MachineFunction.cpp 43 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
//===- MachineFunction.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code information for a function.  This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "codegen"

static cl::opt<unsigned> AlignAllFunctions(
    "align-all-functions",
    cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
             "means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
  using P = MachineFunctionProperties::Property;

  switch(Prop) {
  case P::FailedISel: return "FailedISel";
  case P::IsSSA: return "IsSSA";
  case P::Legalized: return "Legalized";
  case P::NoPHIs: return "NoPHIs";
  case P::NoVRegs: return "NoVRegs";
  case P::RegBankSelected: return "RegBankSelected";
  case P::Selected: return "Selected";
  case P::TracksLiveness: return "TracksLiveness";
  case P::TiedOpsRewritten: return "TiedOpsRewritten";
  }
  llvm_unreachable("Invalid machine function property");
}

// Pin the vtable to this file.
void MachineFunction::Delegate::anchor() {}

void MachineFunctionProperties::print(raw_ostream &OS) const {
  const char *Separator = "";
  for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
    if (!Properties[I])
      continue;
    OS << Separator << getPropertyName(static_cast<Property>(I));
    Separator = ", ";
  }
}

//===----------------------------------------------------------------------===//
// MachineFunction implementation
//===----------------------------------------------------------------------===//

// Out-of-line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() = default;

void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
  MBB->getParent()->DeleteMachineBasicBlock(MBB);
}

static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
                                           const Function &F) {
  if (F.hasFnAttribute(Attribute::StackAlignment))
    return F.getFnStackAlignment();
  return STI->getFrameLowering()->getStackAlign().value();
}

MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
                                 const TargetSubtargetInfo &STI,
                                 unsigned FunctionNum, MachineModuleInfo &mmi)
    : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
  FunctionNumber = FunctionNum;
  init();
}

void MachineFunction::handleInsertion(MachineInstr &MI) {
  if (TheDelegate)
    TheDelegate->MF_HandleInsertion(MI);
}

void MachineFunction::handleRemoval(MachineInstr &MI) {
  if (TheDelegate)
    TheDelegate->MF_HandleRemoval(MI);
}

void MachineFunction::init() {
  // Assume the function starts in SSA form with correct liveness.
  Properties.set(MachineFunctionProperties::Property::IsSSA);
  Properties.set(MachineFunctionProperties::Property::TracksLiveness);
  if (STI->getRegisterInfo())
    RegInfo = new (Allocator) MachineRegisterInfo(this);
  else
    RegInfo = nullptr;

  MFInfo = nullptr;
  // We can realign the stack if the target supports it and the user hasn't
  // explicitly asked us not to.
  bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
                      !F.hasFnAttribute("no-realign-stack");
  FrameInfo = new (Allocator) MachineFrameInfo(
      getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
      /*ForcedRealign=*/CanRealignSP &&
          F.hasFnAttribute(Attribute::StackAlignment));

  if (F.hasFnAttribute(Attribute::StackAlignment))
    FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());

  ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
  Alignment = STI->getTargetLowering()->getMinFunctionAlignment();

  // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
  // FIXME: Use Function::hasOptSize().
  if (!F.hasFnAttribute(Attribute::OptimizeForSize))
    Alignment = std::max(Alignment,
                         STI->getTargetLowering()->getPrefFunctionAlignment());

  if (AlignAllFunctions)
    Alignment = Align(1ULL << AlignAllFunctions);

  JumpTableInfo = nullptr;

  if (isFuncletEHPersonality(classifyEHPersonality(
          F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
    WinEHInfo = new (Allocator) WinEHFuncInfo();
  }

  if (isScopedEHPersonality(classifyEHPersonality(
          F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
    WasmEHInfo = new (Allocator) WasmEHFuncInfo();
  }

  assert(Target.isCompatibleDataLayout(getDataLayout()) &&
         "Can't create a MachineFunction using a Module with a "
         "Target-incompatible DataLayout attached\n");

  PSVManager =
    std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
                                                  getInstrInfo()));
}

