glue is set on this node, slap all of the
      // accumulated memrefs onto it.
      //
      // FIXME: This is vastly incorrect for patterns with multiple outputs
      // instructions that access memory and for ComplexPatterns that match
      // loads.
      if (EmitNodeInfo & OPFL_MemRefs) {
        // Only attach load or store memory operands if the generated
        // instruction may load or store.
        const MCInstrDesc &MCID = TII->get(TargetOpc);
        bool mayLoad = MCID.mayLoad();
        bool mayStore = MCID.mayStore();

        // We expect to have relatively few of these so just filter them into a
        // temporary buffer so that we can easily add them to the instruction.
        SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
        for (MachineMemOperand *MMO : MatchedMemRefs) {
          if (MMO->isLoad()) {
            if (mayLoad)
              FilteredMemRefs.push_back(MMO);
          } else if (MMO->isStore()) {
            if (mayStore)
              FilteredMemRefs.push_back(MMO);
          } else {
            FilteredMemRefs.push_back(MMO);
          }
        }

        CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
      }

      LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
                     << "  Dropping mem operands\n";
                 dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
                        << " node: ";
                 Res->dump(CurDAG););

      // If this was a MorphNodeTo then we're completely done!
      if (IsMorphNodeTo) {
        // Update chain uses.
        UpdateChains(Res, InputChain, ChainNodesMatched, true);
        return;
      }
      continue;
    }

    case OPC_CompleteMatch: {
      // The match has been completed, and any new nodes (if any) have been
      // created.  Patch up references to the matched dag to use the newly
      // created nodes.
      unsigned NumResults = MatcherTable[MatcherIndex++];

      for (unsigned i = 0; i != NumResults; ++i) {
        unsigned ResSlot = MatcherTable[MatcherIndex++];
        if (ResSlot & 128)
          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);

        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
        SDValue Res = RecordedNodes[ResSlot].first;

        assert(i < NodeToMatch->getNumValues() &&
               NodeToMatch->getValueType(i) != MVT::Other &&
               NodeToMatch->getValueType(i) != MVT::Glue &&
               "Invalid number of results to complete!");
        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
                NodeToMatch->getValueType(i) == MVT::iPTR ||
                Res.getValueType() == MVT::iPTR ||
                NodeToMatch->getValueType(i).getSizeInBits() ==
                    Res.getValueSizeInBits()) &&
               "invalid replacement");
        ReplaceUses(SDValue(NodeToMatch, i), Res);
      }

      // Update chain uses.
      UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);

      // If the root node defines glue, we need to update it to the glue result.
      // TODO: This never happens in our tests and I think it can be removed /
      // replaced with an assert, but if we do it this the way the change is
      // NFC.
      if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
              MVT::Glue &&
          InputGlue.getNode())
        ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
                    InputGlue);

      assert(NodeToMatch->use_empty() &&
             "Didn't replace all uses of the node?");
      CurDAG->RemoveDeadNode(NodeToMatch);

      return;
    }
    }

    // If the code reached this point, then the match failed.  See if there is
    // another child to try in the current 'Scope', otherwise pop it until we
    // find a case to check.
    LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
                      << "\n");
    ++NumDAGIselRetries;
    while (true) {
      if (MatchScopes.empty()) {
        CannotYetSelect(NodeToMatch);
        return;
      }

      // Restore the interpreter state back to the point where the scope was
      // formed.
      MatchScope &LastScope = MatchScopes.back();
      RecordedNodes.resize(LastScope.NumRecordedNodes);
      NodeStack.clear();
      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
      N = NodeStack.back();

      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
      MatcherIndex = LastScope.FailIndex;

      LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");

      InputChain = LastScope.InputChain;
      InputGlue = LastScope.InputGlue;
      if (!LastScope.HasChainNodesMatched)
        ChainNodesMatched.clear();

      // Check to see what the offset is at the new MatcherIndex.  If it is zero
      // we have reached the end of this scope, otherwise we have another child
      // in the current scope to try.
      unsigned NumToSkip = MatcherTable[MatcherIndex++];
      if (NumToSkip & 128)
        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);

      // If we have another child in this scope to match, update FailIndex and
      // try it.
      if (NumToSkip != 0) {
        LastScope.FailIndex = MatcherIndex+NumToSkip;
        break;
      }

      // End of this scope, pop it and try the next child in the containing
      // scope.
      MatchScopes.pop_back();
    }
  }
}

/// Return whether the node may raise an FP exception.
bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
  // For machine opcodes, consult the MCID flag.
  if (N->isMachineOpcode()) {
    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    return MCID.mayRaiseFPException();
  }

  // For ISD opcodes, only StrictFP opcodes may raise an FP
  // exception.
  if (N->isTargetOpcode())
    return N->isTargetStrictFPOpcode();
  return N->isStrictFPOpcode();
}

bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
  assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
  auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (!C)
    return false;

  // Detect when "or" is used to add an offset to a stack object.
  if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
    MachineFrameInfo &MFI = MF->getFrameInfo();
    Align A = MFI.getObjectAlign(FN->getIndex());
    int32_t Off = C->getSExtValue();
    // If the alleged offset fits in the zero bits guaranteed by
    // the alignment, then this or is really an add.
    return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
  }
  return false;
}

void SelectionDAGISel::CannotYetSelect(SDNode *N) {
  std::string msg;
  raw_string_ostream Msg(msg);
  Msg << "Cannot select: ";

  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
      N->getOpcode() != ISD::INTRINSIC_VOID) {
    N->printrFull(Msg, CurDAG);
    Msg << "\nIn function: " << MF->getName();
  } else {
    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
    unsigned iid =
      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
    if (iid < Intrinsic::num_intrinsics)
      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
      Msg << "target intrinsic %" << TII->getName(iid);
    else
      Msg << "unknown intrinsic #" << iid;
  }
  report_fatal_error(Msg.str());
}

char SelectionDAGISel::ID = 0;