MachineCombiner.cpp 28.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The machine combiner pass uses machine trace metrics to ensure the combined
// instructions do not lengthen the critical path or the resource depth.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "machine-combiner"

STATISTIC(NumInstCombined, "Number of machineinst combined");

static cl::opt<unsigned>
inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
              cl::desc("Incremental depth computation will be used for basic "
                       "blocks with more instructions."), cl::init(500));

static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
                                cl::desc("Dump all substituted intrs"),
                                cl::init(false));

#ifdef EXPENSIVE_CHECKS
static cl::opt<bool> VerifyPatternOrder(
    "machine-combiner-verify-pattern-order", cl::Hidden,
    cl::desc(
        "Verify that the generated patterns are ordered by increasing latency"),
    cl::init(true));
#else
static cl::opt<bool> VerifyPatternOrder(
    "machine-combiner-verify-pattern-order", cl::Hidden,
    cl::desc(
        "Verify that the generated patterns are ordered by increasing latency"),
    cl::init(false));
#endif

namespace {
class MachineCombiner : public MachineFunctionPass {
  const TargetSubtargetInfo *STI;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  MCSchedModel SchedModel;
  MachineRegisterInfo *MRI;
  MachineLoopInfo *MLI; // Current MachineLoopInfo
  MachineTraceMetrics *Traces;
  MachineTraceMetrics::Ensemble *MinInstr;
  MachineBlockFrequencyInfo *MBFI;
  ProfileSummaryInfo *PSI;

  TargetSchedModel TSchedModel;

  /// True if optimizing for code size.
  bool OptSize;

public:
  static char ID;
  MachineCombiner() : MachineFunctionPass(ID) {
    initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &MF) override;
  StringRef getPassName() const override { return "Machine InstCombiner"; }

private:
  bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize);
  bool combineInstructions(MachineBasicBlock *);
  MachineInstr *getOperandDef(const MachineOperand &MO);
  unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
                    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
                    MachineTraceMetrics::Trace BlockTrace);
  unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
                      MachineTraceMetrics::Trace BlockTrace);
  bool
  improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
                          MachineTraceMetrics::Trace BlockTrace,
                          SmallVectorImpl<MachineInstr *> &InsInstrs,
                          SmallVectorImpl<MachineInstr *> &DelInstrs,
                          DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
                          MachineCombinerPattern Pattern, bool SlackIsAccurate);
  bool preservesResourceLen(MachineBasicBlock *MBB,
                            MachineTraceMetrics::Trace BlockTrace,
                            SmallVectorImpl<MachineInstr *> &InsInstrs,
                            SmallVectorImpl<MachineInstr *> &DelInstrs);
  void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
                     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
  std::pair<unsigned, unsigned>
  getLatenciesForInstrSequences(MachineInstr &MI,
                                SmallVectorImpl<MachineInstr *> &InsInstrs,
                                SmallVectorImpl<MachineInstr *> &DelInstrs,
                                MachineTraceMetrics::Trace BlockTrace);

  void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
                          SmallVector<MachineCombinerPattern, 16> &Patterns);
};
}

char MachineCombiner::ID = 0;
char &llvm::MachineCombinerID = MachineCombiner::ID;

INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
                      "Machine InstCombiner", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
                    false, false)

void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineTraceMetrics>();
  AU.addPreserved<MachineTraceMetrics>();
  AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
  MachineInstr *DefInstr = nullptr;
  // We need a virtual register definition.
  if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
    DefInstr = MRI->getUniqueVRegDef(MO.getReg());
  // PHI's have no depth etc.
  if (DefInstr && DefInstr->isPHI())
    DefInstr = nullptr;
  return DefInstr;
}

/// Computes depth of instructions in vector \InsInstr.
///
/// \param InsInstrs is a vector of machine instructions
/// \param InstrIdxForVirtReg is a dense map of virtual register to index
/// of defining machine instruction in \p InsInstrs
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
unsigned
MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
                          DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
                          MachineTraceMetrics::Trace BlockTrace) {
  SmallVector<unsigned, 16> InstrDepth;
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
         "Missing machine model\n");

  // For each instruction in the new sequence compute the depth based on the
  // operands. Use the trace information when possible. For new operands which
  // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
  for (auto *InstrPtr : InsInstrs) { // for each Use
    unsigned IDepth = 0;
    for (const MachineOperand &MO : InstrPtr->operands()) {
      // Check for virtual register operand.
      if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
        continue;
      if (!MO.isUse())
        continue;
      unsigned DepthOp = 0;
      unsigned LatencyOp = 0;
      DenseMap<unsigned, unsigned>::iterator II =
          InstrIdxForVirtReg.find(MO.getReg());
      if (II != InstrIdxForVirtReg.end()) {
        // Operand is new virtual register not in trace
        assert(II->second < InstrDepth.size() && "Bad Index");
        MachineInstr *DefInstr = InsInstrs[II->second];
        assert(DefInstr &&
               "There must be a definition for a new virtual register");
        DepthOp = InstrDepth[II->second];
        int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
        int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
        LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
                                                      InstrPtr, UseIdx);
      } else {
        MachineInstr *DefInstr = getOperandDef(MO);
        if (DefInstr) {
          DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
          LatencyOp = TSchedModel.computeOperandLatency(
              DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
              InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
        }
      }
      IDepth = std::max(IDepth, DepthOp + LatencyOp);
    }
    InstrDepth.push_back(IDepth);
  }
  unsigned NewRootIdx = InsInstrs.size() - 1;
  return InstrDepth[NewRootIdx];
}