MachineFunction::~MachineFunction() {
  clear();
}

void MachineFunction::clear() {
  Properties.reset();
  // Don't call destructors on MachineInstr and MachineOperand. All of their
  // memory comes from the BumpPtrAllocator which is about to be purged.
  //
  // Do call MachineBasicBlock destructors, it contains std::vectors.
  for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
    I->Insts.clearAndLeakNodesUnsafely();
  MBBNumbering.clear();

  InstructionRecycler.clear(Allocator);
  OperandRecycler.clear(Allocator);
  BasicBlockRecycler.clear(Allocator);
  CodeViewAnnotations.clear();
  VariableDbgInfos.clear();
  if (RegInfo) {
    RegInfo->~MachineRegisterInfo();
    Allocator.Deallocate(RegInfo);
  }
  if (MFInfo) {
    MFInfo->~MachineFunctionInfo();
    Allocator.Deallocate(MFInfo);
  }

  FrameInfo->~MachineFrameInfo();
  Allocator.Deallocate(FrameInfo);

  ConstantPool->~MachineConstantPool();
  Allocator.Deallocate(ConstantPool);

  if (JumpTableInfo) {
    JumpTableInfo->~MachineJumpTableInfo();
    Allocator.Deallocate(JumpTableInfo);
  }

  if (WinEHInfo) {
    WinEHInfo->~WinEHFuncInfo();
    Allocator.Deallocate(WinEHInfo);
  }

  if (WasmEHInfo) {
    WasmEHInfo->~WasmEHFuncInfo();
    Allocator.Deallocate(WasmEHInfo);
  }
}

const DataLayout &MachineFunction::getDataLayout() const {
  return F.getParent()->getDataLayout();
}

/// Get the JumpTableInfo for this function.
/// If it does not already exist, allocate one.
MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind) {
  if (JumpTableInfo) return JumpTableInfo;

  JumpTableInfo = new (Allocator)
    MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
  return JumpTableInfo;
}

DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
  if (&FPType == &APFloat::IEEEsingle()) {
    Attribute Attr = F.getFnAttribute("denormal-fp-math-f32");
    StringRef Val = Attr.getValueAsString();
    if (!Val.empty())
      return parseDenormalFPAttribute(Val);

    // If the f32 variant of the attribute isn't specified, try to use the
    // generic one.
  }

  // TODO: Should probably avoid the connection to the IR and store directly
  // in the MachineFunction.
  Attribute Attr = F.getFnAttribute("denormal-fp-math");
  return parseDenormalFPAttribute(Attr.getValueAsString());
}

/// Should we be emitting segmented stack stuff for the function
bool MachineFunction::shouldSplitStack() const {
  return getFunction().hasFnAttribute("split-stack");
}

LLVM_NODISCARD unsigned
MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
  FrameInstructions.push_back(Inst);
  return FrameInstructions.size() - 1;
}

/// This discards all of the MachineBasicBlock numbers and recomputes them.
/// This guarantees that the MBB numbers are sequential, dense, and match the
/// ordering of the blocks within the function.  If a specific MachineBasicBlock
/// is specified, only that block and those after it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
  if (empty()) { MBBNumbering.clear(); return; }
  MachineFunction::iterator MBBI, E = end();
  if (MBB == nullptr)
    MBBI = begin();
  else
    MBBI = MBB->getIterator();

  // Figure out the block number this should have.
  unsigned BlockNo = 0;
  if (MBBI != begin())
    BlockNo = std::prev(MBBI)->getNumber() + 1;

  for (; MBBI != E; ++MBBI, ++BlockNo) {
    if (MBBI->getNumber() != (int)BlockNo) {
      // Remove use of the old number.
      if (MBBI->getNumber() != -1) {
        assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
               "MBB number mismatch!");
        MBBNumbering[MBBI->getNumber()] = nullptr;
      }

      // If BlockNo is already taken, set that block's number to -1.
      if (MBBNumbering[BlockNo])
        MBBNumbering[BlockNo]->setNumber(-1);

      MBBNumbering[BlockNo] = &*MBBI;
      MBBI->setNumber(BlockNo);
    }
  }

  // Okay, all the blocks are renumbered.  If we have compactified the block
  // numbering, shrink MBBNumbering now.
  assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
  MBBNumbering.resize(BlockNo);
}

