RDFGraph.cpp 58.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
//===- RDFGraph.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target-independent, SSA-based data flow graph for register data flow (RDF).
//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RDFGraph.h"
#include "llvm/CodeGen/RDFRegisters.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;
using namespace rdf;

// Printing functions. Have them here first, so that the rest of the code
// can use them.
namespace llvm {
namespace rdf {

raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
  if (!P.Mask.all())
    OS << ':' << PrintLaneMask(P.Mask);
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
  auto &TRI = P.G.getTRI();
  if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
    OS << TRI.getName(P.Obj.Reg);
  else
    OS << '#' << P.Obj.Reg;
  OS << PrintLaneMaskOpt(P.Obj.Mask);
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
  auto NA = P.G.addr<NodeBase*>(P.Obj);
  uint16_t Attrs = NA.Addr->getAttrs();
  uint16_t Kind = NodeAttrs::kind(Attrs);
  uint16_t Flags = NodeAttrs::flags(Attrs);
  switch (NodeAttrs::type(Attrs)) {
    case NodeAttrs::Code:
      switch (Kind) {
        case NodeAttrs::Func:   OS << 'f'; break;
        case NodeAttrs::Block:  OS << 'b'; break;
        case NodeAttrs::Stmt:   OS << 's'; break;
        case NodeAttrs::Phi:    OS << 'p'; break;
        default:                OS << "c?"; break;
      }
      break;
    case NodeAttrs::Ref:
      if (Flags & NodeAttrs::Undef)
        OS << '/';
      if (Flags & NodeAttrs::Dead)
        OS << '\\';
      if (Flags & NodeAttrs::Preserving)
        OS << '+';
      if (Flags & NodeAttrs::Clobbering)
        OS << '~';
      switch (Kind) {
        case NodeAttrs::Use:    OS << 'u'; break;
        case NodeAttrs::Def:    OS << 'd'; break;
        case NodeAttrs::Block:  OS << 'b'; break;
        default:                OS << "r?"; break;
      }
      break;
    default:
      OS << '?';
      break;
  }
  OS << P.Obj;
  if (Flags & NodeAttrs::Shadow)
    OS << '"';
  return OS;
}

static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
                const DataFlowGraph &G) {
  OS << Print<NodeId>(RA.Id, G) << '<'
     << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
  if (RA.Addr->getFlags() & NodeAttrs::Fixed)
    OS << '!';
}

raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
  printRefHeader(OS, P.Obj, P.G);
  OS << '(';
  if (NodeId N = P.Obj.Addr->getReachingDef())
    OS << Print<NodeId>(N, P.G);
  OS << ',';
  if (NodeId N = P.Obj.Addr->getReachedDef())
    OS << Print<NodeId>(N, P.G);
  OS << ',';
  if (NodeId N = P.Obj.Addr->getReachedUse())
    OS << Print<NodeId>(N, P.G);
  OS << "):";
  if (NodeId N = P.Obj.Addr->getSibling())
    OS << Print<NodeId>(N, P.G);
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
  printRefHeader(OS, P.Obj, P.G);
  OS << '(';
  if (NodeId N = P.Obj.Addr->getReachingDef())
    OS << Print<NodeId>(N, P.G);
  OS << "):";
  if (NodeId N = P.Obj.Addr->getSibling())
    OS << Print<NodeId>(N, P.G);
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS,
      const Print<NodeAddr<PhiUseNode*>> &P) {
  printRefHeader(OS, P.Obj, P.G);
  OS << '(';
  if (NodeId N = P.Obj.Addr->getReachingDef())
    OS << Print<NodeId>(N, P.G);
  OS << ',';
  if (NodeId N = P.Obj.Addr->getPredecessor())
    OS << Print<NodeId>(N, P.G);
  OS << "):";
  if (NodeId N = P.Obj.Addr->getSibling())
    OS << Print<NodeId>(N, P.G);
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
  switch (P.Obj.Addr->getKind()) {
    case NodeAttrs::Def:
      OS << PrintNode<DefNode*>(P.Obj, P.G);
      break;
    case NodeAttrs::Use:
      if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
        OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
      else
        OS << PrintNode<UseNode*>(P.Obj, P.G);
      break;
  }
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
  unsigned N = P.Obj.size();
  for (auto I : P.Obj) {
    OS << Print<NodeId>(I.Id, P.G);
    if (--N)
      OS << ' ';
  }
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
  unsigned N = P.Obj.size();
  for (auto I : P.Obj) {
    OS << Print<NodeId>(I, P.G);
    if (--N)
      OS << ' ';
  }
  return OS;
}

namespace {

  template <typename T>
  struct PrintListV {
    PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}

    using Type = T;
    const NodeList &List;
    const DataFlowGraph &G;
  };

  template <typename T>
  raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
    unsigned N = P.List.size();
    for (NodeAddr<T> A : P.List) {
      OS << PrintNode<T>(A, P.G);
      if (--N)
        OS << ", ";
    }
    return OS;
  }

} // end anonymous namespace

raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
  OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
     << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
  return OS;
}

raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
  const MachineInstr &MI = *P.Obj.Addr->getCode();
  unsigned Opc = MI.getOpcode();
  OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
  // Print the target for calls and branches (for readability).
  if (MI.isCall() || MI.isBranch()) {
    MachineInstr::const_mop_iterator T =
          llvm::find_if(MI.operands(),
                        [] (const MachineOperand &Op) -> bool {
                          return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
                        });
    if (T != MI.operands_end()) {
      OS << ' ';
      if (T->isMBB())
        OS << printMBBReference(*T->getMBB());
      else if (T->isGlobal())
        OS << T->getGlobal()->getName();
      else if (T->isSymbol())
        OS << T->getSymbolName();
    }
  }
  OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS,
      const Print<NodeAddr<InstrNode*>> &P) {
  switch (P.Obj.Addr->getKind()) {
    case NodeAttrs::Phi:
      OS << PrintNode<PhiNode*>(P.Obj, P.G);
      break;
    case NodeAttrs::Stmt:
      OS << PrintNode<StmtNode*>(P.Obj, P.G);
      break;
    default:
      OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
      break;
  }
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS,
      const Print<NodeAddr<BlockNode*>> &P) {
  MachineBasicBlock *BB = P.Obj.Addr->getCode();
  unsigned NP = BB->pred_size();
  std::vector<int> Ns;
  auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
    unsigned N = Ns.size();
    for (int I : Ns) {
      OS << "%bb." << I;
      if (--N)
        OS << ", ";
    }
  };

  OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
     << " --- preds(" << NP << "): ";
  for (MachineBasicBlock *B : BB->predecessors())
    Ns.push_back(B->getNumber());
  PrintBBs(Ns);

  unsigned NS = BB->succ_size();
  OS << "  succs(" << NS << "): ";
  Ns.clear();
  for (MachineBasicBlock *B : BB->successors())
    Ns.push_back(B->getNumber());
  PrintBBs(Ns);
  OS << '\n';

  for (auto I : P.Obj.Addr->members(P.G))
    OS << PrintNode<InstrNode*>(I, P.G) << '\n';
  return OS;
}

raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
  OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
     << P.Obj.Addr->getCode()->getName() << '\n';
  for (auto I : P.Obj.Addr->members(P.G))
    OS << PrintNode<BlockNode*>(I, P.G) << '\n';
  OS << "]\n";
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
  OS << '{';
  for (auto I : P.Obj)
    OS << ' ' << Print<RegisterRef>(I, P.G);
  OS << " }";
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
  P.Obj.print(OS);
  return OS;
}

raw_ostream &operator<< (raw_ostream &OS,
      const Print<DataFlowGraph::DefStack> &P) {
  for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
    OS << Print<NodeId>(I->Id, P.G)
       << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
    I.down();
    if (I != E)
      OS << ' ';
  }
  return OS;
}

} // end namespace rdf
} // end namespace llvm

// Node allocation functions.
//
// Node allocator is like a slab memory allocator: it allocates blocks of
// memory in sizes that are multiples of the size of a node. Each block has
// the same size. Nodes are allocated from the currently active block, and
// when it becomes full, a new one is created.
// There is a mapping scheme between node id and its location in a block,
// and within that block is described in the header file.
//
void NodeAllocator::startNewBlock() {
  void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
  char *P = static_cast<char*>(T);
  Blocks.push_back(P);
  // Check if the block index is still within the allowed range, i.e. less
  // than 2^N, where N is the number of bits in NodeId for the block index.
  // BitsPerIndex is the number of bits per node index.
  assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
         "Out of bits for block index");
  ActiveEnd = P;
}

bool NodeAllocator::needNewBlock() {
  if (Blocks.empty())
    return true;

  char *ActiveBegin = Blocks.back();
  uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
  return Index >= NodesPerBlock;
}

NodeAddr<NodeBase*> NodeAllocator::New() {
  if (needNewBlock())
    startNewBlock();

  uint32_t ActiveB = Blocks.size()-1;
  uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
  NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
                             makeId(ActiveB, Index) };
  ActiveEnd += NodeMemSize;
  return NA;
}

NodeId NodeAllocator::id(const NodeBase *P) const {
  uintptr_t A = reinterpret_cast<uintptr_t>(P);
  for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
    uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
    if (A < B || A >= B + NodesPerBlock*NodeMemSize)
      continue;
    uint32_t Idx = (A-B)/NodeMemSize;
    return makeId(i, Idx);
  }
  llvm_unreachable("Invalid node address");
}

void NodeAllocator::clear() {
  MemPool.Reset();
  Blocks.clear();
  ActiveEnd = nullptr;
}

// Insert node NA after "this" in the circular chain.
void NodeBase::append(NodeAddr<NodeBase*> NA) {
  NodeId Nx = Next;
  // If NA is already "next", do nothing.
  if (Next != NA.Id) {
    Next = NA.Id;
    NA.Addr->Next = Nx;
  }
}

// Fundamental node manipulator functions.

// Obtain the register reference from a reference node.
RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
  if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
    return G.unpack(Ref.PR);
  assert(Ref.Op != nullptr);
  return G.makeRegRef(*Ref.Op);
}

// Set the register reference in the reference node directly (for references
// in phi nodes).
void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
  assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
  Ref.PR = G.pack(RR);
}

// Set the register reference in the reference node based on a machine
// operand (for references in statement nodes).
void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
  assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
  (void)G;
  Ref.Op = Op;
}

// Get the owner of a given reference node.
NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
  NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());

  while (NA.Addr != this) {
    if (NA.Addr->getType() == NodeAttrs::Code)
      return NA;
    NA = G.addr<NodeBase*>(NA.Addr->getNext());
  }
  llvm_unreachable("No owner in circular list");
}

// Connect the def node to the reaching def node.
void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
  Ref.RD = DA.Id;
  Ref.Sib = DA.Addr->getReachedDef();
  DA.Addr->setReachedDef(Self);
}

// Connect the use node to the reaching def node.
void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
  Ref.RD = DA.Id;
  Ref.Sib = DA.Addr->getReachedUse();
  DA.Addr->setReachedUse(Self);
}

// Get the first member of the code node.
NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
  if (Code.FirstM == 0)
    return NodeAddr<NodeBase*>();
  return G.addr<NodeBase*>(Code.FirstM);
}

// Get the last member of the code node.
NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
  if (Code.LastM == 0)
    return NodeAddr<NodeBase*>();
  return G.addr<NodeBase*>(Code.LastM);
}

// Add node NA at the end of the member list of the given code node.
void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
  NodeAddr<NodeBase*> ML = getLastMember(G);
  if (ML.Id != 0) {
    ML.Addr->append(NA);
  } else {
    Code.FirstM = NA.Id;
    NodeId Self = G.id(this);
    NA.Addr->setNext(Self);
  }
  Code.LastM = NA.Id;
}

// Add node NA after member node MA in the given code node.
void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
      const DataFlowGraph &G) {
  MA.Addr->append(NA);
  if (Code.LastM == MA.Id)
    Code.LastM = NA.Id;
}

// Remove member node NA from the given code node.
void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
  NodeAddr<NodeBase*> MA = getFirstMember(G);
  assert(MA.Id != 0);

  // Special handling if the member to remove is the first member.
  if (MA.Id == NA.Id) {
    if (Code.LastM == MA.Id) {
      // If it is the only member, set both first and last to 0.
      Code.FirstM = Code.LastM = 0;
    } else {
      // Otherwise, advance the first member.
      Code.FirstM = MA.Addr->getNext();
    }
    return;
  }

  while (MA.Addr != this) {
    NodeId MX = MA.Addr->getNext();
    if (MX == NA.Id) {
      MA.Addr->setNext(NA.Addr->getNext());
      // If the member to remove happens to be the last one, update the
      // LastM indicator.
      if (Code.LastM == NA.Id)
        Code.LastM = MA.Id;
      return;
    }
    MA = G.addr<NodeBase*>(MX);
  }
  llvm_unreachable("No such member");
}