/// This is used with -fbasic-block-sections or -fbasicblock-labels option.
/// A unary encoding of basic block labels is done to keep ".strtab" sizes
/// small.
void MachineFunction::createBBLabels() {
  const TargetInstrInfo *TII = getSubtarget().getInstrInfo();
  this->BBSectionsSymbolPrefix.resize(getNumBlockIDs(), 'a');
  for (auto MBBI = begin(), E = end(); MBBI != E; ++MBBI) {
    assert(
        (MBBI->getNumber() >= 0 && MBBI->getNumber() < (int)getNumBlockIDs()) &&
        "BasicBlock number was out of range!");
    // 'a' - Normal block.
    // 'r' - Return block.
    // 'l' - Landing Pad.
    // 'L' - Return and landing pad.
    bool isEHPad = MBBI->isEHPad();
    bool isRetBlock = MBBI->isReturnBlock() && !TII->isTailCall(MBBI->back());
    char type = 'a';
    if (isEHPad && isRetBlock)
      type = 'L';
    else if (isEHPad)
      type = 'l';
    else if (isRetBlock)
      type = 'r';
    BBSectionsSymbolPrefix[MBBI->getNumber()] = type;
  }
}

/// This method iterates over the basic blocks and assigns their IsBeginSection
/// and IsEndSection fields. This must be called after MBB layout is finalized
/// and the SectionID's are assigned to MBBs.
void MachineFunction::assignBeginEndSections() {
  front().setIsBeginSection();
  auto CurrentSectionID = front().getSectionID();
  for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
    if (MBBI->getSectionID() == CurrentSectionID)
      continue;
    MBBI->setIsBeginSection();
    std::prev(MBBI)->setIsEndSection();
    CurrentSectionID = MBBI->getSectionID();
  }
  back().setIsEndSection();
}

/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
                                                  const DebugLoc &DL,
                                                  bool NoImp) {
  return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
    MachineInstr(*this, MCID, DL, NoImp);
}

/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
/// identical in all ways except the instruction has no parent, prev, or next.
MachineInstr *
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
  return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
             MachineInstr(*this, *Orig);
}

MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
    MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
  MachineInstr *FirstClone = nullptr;
  MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
  while (true) {
    MachineInstr *Cloned = CloneMachineInstr(&*I);
    MBB.insert(InsertBefore, Cloned);
    if (FirstClone == nullptr) {
      FirstClone = Cloned;
    } else {
      Cloned->bundleWithPred();
    }

    if (!I->isBundledWithSucc())
      break;
    ++I;
  }
  // Copy over call site info to the cloned instruction if needed. If Orig is in
  // a bundle, copyCallSiteInfo takes care of finding the call instruction in
  // the bundle.
  if (Orig.shouldUpdateCallSiteInfo())
    copyCallSiteInfo(&Orig, FirstClone);
  return *FirstClone;
}

/// Delete the given MachineInstr.
///
/// This function also serves as the MachineInstr destructor - the real
/// ~MachineInstr() destructor must be empty.
void
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
  // Verify that a call site info is at valid state. This assertion should
  // be triggered during the implementation of support for the
  // call site info of a new architecture. If the assertion is triggered,
  // back trace will tell where to insert a call to updateCallSiteInfo().
  assert((!MI->isCandidateForCallSiteEntry() ||
          CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
         "Call site info was not updated!");
  // Strip it for parts. The operand array and the MI object itself are
  // independently recyclable.
  if (MI->Operands)
    deallocateOperandArray(MI->CapOperands, MI->Operands);
  // Don't call ~MachineInstr() which must be trivial anyway because
  // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
  // destructors.
  InstructionRecycler.Deallocate(Allocator, MI);
}

/// Allocate a new MachineBasicBlock. Use this instead of
/// `new MachineBasicBlock'.
MachineBasicBlock *
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
  return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
             MachineBasicBlock(*this, bb);
}

/// Delete the given MachineBasicBlock.
void
MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
  assert(MBB->getParent() == this && "MBB parent mismatch!");
  MBB->~MachineBasicBlock();
  BasicBlockRecycler.Deallocate(Allocator, MBB);
}

MachineMemOperand *MachineFunction::getMachineMemOperand(
    MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
    Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
    SyncScope::ID SSID, AtomicOrdering Ordering,
    AtomicOrdering FailureOrdering) {
  return new (Allocator)
      MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
                        SSID, Ordering, FailureOrdering);
}

MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
                                      int64_t Offset, uint64_t Size) {
  const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();

  // If there is no pointer value, the offset isn't tracked so we need to adjust
  // the base alignment.
  Align Alignment = PtrInfo.V.isNull()
                        ? commonAlignment(MMO->getBaseAlign(), Offset)
                        : MMO->getBaseAlign();

  return new (Allocator)
      MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
                        Alignment, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
                        MMO->getOrdering(), MMO->getFailureOrdering());
}

MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
                                      const AAMDNodes &AAInfo) {
  MachinePointerInfo MPI = MMO->getValue() ?
             MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
             MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());

  return new (Allocator) MachineMemOperand(
      MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
      MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(),
      MMO->getFailureOrdering());
}

MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
                                      MachineMemOperand::Flags Flags) {
  return new (Allocator) MachineMemOperand(
      MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
      MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
      MMO->getOrdering(), MMO->getFailureOrdering());
}

MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
    ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
    MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
  return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
                                         PostInstrSymbol, HeapAllocMarker);
}

const char *MachineFunction::createExternalSymbolName(StringRef Name) {
  char *Dest = Allocator.Allocate<char>(Name.size() + 1);
  llvm::copy(Name, Dest);
  Dest[Name.size()] = 0;
  return Dest;
}

uint32_t *MachineFunction::allocateRegMask() {
  unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
  unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
  uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
  memset(Mask, 0, Size * sizeof(Mask[0]));
  return Mask;
}

ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
  int* AllocMask = Allocator.Allocate<int>(Mask.size());
  copy(Mask, AllocMask);
  return {AllocMask, Mask.size()};
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineFunction::dump() const {
  print(dbgs());
}
#endif

StringRef MachineFunction::getName() const {
  return getFunction().getName();
}

void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
  OS << "# Machine code for function " << getName() << ": ";
  getProperties().print(OS);
  OS << '\n';

  // Print Frame Information
  FrameInfo->print(*this, OS);

  // Print JumpTable Information
  if (JumpTableInfo)
    JumpTableInfo->print(OS);

  // Print Constant Pool
  ConstantPool->print(OS);

  const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();

  if (RegInfo && !RegInfo->livein_empty()) {
    OS << "Function Live Ins: ";
    for (MachineRegisterInfo::livein_iterator
         I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
      OS << printReg(I->first, TRI);
      if (I->second)
        OS << " in " << printReg(I->second, TRI);
      if (std::next(I) != E)
        OS << ", ";
    }
    OS << '\n';
  }

  ModuleSlotTracker MST(getFunction().getParent());
  MST.incorporateFunction(getFunction());
  for (const auto &BB : *this) {
    OS << '\n';
    // If we print the whole function, print it at its most verbose level.
    BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
  }

  OS << "\n# End machine code for function " << getName() << ".\n\n";
}

/// True if this function needs frame moves for debug or exceptions.
bool MachineFunction::needsFrameMoves() const {
  return getMMI().hasDebugInfo() ||
         getTarget().Options.ForceDwarfFrameSection ||
         F.needsUnwindTableEntry();
}

namespace llvm {

  template<>
  struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
    DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}

    static std::string getGraphName(const MachineFunction *F) {
      return ("CFG for '" + F->getName() + "' function").str();
    }

    std::string getNodeLabel(const MachineBasicBlock *Node,
                             const MachineFunction *Graph) {
      std::string OutStr;
      {
        raw_string_ostream OSS(OutStr);

        if (isSimple()) {
          OSS << printMBBReference(*Node);
          if (const BasicBlock *BB = Node->getBasicBlock())
            OSS << ": " << BB->getName();
        } else
          Node->print(OSS);
      }

      if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());