// Return the list of all members of the code node.
NodeList CodeNode::members(const DataFlowGraph &G) const {
  static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
  return members_if(True, G);
}

// Return the owner of the given instr node.
NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
  NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());

  while (NA.Addr != this) {
    assert(NA.Addr->getType() == NodeAttrs::Code);
    if (NA.Addr->getKind() == NodeAttrs::Block)
      return NA;
    NA = G.addr<NodeBase*>(NA.Addr->getNext());
  }
  llvm_unreachable("No owner in circular list");
}

// Add the phi node PA to the given block node.
void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
  NodeAddr<NodeBase*> M = getFirstMember(G);
  if (M.Id == 0) {
    addMember(PA, G);
    return;
  }

  assert(M.Addr->getType() == NodeAttrs::Code);
  if (M.Addr->getKind() == NodeAttrs::Stmt) {
    // If the first member of the block is a statement, insert the phi as
    // the first member.
    Code.FirstM = PA.Id;
    PA.Addr->setNext(M.Id);
  } else {
    // If the first member is a phi, find the last phi, and append PA to it.
    assert(M.Addr->getKind() == NodeAttrs::Phi);
    NodeAddr<NodeBase*> MN = M;
    do {
      M = MN;
      MN = G.addr<NodeBase*>(M.Addr->getNext());
      assert(MN.Addr->getType() == NodeAttrs::Code);
    } while (MN.Addr->getKind() == NodeAttrs::Phi);

    // M is the last phi.
    addMemberAfter(M, PA, G);
  }
}

// Find the block node corresponding to the machine basic block BB in the
// given func node.
NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
      const DataFlowGraph &G) const {
  auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
    return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
  };
  NodeList Ms = members_if(EqBB, G);
  if (!Ms.empty())
    return Ms[0];
  return NodeAddr<BlockNode*>();
}

// Get the block node for the entry block in the given function.
NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
  MachineBasicBlock *EntryB = &getCode()->front();
  return findBlock(EntryB, G);
}

// Target operand information.
//

// For a given instruction, check if there are any bits of RR that can remain
// unchanged across this def.
bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
      const {
  return TII.isPredicated(In);
}

// Check if the definition of RR produces an unspecified value.
bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
      const {
  const MachineOperand &Op = In.getOperand(OpNum);
  if (Op.isRegMask())
    return true;
  assert(Op.isReg());
  if (In.isCall())
    if (Op.isDef() && Op.isDead())
      return true;
  return false;
}

// Check if the given instruction specifically requires
bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
      const {
  if (In.isCall() || In.isReturn() || In.isInlineAsm())
    return true;
  // Check for a tail call.
  if (In.isBranch())
    for (const MachineOperand &O : In.operands())
      if (O.isGlobal() || O.isSymbol())
        return true;

  const MCInstrDesc &D = In.getDesc();
  if (!D.getImplicitDefs() && !D.getImplicitUses())
    return false;
  const MachineOperand &Op = In.getOperand(OpNum);
  // If there is a sub-register, treat the operand as non-fixed. Currently,
  // fixed registers are those that are listed in the descriptor as implicit
  // uses or defs, and those lists do not allow sub-registers.
  if (Op.getSubReg() != 0)
    return false;
  Register Reg = Op.getReg();
  const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
                                     : D.getImplicitUses();
  if (!ImpR)
    return false;
  while (*ImpR)
    if (*ImpR++ == Reg)
      return true;
  return false;
}

//
// The data flow graph construction.
//

DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
      const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
      const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
    : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
      LiveIns(PRI) {
}

// The implementation of the definition stack.
// Each register reference has its own definition stack. In particular,
// for a register references "Reg" and "Reg:subreg" will each have their
// own definition stacks.

// Construct a stack iterator.
DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
      bool Top) : DS(S) {
  if (!Top) {
    // Initialize to bottom.
    Pos = 0;
    return;
  }
  // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
  Pos = DS.Stack.size();
  while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
    Pos--;
}

// Return the size of the stack, including block delimiters.
unsigned DataFlowGraph::DefStack::size() const {
  unsigned S = 0;
  for (auto I = top(), E = bottom(); I != E; I.down())
    S++;
  return S;
}

// Remove the top entry from the stack. Remove all intervening delimiters
// so that after this, the stack is either empty, or the top of the stack
// is a non-delimiter.
void DataFlowGraph::DefStack::pop() {
  assert(!empty());
  unsigned P = nextDown(Stack.size());
  Stack.resize(P);
}

// Push a delimiter for block node N on the stack.
void DataFlowGraph::DefStack::start_block(NodeId N) {
  assert(N != 0);
  Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
}

// Remove all nodes from the top of the stack, until the delimited for
// block node N is encountered. Remove the delimiter as well. In effect,
// this will remove from the stack all definitions from block N.
void DataFlowGraph::DefStack::clear_block(NodeId N) {
  assert(N != 0);
  unsigned P = Stack.size();
  while (P > 0) {
    bool Found = isDelimiter(Stack[P-1], N);
    P--;
    if (Found)
      break;
  }
  // This will also remove the delimiter, if found.
  Stack.resize(P);
}

// Move the stack iterator up by one.
unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
  // Get the next valid position after P (skipping all delimiters).
  // The input position P does not have to point to a non-delimiter.
  unsigned SS = Stack.size();
  bool IsDelim;
  assert(P < SS);
  do {
    P++;
    IsDelim = isDelimiter(Stack[P-1]);
  } while (P < SS && IsDelim);
  assert(!IsDelim);
  return P;
}

// Move the stack iterator down by one.
unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
  // Get the preceding valid position before P (skipping all delimiters).
  // The input position P does not have to point to a non-delimiter.
  assert(P > 0 && P <= Stack.size());
  bool IsDelim = isDelimiter(Stack[P-1]);
  do {
    if (--P == 0)
      break;
    IsDelim = isDelimiter(Stack[P-1]);
  } while (P > 0 && IsDelim);
  assert(!IsDelim);
  return P;
}

// Register information.

RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
  RegisterSet LR;
  const Function &F = MF.getFunction();
  const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
                                            : nullptr;
  const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
  if (RegisterId R = TLI.getExceptionPointerRegister(PF))
    LR.insert(RegisterRef(R));
  if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
    if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
      LR.insert(RegisterRef(R));
  }
  return LR;
}

// Node management functions.