      // Process string output to make it nicer...
      for (unsigned i = 0; i != OutStr.length(); ++i)
        if (OutStr[i] == '\n') {                            // Left justify
          OutStr[i] = '\\';
          OutStr.insert(OutStr.begin()+i+1, 'l');
        }
      return OutStr;
    }
  };

} // end namespace llvm

void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
  ViewGraph(this, "mf" + getName());
#else
  errs() << "MachineFunction::viewCFG is only available in debug builds on "
         << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}

void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
  ViewGraph(this, "mf" + getName(), true);
#else
  errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
         << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}

/// Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
Register MachineFunction::addLiveIn(MCRegister PReg,
                                    const TargetRegisterClass *RC) {
  MachineRegisterInfo &MRI = getRegInfo();
  Register VReg = MRI.getLiveInVirtReg(PReg);
  if (VReg) {
    const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
    (void)VRegRC;
    // A physical register can be added several times.
    // Between two calls, the register class of the related virtual register
    // may have been constrained to match some operation constraints.
    // In that case, check that the current register class includes the
    // physical register and is a sub class of the specified RC.
    assert((VRegRC == RC || (VRegRC->contains(PReg) &&
                             RC->hasSubClassEq(VRegRC))) &&
            "Register class mismatch!");
    return VReg;
  }
  VReg = MRI.createVirtualRegister(RC);
  MRI.addLiveIn(PReg, VReg);
  return VReg;
}

/// Return the MCSymbol for the specified non-empty jump table.
/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
/// normal 'L' label is returned.
MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
                                        bool isLinkerPrivate) const {
  const DataLayout &DL = getDataLayout();
  assert(JumpTableInfo && "No jump tables");
  assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");

  StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
                                     : DL.getPrivateGlobalPrefix();
  SmallString<60> Name;
  raw_svector_ostream(Name)
    << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
  return Ctx.getOrCreateSymbol(Name);
}

/// Return a function-local symbol to represent the PIC base.
MCSymbol *MachineFunction::getPICBaseSymbol() const {
  const DataLayout &DL = getDataLayout();
  return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
                               Twine(getFunctionNumber()) + "$pb");
}

/// \name Exception Handling
/// \{

LandingPadInfo &
MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
  unsigned N = LandingPads.size();
  for (unsigned i = 0; i < N; ++i) {
    LandingPadInfo &LP = LandingPads[i];
    if (LP.LandingPadBlock == LandingPad)
      return LP;
  }

  LandingPads.push_back(LandingPadInfo(LandingPad));
  return LandingPads[N];
}

void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
                                MCSymbol *BeginLabel, MCSymbol *EndLabel) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  LP.BeginLabels.push_back(BeginLabel);
  LP.EndLabels.push_back(EndLabel);
}

MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
  MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  LP.LandingPadLabel = LandingPadLabel;

  const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
  if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
    if (const auto *PF =
            dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
      getMMI().addPersonality(PF);

    if (LPI->isCleanup())
      addCleanup(LandingPad);

    // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
    //        correct, but we need to do it this way because of how the DWARF EH
    //        emitter processes the clauses.
    for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
      Value *Val = LPI->getClause(I - 1);
      if (LPI->isCatch(I - 1)) {
        addCatchTypeInfo(LandingPad,
                         dyn_cast<GlobalValue>(Val->stripPointerCasts()));
      } else {
        // Add filters in a list.
        auto *CVal = cast<Constant>(Val);
        SmallVector<const GlobalValue *, 4> FilterList;
        for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
             II != IE; ++II)
          FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));

        addFilterTypeInfo(LandingPad, FilterList);
      }
    }

  } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
    for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
      Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
      addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
    }

  } else {
    assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
  }

  return LandingPadLabel;
}

void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
                                       ArrayRef<const GlobalValue *> TyInfo) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  for (unsigned N = TyInfo.size(); N; --N)
    LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
}

void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
                                        ArrayRef<const GlobalValue *> TyInfo) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  std::vector<unsigned> IdsInFilter(TyInfo.size());
  for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
    IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
  LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
}

void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
                                      bool TidyIfNoBeginLabels) {
  for (unsigned i = 0; i != LandingPads.size(); ) {
    LandingPadInfo &LandingPad = LandingPads[i];
    if (LandingPad.LandingPadLabel &&
        !LandingPad.LandingPadLabel->isDefined() &&
        (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
      LandingPad.LandingPadLabel = nullptr;

    // Special case: we *should* emit LPs with null LP MBB. This indicates
    // "nounwind" case.
    if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
      LandingPads.erase(LandingPads.begin() + i);
      continue;
    }

    if (TidyIfNoBeginLabels) {
      for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
        MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
        MCSymbol *EndLabel = LandingPad.EndLabels[j];
        if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
            (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
          continue;

        LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
        LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
        --j;
        --e;
      }

      // Remove landing pads with no try-ranges.
      if (LandingPads[i].BeginLabels.empty()) {
        LandingPads.erase(LandingPads.begin() + i);
        continue;
      }
    }

    // If there is no landing pad, ensure that the list of typeids is empty.
    // If the only typeid is a cleanup, this is the same as having no typeids.
    if (!LandingPad.LandingPadBlock ||
        (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
      LandingPad.TypeIds.clear();
    ++i;
  }
}

void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  LP.TypeIds.push_back(0);
}

void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
                                         const Function *Filter,
                                         const BlockAddress *RecoverBA) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  SEHHandler Handler;
  Handler.FilterOrFinally = Filter;
  Handler.RecoverBA = RecoverBA;
  LP.SEHHandlers.push_back(Handler);
}

void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
                                           const Function *Cleanup) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  SEHHandler Handler;
  Handler.FilterOrFinally = Cleanup;
  Handler.RecoverBA = nullptr;
  LP.SEHHandlers.push_back(Handler);
}

void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
                                            ArrayRef<unsigned> Sites) {
  LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
}

unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
  for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
    if (TypeInfos[i] == TI) return i + 1;

  TypeInfos.push_back(TI);
  return TypeInfos.size();
}

int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
  // If the new filter coincides with the tail of an existing filter, then
  // re-use the existing filter.  Folding filters more than this requires
  // re-ordering filters and/or their elements - probably not worth it.
  for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
       E = FilterEnds.end(); I != E; ++I) {
    unsigned i = *I, j = TyIds.size();

    while (i && j)
      if (FilterIds[--i] != TyIds[--j])
        goto try_next;

    if (!j)
      // The new filter coincides with range [i, end) of the existing filter.
      return -(1 + i);

try_next:;
  }

  // Add the new filter.
  int FilterID = -(1 + FilterIds.size());
  FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
  FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
  FilterEnds.push_back(FilterIds.size());
  FilterIds.push_back(0); // terminator
  return FilterID;
}

MachineFunction::CallSiteInfoMap::iterator
MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
  assert(MI->isCandidateForCallSiteEntry() &&
         "Call site info refers only to call (MI) candidates");

  if (!Target.Options.EmitCallSiteInfo)
    return CallSitesInfo.end();
  return CallSitesInfo.find(MI);
}

/// Return the call machine instruction or find a call within bundle.
static const MachineInstr *getCallInstr(const MachineInstr *MI) {
  if (!MI->isBundle())
    return MI;

  for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
                              getBundleEnd(MI->getIterator())))
    if (BMI.isCandidateForCallSiteEntry())
      return &BMI;

  llvm_unreachable("Unexpected bundle without a call site candidate");
}

void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
  assert(MI->shouldUpdateCallSiteInfo() &&
         "Call site info refers only to call (MI) candidates or "
         "candidates inside bundles");

  const MachineInstr *CallMI = getCallInstr(MI);
  CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
  if (CSIt == CallSitesInfo.end())
    return;
  CallSitesInfo.erase(CSIt);
}

void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
                                       const MachineInstr *New) {
  assert(Old->shouldUpdateCallSiteInfo() &&
         "Call site info refers only to call (MI) candidates or "
         "candidates inside bundles");

  if (!New->isCandidateForCallSiteEntry())
    return eraseCallSiteInfo(Old);

  const MachineInstr *OldCallMI = getCallInstr(Old);
  CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
  if (CSIt == CallSitesInfo.end())
    return;