// Get the pointer to the node with the id N.
NodeBase *DataFlowGraph::ptr(NodeId N) const {
  if (N == 0)
    return nullptr;
  return Memory.ptr(N);
}

// Get the id of the node at the address P.
NodeId DataFlowGraph::id(const NodeBase *P) const {
  if (P == nullptr)
    return 0;
  return Memory.id(P);
}

// Allocate a new node and set the attributes to Attrs.
NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
  NodeAddr<NodeBase*> P = Memory.New();
  P.Addr->init();
  P.Addr->setAttrs(Attrs);
  return P;
}

// Make a copy of the given node B, except for the data-flow links, which
// are set to 0.
NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
  NodeAddr<NodeBase*> NA = newNode(0);
  memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
  // Ref nodes need to have the data-flow links reset.
  if (NA.Addr->getType() == NodeAttrs::Ref) {
    NodeAddr<RefNode*> RA = NA;
    RA.Addr->setReachingDef(0);
    RA.Addr->setSibling(0);
    if (NA.Addr->getKind() == NodeAttrs::Def) {
      NodeAddr<DefNode*> DA = NA;
      DA.Addr->setReachedDef(0);
      DA.Addr->setReachedUse(0);
    }
  }
  return NA;
}

// Allocation routines for specific node types/kinds.

NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
      MachineOperand &Op, uint16_t Flags) {
  NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
  UA.Addr->setRegRef(&Op, *this);
  return UA;
}

NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
      RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
  NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
  assert(Flags & NodeAttrs::PhiRef);
  PUA.Addr->setRegRef(RR, *this);
  PUA.Addr->setPredecessor(PredB.Id);
  return PUA;
}

NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
      MachineOperand &Op, uint16_t Flags) {
  NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
  DA.Addr->setRegRef(&Op, *this);
  return DA;
}

NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
      RegisterRef RR, uint16_t Flags) {
  NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
  assert(Flags & NodeAttrs::PhiRef);
  DA.Addr->setRegRef(RR, *this);
  return DA;
}

NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
  NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
  Owner.Addr->addPhi(PA, *this);
  return PA;
}

NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
      MachineInstr *MI) {
  NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
  SA.Addr->setCode(MI);
  Owner.Addr->addMember(SA, *this);
  return SA;
}

NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
      MachineBasicBlock *BB) {
  NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
  BA.Addr->setCode(BB);
  Owner.Addr->addMember(BA, *this);
  return BA;
}

NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
  NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
  FA.Addr->setCode(MF);
  return FA;
}

// Build the data flow graph.
void DataFlowGraph::build(unsigned Options) {
  reset();
  Func = newFunc(&MF);

  if (MF.empty())
    return;

  for (MachineBasicBlock &B : MF) {
    NodeAddr<BlockNode*> BA = newBlock(Func, &B);
    BlockNodes.insert(std::make_pair(&B, BA));
    for (MachineInstr &I : B) {
      if (I.isDebugInstr())
        continue;
      buildStmt(BA, I);
    }
  }

  NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
  NodeList Blocks = Func.Addr->members(*this);

  // Collect information about block references.
  RegisterSet AllRefs;
  for (NodeAddr<BlockNode*> BA : Blocks)
    for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
      for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
        AllRefs.insert(RA.Addr->getRegRef(*this));

  // Collect function live-ins and entry block live-ins.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  MachineBasicBlock &EntryB = *EA.Addr->getCode();
  assert(EntryB.pred_empty() && "Function entry block has predecessors");
  for (std::pair<unsigned,unsigned> P : MRI.liveins())
    LiveIns.insert(RegisterRef(P.first));
  if (MRI.tracksLiveness()) {
    for (auto I : EntryB.liveins())
      LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
  }

  // Add function-entry phi nodes for the live-in registers.
  //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
  for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
    RegisterRef RR = *I;
    NodeAddr<PhiNode*> PA = newPhi(EA);
    uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
    NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
    PA.Addr->addMember(DA, *this);
  }

  // Add phis for landing pads.
  // Landing pads, unlike usual backs blocks, are not entered through
  // branches in the program, or fall-throughs from other blocks. They
  // are entered from the exception handling runtime and target's ABI
  // may define certain registers as defined on entry to such a block.
  RegisterSet EHRegs = getLandingPadLiveIns();
  if (!EHRegs.empty()) {
    for (NodeAddr<BlockNode*> BA : Blocks) {
      const MachineBasicBlock &B = *BA.Addr->getCode();
      if (!B.isEHPad())
        continue;

      // Prepare a list of NodeIds of the block's predecessors.
      NodeList Preds;
      for (MachineBasicBlock *PB : B.predecessors())
        Preds.push_back(findBlock(PB));

      // Build phi nodes for each live-in.
      for (RegisterRef RR : EHRegs) {
        NodeAddr<PhiNode*> PA = newPhi(BA);
        uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
        // Add def:
        NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
        PA.Addr->addMember(DA, *this);
        // Add uses (no reaching defs for phi uses):
        for (NodeAddr<BlockNode*> PBA : Preds) {
          NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
          PA.Addr->addMember(PUA, *this);
        }
      }
    }
  }

  // Build a map "PhiM" which will contain, for each block, the set
  // of references that will require phi definitions in that block.
  BlockRefsMap PhiM;
  for (NodeAddr<BlockNode*> BA : Blocks)
    recordDefsForDF(PhiM, BA);
  for (NodeAddr<BlockNode*> BA : Blocks)
    buildPhis(PhiM, AllRefs, BA);

  // Link all the refs. This will recursively traverse the dominator tree.
  DefStackMap DM;
  linkBlockRefs(DM, EA);

  // Finally, remove all unused phi nodes.
  if (!(Options & BuildOptions::KeepDeadPhis))
    removeUnusedPhis();
}

RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
  assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
         Register::isPhysicalRegister(Reg));
  assert(Reg != 0);
  if (Sub != 0)
    Reg = TRI.getSubReg(Reg, Sub);
  return RegisterRef(Reg);
}

RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
  assert(Op.isReg() || Op.isRegMask());
  if (Op.isReg())
    return makeRegRef(Op.getReg(), Op.getSubReg());
  return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
}

RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
  if (AR.Reg == BR.Reg) {
    LaneBitmask M = AR.Mask & BR.Mask;
    return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
  }
#ifndef NDEBUG
//  RegisterRef NAR = PRI.normalize(AR);
//  RegisterRef NBR = PRI.normalize(BR);
//  assert(NAR.Reg != NBR.Reg);
#endif
  // This isn't strictly correct, because the overlap may happen in the
  // part masked out.
  if (PRI.alias(AR, BR))
    return AR;
  return RegisterRef();
}

// For each stack in the map DefM, push the delimiter for block B on it.
void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
  // Push block delimiters.
  for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
    I->second.start_block(B);
}

// Remove all definitions coming from block B from each stack in DefM.
void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
  // Pop all defs from this block from the definition stack. Defs that were
  // added to the map during the traversal of instructions will not have a
  // delimiter, but for those, the whole stack will be emptied.
  for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
    I->second.clear_block(B);

  // Finally, remove empty stacks from the map.
  for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
    NextI = std::next(I);
    // This preserves the validity of iterators other than I.
    if (I->second.empty())
      DefM.erase(I);
  }
}

// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
  pushClobbers(IA, DefM);
  pushDefs(IA, DefM);
}

// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
  NodeSet Visited;
  std::set<RegisterId> Defined;

  // The important objectives of this function are:
  // - to be able to handle instructions both while the graph is being
  //   constructed, and after the graph has been constructed, and
  // - maintain proper ordering of definitions on the stack for each
  //   register reference:
  //   - if there are two or more related defs in IA (i.e. coming from
  //     the same machine operand), then only push one def on the stack,
  //   - if there are multiple unrelated defs of non-overlapping
  //     subregisters of S, then the stack for S will have both (in an
  //     unspecified order), but the order does not matter from the data-
  //     -flow perspective.

  for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
    if (Visited.count(DA.Id))
      continue;
    if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
      continue;

    NodeList Rel = getRelatedRefs(IA, DA);
    NodeAddr<DefNode*> PDA = Rel.front();
    RegisterRef RR = PDA.Addr->getRegRef(*this);

    // Push the definition on the stack for the register and all aliases.
    // The def stack traversal in linkNodeUp will check the exact aliasing.
    DefM[RR.Reg].push(DA);
    Defined.insert(RR.Reg);
    for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
      // Check that we don't push the same def twice.
      assert(A != RR.Reg);
      if (!Defined.count(A))
        DefM[A].push(DA);
    }
    // Mark all the related defs as visited.
    for (NodeAddr<NodeBase*> T : Rel)
      Visited.insert(T.Id);
  }
}

// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
  NodeSet Visited;
#ifndef NDEBUG
  std::set<RegisterId> Defined;
#endif

  // The important objectives of this function are:
  // - to be able to handle instructions both while the graph is being
  //   constructed, and after the graph has been constructed, and
  // - maintain proper ordering of definitions on the stack for each
  //   register reference:
  //   - if there are two or more related defs in IA (i.e. coming from
  //     the same machine operand), then only push one def on the stack,
  //   - if there are multiple unrelated defs of non-overlapping
  //     subregisters of S, then the stack for S will have both (in an
  //     unspecified order), but the order does not matter from the data-
  //     -flow perspective.

  for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
    if (Visited.count(DA.Id))
      continue;
    if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
      continue;

    NodeList Rel = getRelatedRefs(IA, DA);
    NodeAddr<DefNode*> PDA = Rel.front();
    RegisterRef RR = PDA.Addr->getRegRef(*this);
#ifndef NDEBUG
    // Assert if the register is defined in two or more unrelated defs.
    // This could happen if there are two or more def operands defining it.
    if (!Defined.insert(RR.Reg).second) {
      MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
      dbgs() << "Multiple definitions of register: "
             << Print<RegisterRef>(RR, *this) << " in\n  " << *MI << "in "
             << printMBBReference(*MI->getParent()) << '\n';
      llvm_unreachable(nullptr);
    }
#endif
    // Push the definition on the stack for the register and all aliases.
    // The def stack traversal in linkNodeUp will check the exact aliasing.
    DefM[RR.Reg].push(DA);
    for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
      // Check that we don't push the same def twice.
      assert(A != RR.Reg);
      DefM[A].push(DA);
    }
    // Mark all the related defs as visited.
    for (NodeAddr<NodeBase*> T : Rel)
      Visited.insert(T.Id);
  }
}

// Return the list of all reference nodes related to RA, including RA itself.
// See "getNextRelated" for the meaning of a "related reference".
NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
      NodeAddr<RefNode*> RA) const {
  assert(IA.Id != 0 && RA.Id != 0);

  NodeList Refs;
  NodeId Start = RA.Id;
  do {
    Refs.push_back(RA);
    RA = getNextRelated(IA, RA);
  } while (RA.Id != 0 && RA.Id != Start);
  return Refs;
}

// Clear all information in the graph.
void DataFlowGraph::reset() {
  Memory.clear();
  BlockNodes.clear();
  Func = NodeAddr<FuncNode*>();
}

// Return the next reference node in the instruction node IA that is related
// to RA. Conceptually, two reference nodes are related if they refer to the
// same instance of a register access, but differ in flags or other minor
// characteristics. Specific examples of related nodes are shadow reference
// nodes.
// Return the equivalent of nullptr if there are no more related references.
NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
      NodeAddr<RefNode*> RA) const {
  assert(IA.Id != 0 && RA.Id != 0);

  auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
    if (TA.Addr->getKind() != RA.Addr->getKind())
      return false;
    if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
      return false;
    return true;
  };
  auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
    return Related(TA) &&
           &RA.Addr->getOp() == &TA.Addr->getOp();
  };
  auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
    if (!Related(TA))
      return false;
    if (TA.Addr->getKind() != NodeAttrs::Use)
      return true;
    // For phi uses, compare predecessor blocks.
    const NodeAddr<const PhiUseNode*> TUA = TA;
    const NodeAddr<const PhiUseNode*> RUA = RA;
    return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
  };

  RegisterRef RR = RA.Addr->getRegRef(*this);
  if (IA.Addr->getKind() == NodeAttrs::Stmt)
    return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
  return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
}

// Find the next node related to RA in IA that satisfies condition P.
// If such a node was found, return a pair where the second element is the
// located node. If such a node does not exist, return a pair where the
// first element is the element after which such a node should be inserted,
// and the second element is a null-address.
template <typename Predicate>
std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
      Predicate P) const {
  assert(IA.Id != 0 && RA.Id != 0);

  NodeAddr<RefNode*> NA;
  NodeId Start = RA.Id;
  while (true) {
    NA = getNextRelated(IA, RA);
    if (NA.Id == 0 || NA.Id == Start)
      break;
    if (P(NA))
      break;
    RA = NA;
  }

  if (NA.Id != 0 && NA.Id != Start)
    return std::make_pair(RA, NA);
  return std::make_pair(RA, NodeAddr<RefNode*>());
}

// Get the next shadow node in IA corresponding to RA, and optionally create
// such a node if it does not exist.
NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
      NodeAddr<RefNode*> RA, bool Create) {
  assert(IA.Id != 0 && RA.Id != 0);

  uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
  auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
    return TA.Addr->getFlags() == Flags;
  };
  auto Loc = locateNextRef(IA, RA, IsShadow);
  if (Loc.second.Id != 0 || !Create)
    return Loc.second;