  CallSiteInfo CSInfo = CSIt->second;
  CallSitesInfo[New] = CSInfo;
}

void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
                                       const MachineInstr *New) {
  assert(Old->shouldUpdateCallSiteInfo() &&
         "Call site info refers only to call (MI) candidates or "
         "candidates inside bundles");

  if (!New->isCandidateForCallSiteEntry())
    return eraseCallSiteInfo(Old);

  const MachineInstr *OldCallMI = getCallInstr(Old);
  CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
  if (CSIt == CallSitesInfo.end())
    return;

  CallSiteInfo CSInfo = std::move(CSIt->second);
  CallSitesInfo.erase(CSIt);
  CallSitesInfo[New] = CSInfo;
}

/// \}

//===----------------------------------------------------------------------===//
//  MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//

/// Return the size of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
  // The size of a jump table entry is 4 bytes unless the entry is just the
  // address of a block, in which case it is the pointer size.
  switch (getEntryKind()) {
  case MachineJumpTableInfo::EK_BlockAddress:
    return TD.getPointerSize();
  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
    return 8;
  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
  case MachineJumpTableInfo::EK_LabelDifference32:
  case MachineJumpTableInfo::EK_Custom32:
    return 4;
  case MachineJumpTableInfo::EK_Inline:
    return 0;
  }
  llvm_unreachable("Unknown jump table encoding!");
}

/// Return the alignment of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
  // The alignment of a jump table entry is the alignment of int32 unless the
  // entry is just the address of a block, in which case it is the pointer
  // alignment.
  switch (getEntryKind()) {
  case MachineJumpTableInfo::EK_BlockAddress:
    return TD.getPointerABIAlignment(0).value();
  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
    return TD.getABIIntegerTypeAlignment(64).value();
  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
  case MachineJumpTableInfo::EK_LabelDifference32:
  case MachineJumpTableInfo::EK_Custom32:
    return TD.getABIIntegerTypeAlignment(32).value();
  case MachineJumpTableInfo::EK_Inline:
    return 1;
  }
  llvm_unreachable("Unknown jump table encoding!");
}

/// Create a new jump table entry in the jump table info.
unsigned MachineJumpTableInfo::createJumpTableIndex(
                               const std::vector<MachineBasicBlock*> &DestBBs) {
  assert(!DestBBs.empty() && "Cannot create an empty jump table!");
  JumpTables.push_back(MachineJumpTableEntry(DestBBs));
  return JumpTables.size()-1;
}

/// If Old is the target of any jump tables, update the jump tables to branch
/// to New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
                                                  MachineBasicBlock *New) {
  assert(Old != New && "Not making a change?");
  bool MadeChange = false;
  for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
    ReplaceMBBInJumpTable(i, Old, New);
  return MadeChange;
}

/// If Old is a target of the jump tables, update the jump table to branch to
/// New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
                                                 MachineBasicBlock *Old,
                                                 MachineBasicBlock *New) {
  assert(Old != New && "Not making a change?");
  bool MadeChange = false;
  MachineJumpTableEntry &JTE = JumpTables[Idx];
  for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
    if (JTE.MBBs[j] == Old) {
      JTE.MBBs[j] = New;
      MadeChange = true;
    }
  return MadeChange;
}

void MachineJumpTableInfo::print(raw_ostream &OS) const {
  if (JumpTables.empty()) return;

  OS << "Jump Tables:\n";

  for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
    OS << printJumpTableEntryReference(i) << ':';
    for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
      OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
    if (i != e)
      OS << '\n';
  }

  OS << '\n';
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
#endif

Printable llvm::printJumpTableEntryReference(unsigned Idx) {
  return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
}

//===----------------------------------------------------------------------===//
//  MachineConstantPool implementation
//===----------------------------------------------------------------------===//

void MachineConstantPoolValue::anchor() {}

Type *MachineConstantPoolEntry::getType() const {
  if (isMachineConstantPoolEntry())
    return Val.MachineCPVal->getType();
  return Val.ConstVal->getType();
}

bool MachineConstantPoolEntry::needsRelocation() const {
  if (isMachineConstantPoolEntry())
    return true;
  return Val.ConstVal->needsRelocation();
}