  // Create a copy of RA and mark is as shadow.
  NodeAddr<RefNode*> NA = cloneNode(RA);
  NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
  IA.Addr->addMemberAfter(Loc.first, NA, *this);
  return NA;
}

// Get the next shadow node in IA corresponding to RA. Return null-address
// if such a node does not exist.
NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
      NodeAddr<RefNode*> RA) const {
  assert(IA.Id != 0 && RA.Id != 0);
  uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
  auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
    return TA.Addr->getFlags() == Flags;
  };
  return locateNextRef(IA, RA, IsShadow).second;
}

// Create a new statement node in the block node BA that corresponds to
// the machine instruction MI.
void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
  NodeAddr<StmtNode*> SA = newStmt(BA, &In);

  auto isCall = [] (const MachineInstr &In) -> bool {
    if (In.isCall())
      return true;
    // Is tail call?
    if (In.isBranch()) {
      for (const MachineOperand &Op : In.operands())
        if (Op.isGlobal() || Op.isSymbol())
          return true;
      // Assume indirect branches are calls. This is for the purpose of
      // keeping implicit operands, and so it won't hurt on intra-function
      // indirect branches.
      if (In.isIndirectBranch())
        return true;
    }
    return false;
  };

  auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
    // This instruction defines DR. Check if there is a use operand that
    // would make DR live on entry to the instruction.
    for (const MachineOperand &Op : In.operands()) {
      if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
        continue;
      RegisterRef UR = makeRegRef(Op);
      if (PRI.alias(DR, UR))
        return false;
    }
    return true;
  };

  bool IsCall = isCall(In);
  unsigned NumOps = In.getNumOperands();

  // Avoid duplicate implicit defs. This will not detect cases of implicit
  // defs that define registers that overlap, but it is not clear how to
  // interpret that in the absence of explicit defs. Overlapping explicit
  // defs are likely illegal already.
  BitVector DoneDefs(TRI.getNumRegs());
  // Process explicit defs first.
  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
    MachineOperand &Op = In.getOperand(OpN);
    if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
      continue;
    Register R = Op.getReg();
    if (!R || !Register::isPhysicalRegister(R))
      continue;
    uint16_t Flags = NodeAttrs::None;
    if (TOI.isPreserving(In, OpN)) {
      Flags |= NodeAttrs::Preserving;
      // If the def is preserving, check if it is also undefined.
      if (isDefUndef(In, makeRegRef(Op)))
        Flags |= NodeAttrs::Undef;
    }
    if (TOI.isClobbering(In, OpN))
      Flags |= NodeAttrs::Clobbering;
    if (TOI.isFixedReg(In, OpN))
      Flags |= NodeAttrs::Fixed;
    if (IsCall && Op.isDead())
      Flags |= NodeAttrs::Dead;
    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
    SA.Addr->addMember(DA, *this);
    assert(!DoneDefs.test(R));
    DoneDefs.set(R);
  }

  // Process reg-masks (as clobbers).
  BitVector DoneClobbers(TRI.getNumRegs());
  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
    MachineOperand &Op = In.getOperand(OpN);
    if (!Op.isRegMask())
      continue;
    uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
                     NodeAttrs::Dead;
    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
    SA.Addr->addMember(DA, *this);
    // Record all clobbered registers in DoneDefs.
    const uint32_t *RM = Op.getRegMask();
    for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
      if (!(RM[i/32] & (1u << (i%32))))
        DoneClobbers.set(i);
  }

  // Process implicit defs, skipping those that have already been added
  // as explicit.
  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
    MachineOperand &Op = In.getOperand(OpN);
    if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
      continue;
    Register R = Op.getReg();
    if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
      continue;
    RegisterRef RR = makeRegRef(Op);
    uint16_t Flags = NodeAttrs::None;
    if (TOI.isPreserving(In, OpN)) {
      Flags |= NodeAttrs::Preserving;
      // If the def is preserving, check if it is also undefined.
      if (isDefUndef(In, RR))
        Flags |= NodeAttrs::Undef;
    }
    if (TOI.isClobbering(In, OpN))
      Flags |= NodeAttrs::Clobbering;
    if (TOI.isFixedReg(In, OpN))
      Flags |= NodeAttrs::Fixed;
    if (IsCall && Op.isDead()) {
      if (DoneClobbers.test(R))
        continue;
      Flags |= NodeAttrs::Dead;
    }
    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
    SA.Addr->addMember(DA, *this);
    DoneDefs.set(R);
  }

  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
    MachineOperand &Op = In.getOperand(OpN);
    if (!Op.isReg() || !Op.isUse())
      continue;
    Register R = Op.getReg();
    if (!R || !Register::isPhysicalRegister(R))
      continue;
    uint16_t Flags = NodeAttrs::None;
    if (Op.isUndef())
      Flags |= NodeAttrs::Undef;
    if (TOI.isFixedReg(In, OpN))
      Flags |= NodeAttrs::Fixed;
    NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
    SA.Addr->addMember(UA, *this);
  }
}

// Scan all defs in the block node BA and record in PhiM the locations of
// phi nodes corresponding to these defs.
void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
      NodeAddr<BlockNode*> BA) {
  // Check all defs from block BA and record them in each block in BA's
  // iterated dominance frontier. This information will later be used to
  // create phi nodes.
  MachineBasicBlock *BB = BA.Addr->getCode();
  assert(BB);
  auto DFLoc = MDF.find(BB);
  if (DFLoc == MDF.end() || DFLoc->second.empty())
    return;

  // Traverse all instructions in the block and collect the set of all
  // defined references. For each reference there will be a phi created
  // in the block's iterated dominance frontier.
  // This is done to make sure that each defined reference gets only one
  // phi node, even if it is defined multiple times.
  RegisterSet Defs;
  for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
    for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
      Defs.insert(RA.Addr->getRegRef(*this));

  // Calculate the iterated dominance frontier of BB.
  const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
  SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
  for (unsigned i = 0; i < IDF.size(); ++i) {
    auto F = MDF.find(IDF[i]);
    if (F != MDF.end())
      IDF.insert(F->second.begin(), F->second.end());
  }

  // Finally, add the set of defs to each block in the iterated dominance
  // frontier.
  for (auto DB : IDF) {
    NodeAddr<BlockNode*> DBA = findBlock(DB);
    PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
  }
}

// Given the locations of phi nodes in the map PhiM, create the phi nodes
// that are located in the block node BA.
void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
      NodeAddr<BlockNode*> BA) {
  // Check if this blocks has any DF defs, i.e. if there are any defs
  // that this block is in the iterated dominance frontier of.
  auto HasDF = PhiM.find(BA.Id);
  if (HasDF == PhiM.end() || HasDF->second.empty())
    return;

  // First, remove all R in Refs in such that there exists T in Refs
  // such that T covers R. In other words, only leave those refs that
  // are not covered by another ref (i.e. maximal with respect to covering).

  auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
    for (RegisterRef I : RRs)
      if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
        RR = I;
    return RR;
  };

  RegisterSet MaxDF;
  for (RegisterRef I : HasDF->second)
    MaxDF.insert(MaxCoverIn(I, HasDF->second));

  std::vector<RegisterRef> MaxRefs;
  for (RegisterRef I : MaxDF)
    MaxRefs.push_back(MaxCoverIn(I, AllRefs));

  // Now, for each R in MaxRefs, get the alias closure of R. If the closure
  // only has R in it, create a phi a def for R. Otherwise, create a phi,
  // and add a def for each S in the closure.

  // Sort the refs so that the phis will be created in a deterministic order.
  llvm::sort(MaxRefs);
  // Remove duplicates.
  auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
  MaxRefs.erase(NewEnd, MaxRefs.end());

  auto Aliased = [this,&MaxRefs](RegisterRef RR,
                                 std::vector<unsigned> &Closure) -> bool {
    for (unsigned I : Closure)
      if (PRI.alias(RR, MaxRefs[I]))
        return true;
    return false;
  };

  // Prepare a list of NodeIds of the block's predecessors.
  NodeList Preds;
  const MachineBasicBlock *MBB = BA.Addr->getCode();
  for (MachineBasicBlock *PB : MBB->predecessors())
    Preds.push_back(findBlock(PB));

  while (!MaxRefs.empty()) {
    // Put the first element in the closure, and then add all subsequent
    // elements from MaxRefs to it, if they alias at least one element
    // already in the closure.
    // ClosureIdx: vector of indices in MaxRefs of members of the closure.
    std::vector<unsigned> ClosureIdx = { 0 };
    for (unsigned i = 1; i != MaxRefs.size(); ++i)
      if (Aliased(MaxRefs[i], ClosureIdx))
        ClosureIdx.push_back(i);

    // Build a phi for the closure.
    unsigned CS = ClosureIdx.size();
    NodeAddr<PhiNode*> PA = newPhi(BA);

    // Add defs.
    for (unsigned X = 0; X != CS; ++X) {
      RegisterRef RR = MaxRefs[ClosureIdx[X]];
      uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
      NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
      PA.Addr->addMember(DA, *this);
    }
    // Add phi uses.
    for (NodeAddr<BlockNode*> PBA : Preds) {
      for (unsigned X = 0; X != CS; ++X) {
        RegisterRef RR = MaxRefs[ClosureIdx[X]];
        NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
        PA.Addr->addMember(PUA, *this);
      }
    }

    // Erase from MaxRefs all elements in the closure.
    auto Begin = MaxRefs.begin();
    for (unsigned i = ClosureIdx.size(); i != 0; --i)
      MaxRefs.erase(Begin + ClosureIdx[i-1]);
  }
}

// Remove any unneeded phi nodes that were created during the build process.
void DataFlowGraph::removeUnusedPhis() {
  // This will remove unused phis, i.e. phis where each def does not reach
  // any uses or other defs. This will not detect or remove circular phi
  // chains that are otherwise dead. Unused/dead phis are created during
  // the build process and this function is intended to remove these cases
  // that are easily determinable to be unnecessary.

  SetVector<NodeId> PhiQ;
  for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
    for (auto P : BA.Addr->members_if(IsPhi, *this))
      PhiQ.insert(P.Id);
  }

  static auto HasUsedDef = [](NodeList &Ms) -> bool {
    for (NodeAddr<NodeBase*> M : Ms) {
      if (M.Addr->getKind() != NodeAttrs::Def)
        continue;
      NodeAddr<DefNode*> DA = M;
      if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
        return true;
    }
    return false;
  };

  // Any phi, if it is removed, may affect other phis (make them dead).
  // For each removed phi, collect the potentially affected phis and add
  // them back to the queue.
  while (!PhiQ.empty()) {
    auto PA = addr<PhiNode*>(PhiQ[0]);
    PhiQ.remove(PA.Id);
    NodeList Refs = PA.Addr->members(*this);
    if (HasUsedDef(Refs))
      continue;
    for (NodeAddr<RefNode*> RA : Refs) {
      if (NodeId RD = RA.Addr->getReachingDef()) {
        auto RDA = addr<DefNode*>(RD);
        NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
        if (IsPhi(OA))
          PhiQ.insert(OA.Id);
      }
      if (RA.Addr->isDef())
        unlinkDef(RA, true);
      else
        unlinkUse(RA, true);
    }
    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
    BA.Addr->removeMember(PA, *this);
  }
}

// For a given reference node TA in an instruction node IA, connect the
// reaching def of TA to the appropriate def node. Create any shadow nodes
// as appropriate.
template <typename T>
void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
      DefStack &DS) {
  if (DS.empty())
    return;
  RegisterRef RR = TA.Addr->getRegRef(*this);
  NodeAddr<T> TAP;

  // References from the def stack that have been examined so far.
  RegisterAggr Defs(PRI);

  for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
    RegisterRef QR = I->Addr->getRegRef(*this);

    // Skip all defs that are aliased to any of the defs that we have already
    // seen. If this completes a cover of RR, stop the stack traversal.
    bool Alias = Defs.hasAliasOf(QR);
    bool Cover = Defs.insert(QR).hasCoverOf(RR);
    if (Alias) {
      if (Cover)
        break;
      continue;
    }

    // The reaching def.
    NodeAddr<DefNode*> RDA = *I;

    // Pick the reached node.
    if (TAP.Id == 0) {
      TAP = TA;
    } else {
      // Mark the existing ref as "shadow" and create a new shadow.
      TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
      TAP = getNextShadow(IA, TAP, true);
    }

    // Create the link.
    TAP.Addr->linkToDef(TAP.Id, RDA);

    if (Cover)
      break;
  }
}

// Create data-flow links for all reference nodes in the statement node SA.
template <typename Predicate>
void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
      Predicate P) {
#ifndef NDEBUG
  RegisterSet Defs;
#endif