SectionKind
MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
  if (needsRelocation())
    return SectionKind::getReadOnlyWithRel();
  switch (DL->getTypeAllocSize(getType())) {
  case 4:
    return SectionKind::getMergeableConst4();
  case 8:
    return SectionKind::getMergeableConst8();
  case 16:
    return SectionKind::getMergeableConst16();
  case 32:
    return SectionKind::getMergeableConst32();
  default:
    return SectionKind::getReadOnly();
  }
}

MachineConstantPool::~MachineConstantPool() {
  // A constant may be a member of both Constants and MachineCPVsSharingEntries,
  // so keep track of which we've deleted to avoid double deletions.
  DenseSet<MachineConstantPoolValue*> Deleted;
  for (unsigned i = 0, e = Constants.size(); i != e; ++i)
    if (Constants[i].isMachineConstantPoolEntry()) {
      Deleted.insert(Constants[i].Val.MachineCPVal);
      delete Constants[i].Val.MachineCPVal;
    }
  for (DenseSet<MachineConstantPoolValue*>::iterator I =
       MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
       I != E; ++I) {
    if (Deleted.count(*I) == 0)
      delete *I;
  }
}

/// Test whether the given two constants can be allocated the same constant pool
/// entry.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
                                      const DataLayout &DL) {
  // Handle the trivial case quickly.
  if (A == B) return true;

  // If they have the same type but weren't the same constant, quickly
  // reject them.
  if (A->getType() == B->getType()) return false;

  // We can't handle structs or arrays.
  if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
      isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
    return false;

  // For now, only support constants with the same size.
  uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
  if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
    return false;

  Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);

  // Try constant folding a bitcast of both instructions to an integer.  If we
  // get two identical ConstantInt's, then we are good to share them.  We use
  // the constant folding APIs to do this so that we get the benefit of
  // DataLayout.
  if (isa<PointerType>(A->getType()))
    A = ConstantFoldCastOperand(Instruction::PtrToInt,
                                const_cast<Constant *>(A), IntTy, DL);
  else if (A->getType() != IntTy)
    A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
                                IntTy, DL);
  if (isa<PointerType>(B->getType()))
    B = ConstantFoldCastOperand(Instruction::PtrToInt,
                                const_cast<Constant *>(B), IntTy, DL);
  else if (B->getType() != IntTy)
    B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
                                IntTy, DL);

  return A == B;
}

/// Create a new entry in the constant pool or return an existing one.
/// User must specify the log2 of the minimum required alignment for the object.
unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
                                                   Align Alignment) {
  if (Alignment > PoolAlignment) PoolAlignment = Alignment;

  // Check to see if we already have this constant.
  //
  // FIXME, this could be made much more efficient for large constant pools.
  for (unsigned i = 0, e = Constants.size(); i != e; ++i)
    if (!Constants[i].isMachineConstantPoolEntry() &&
        CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
      if (Constants[i].getAlign() < Alignment)
        Constants[i].Alignment = Alignment;
      return i;
    }

  Constants.push_back(MachineConstantPoolEntry(C, Alignment));
  return Constants.size()-1;
}

unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
                                                   Align Alignment) {
  if (Alignment > PoolAlignment) PoolAlignment = Alignment;

  // Check to see if we already have this constant.
  //
  // FIXME, this could be made much more efficient for large constant pools.
  int Idx = V->getExistingMachineCPValue(this, Alignment);
  if (Idx != -1) {
    MachineCPVsSharingEntries.insert(V);
    return (unsigned)Idx;
  }

  Constants.push_back(MachineConstantPoolEntry(V, Alignment));
  return Constants.size()-1;
}

void MachineConstantPool::print(raw_ostream &OS) const {
  if (Constants.empty()) return;

  OS << "Constant Pool:\n";
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    OS << "  cp#" << i << ": ";
    if (Constants[i].isMachineConstantPoolEntry())
      Constants[i].Val.MachineCPVal->print(OS);
    else
      Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
    OS << ", align=" << Constants[i].getAlign().value();
    OS << "\n";
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
#endif