  // Link all nodes (upwards in the data-flow) with their reaching defs.
  for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
    uint16_t Kind = RA.Addr->getKind();
    assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
    RegisterRef RR = RA.Addr->getRegRef(*this);
#ifndef NDEBUG
    // Do not expect multiple defs of the same reference.
    assert(Kind != NodeAttrs::Def || !Defs.count(RR));
    Defs.insert(RR);
#endif

    auto F = DefM.find(RR.Reg);
    if (F == DefM.end())
      continue;
    DefStack &DS = F->second;
    if (Kind == NodeAttrs::Use)
      linkRefUp<UseNode*>(SA, RA, DS);
    else if (Kind == NodeAttrs::Def)
      linkRefUp<DefNode*>(SA, RA, DS);
    else
      llvm_unreachable("Unexpected node in instruction");
  }
}

// Create data-flow links for all instructions in the block node BA. This
// will include updating any phi nodes in BA.
void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
  // Push block delimiters.
  markBlock(BA.Id, DefM);

  auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
    return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
  };
  auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
    return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
  };

  assert(BA.Addr && "block node address is needed to create a data-flow link");
  // For each non-phi instruction in the block, link all the defs and uses
  // to their reaching defs. For any member of the block (including phis),
  // push the defs on the corresponding stacks.
  for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
    // Ignore phi nodes here. They will be linked part by part from the
    // predecessors.
    if (IA.Addr->getKind() == NodeAttrs::Stmt) {
      linkStmtRefs(DefM, IA, IsUse);
      linkStmtRefs(DefM, IA, IsClobber);
    }

    // Push the definitions on the stack.
    pushClobbers(IA, DefM);

    if (IA.Addr->getKind() == NodeAttrs::Stmt)
      linkStmtRefs(DefM, IA, IsNoClobber);

    pushDefs(IA, DefM);
  }

  // Recursively process all children in the dominator tree.
  MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
  for (auto I : *N) {
    MachineBasicBlock *SB = I->getBlock();
    NodeAddr<BlockNode*> SBA = findBlock(SB);
    linkBlockRefs(DefM, SBA);
  }

  // Link the phi uses from the successor blocks.
  auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
    if (NA.Addr->getKind() != NodeAttrs::Use)
      return false;
    assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
    NodeAddr<PhiUseNode*> PUA = NA;
    return PUA.Addr->getPredecessor() == BA.Id;
  };

  RegisterSet EHLiveIns = getLandingPadLiveIns();
  MachineBasicBlock *MBB = BA.Addr->getCode();

  for (MachineBasicBlock *SB : MBB->successors()) {
    bool IsEHPad = SB->isEHPad();
    NodeAddr<BlockNode*> SBA = findBlock(SB);
    for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
      // Do not link phi uses for landing pad live-ins.
      if (IsEHPad) {
        // Find what register this phi is for.
        NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
        assert(RA.Id != 0);
        if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
          continue;
      }
      // Go over each phi use associated with MBB, and link it.
      for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
        NodeAddr<PhiUseNode*> PUA = U;
        RegisterRef RR = PUA.Addr->getRegRef(*this);
        linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
      }
    }
  }

  // Pop all defs from this block from the definition stacks.
  releaseBlock(BA.Id, DefM);
}

// Remove the use node UA from any data-flow and structural links.
void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
  NodeId RD = UA.Addr->getReachingDef();
  NodeId Sib = UA.Addr->getSibling();

  if (RD == 0) {
    assert(Sib == 0);
    return;
  }

  auto RDA = addr<DefNode*>(RD);
  auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
  if (TA.Id == UA.Id) {
    RDA.Addr->setReachedUse(Sib);
    return;
  }

  while (TA.Id != 0) {
    NodeId S = TA.Addr->getSibling();
    if (S == UA.Id) {
      TA.Addr->setSibling(UA.Addr->getSibling());
      return;
    }
    TA = addr<UseNode*>(S);
  }
}

// Remove the def node DA from any data-flow and structural links.
void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
  //
  //         RD
  //         | reached
  //         | def
  //         :
  //         .
  //        +----+
  // ... -- | DA | -- ... -- 0  : sibling chain of DA
  //        +----+
  //         |  | reached
  //         |  : def
  //         |  .
  //         | ...  : Siblings (defs)
  //         |
  //         : reached
  //         . use
  //        ... : sibling chain of reached uses

  NodeId RD = DA.Addr->getReachingDef();

  // Visit all siblings of the reached def and reset their reaching defs.
  // Also, defs reached by DA are now "promoted" to being reached by RD,
  // so all of them will need to be spliced into the sibling chain where
  // DA belongs.
  auto getAllNodes = [this] (NodeId N) -> NodeList {
    NodeList Res;
    while (N) {
      auto RA = addr<RefNode*>(N);
      // Keep the nodes in the exact sibling order.
      Res.push_back(RA);
      N = RA.Addr->getSibling();
    }
    return Res;
  };
  NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
  NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());

  if (RD == 0) {
    for (NodeAddr<RefNode*> I : ReachedDefs)
      I.Addr->setSibling(0);
    for (NodeAddr<RefNode*> I : ReachedUses)
      I.Addr->setSibling(0);
  }
  for (NodeAddr<DefNode*> I : ReachedDefs)
    I.Addr->setReachingDef(RD);
  for (NodeAddr<UseNode*> I : ReachedUses)
    I.Addr->setReachingDef(RD);

  NodeId Sib = DA.Addr->getSibling();
  if (RD == 0) {
    assert(Sib == 0);
    return;
  }

  // Update the reaching def node and remove DA from the sibling list.
  auto RDA = addr<DefNode*>(RD);
  auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
  if (TA.Id == DA.Id) {
    // If DA is the first reached def, just update the RD's reached def
    // to the DA's sibling.
    RDA.Addr->setReachedDef(Sib);
  } else {
    // Otherwise, traverse the sibling list of the reached defs and remove
    // DA from it.
    while (TA.Id != 0) {
      NodeId S = TA.Addr->getSibling();
      if (S == DA.Id) {
        TA.Addr->setSibling(Sib);
        break;
      }
      TA = addr<DefNode*>(S);
    }
  }

  // Splice the DA's reached defs into the RDA's reached def chain.
  if (!ReachedDefs.empty()) {
    auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
    Last.Addr->setSibling(RDA.Addr->getReachedDef());
    RDA.Addr->setReachedDef(ReachedDefs.front().Id);
  }
  // Splice the DA's reached uses into the RDA's reached use chain.
  if (!ReachedUses.empty()) {
    auto Last = NodeAddr<UseNode*>(ReachedUses.back());
    Last.Addr->setSibling(RDA.Addr->getReachedUse());
    RDA.Addr->setReachedUse(ReachedUses.front().Id);
  }
}