/// Computes instruction latency as max of latency of defined operands.
///
/// \param Root is a machine instruction that could be replaced by NewRoot.
/// It is used to compute a more accurate latency information for NewRoot in
/// case there is a dependent instruction in the same trace (\p BlockTrace)
/// \param NewRoot is the instruction for which the latency is computed
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Latency of \p NewRoot
unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
                                     MachineTraceMetrics::Trace BlockTrace) {
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
         "Missing machine model\n");

  // Check each definition in NewRoot and compute the latency
  unsigned NewRootLatency = 0;

  for (const MachineOperand &MO : NewRoot->operands()) {
    // Check for virtual register operand.
    if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
      continue;
    if (!MO.isDef())
      continue;
    // Get the first instruction that uses MO
    MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
    RI++;
    if (RI == MRI->reg_end())
      continue;
    MachineInstr *UseMO = RI->getParent();
    unsigned LatencyOp = 0;
    if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
      LatencyOp = TSchedModel.computeOperandLatency(
          NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
          UseMO->findRegisterUseOperandIdx(MO.getReg()));
    } else {
      LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
    }
    NewRootLatency = std::max(NewRootLatency, LatencyOp);
  }
  return NewRootLatency;
}

/// The combiner's goal may differ based on which pattern it is attempting
/// to optimize.
enum class CombinerObjective {
  MustReduceDepth, // The data dependency chain must be improved.
  Default          // The critical path must not be lengthened.
};

static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
  // TODO: If C++ ever gets a real enum class, make this part of the
  // MachineCombinerPattern class.
  switch (P) {
  case MachineCombinerPattern::REASSOC_AX_BY:
  case MachineCombinerPattern::REASSOC_AX_YB:
  case MachineCombinerPattern::REASSOC_XA_BY:
  case MachineCombinerPattern::REASSOC_XA_YB:
  case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
  case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
    return CombinerObjective::MustReduceDepth;
  default:
    return CombinerObjective::Default;
  }
}

/// Estimate the latency of the new and original instruction sequence by summing
/// up the latencies of the inserted and deleted instructions. This assumes
/// that the inserted and deleted instructions are dependent instruction chains,
/// which might not hold in all cases.
std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
    MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    MachineTraceMetrics::Trace BlockTrace) {
  assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
  unsigned NewRootLatency = 0;
  // NewRoot is the last instruction in the \p InsInstrs vector.
  MachineInstr *NewRoot = InsInstrs.back();
  for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
    NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
  NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);

  unsigned RootLatency = 0;
  for (auto I : DelInstrs)
    RootLatency += TSchedModel.computeInstrLatency(I);

  return {NewRootLatency, RootLatency};
}

/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
/// The new code sequence ends in MI NewRoot. A necessary condition for the new
/// sequence to replace the old sequence is that it cannot lengthen the critical
/// path. The definition of "improve" may be restricted by specifying that the
/// new path improves the data dependency chain (MustReduceDepth).
bool MachineCombiner::improvesCriticalPathLen(
    MachineBasicBlock *MBB, MachineInstr *Root,
    MachineTraceMetrics::Trace BlockTrace,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
    MachineCombinerPattern Pattern,
    bool SlackIsAccurate) {
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
         "Missing machine model\n");
  // Get depth and latency of NewRoot and Root.
  unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
  unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;

  LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
                    << NewRootDepth << "\tRootDepth: " << RootDepth);

  // For a transform such as reassociation, the cost equation is
  // conservatively calculated so that we must improve the depth (data
  // dependency cycles) in the critical path to proceed with the transform.
  // Being conservative also protects against inaccuracies in the underlying
  // machine trace metrics and CPU models.
  if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
    LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
    LLVM_DEBUG(NewRootDepth < RootDepth
                   ? dbgs() << "\t  and it does it\n"
                   : dbgs() << "\t  but it does NOT do it\n");
    return NewRootDepth < RootDepth;
  }

  // A more flexible cost calculation for the critical path includes the slack
  // of the original code sequence. This may allow the transform to proceed
  // even if the instruction depths (data dependency cycles) become worse.

  // Account for the latency of the inserted and deleted instructions by
  unsigned NewRootLatency, RootLatency;
  std::tie(NewRootLatency, RootLatency) =
      getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);

  unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
  unsigned NewCycleCount = NewRootDepth + NewRootLatency;
  unsigned OldCycleCount =
      RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
  LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
                    << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
                    << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
                    << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
                    << "\n\tRootDepth + RootLatency + RootSlack = "
                    << OldCycleCount;);
  LLVM_DEBUG(NewCycleCount <= OldCycleCount
                 ? dbgs() << "\n\t  It IMPROVES PathLen because"
                 : dbgs() << "\n\t  It DOES NOT improve PathLen because");
  LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
                    << ", OldCycleCount = " << OldCycleCount << "\n");

  return NewCycleCount <= OldCycleCount;
}

/// helper routine to convert instructions into SC
void MachineCombiner::instr2instrSC(
    SmallVectorImpl<MachineInstr *> &Instrs,
    SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
  for (auto *InstrPtr : Instrs) {
    unsigned Opc = InstrPtr->getOpcode();
    unsigned Idx = TII->get(Opc).getSchedClass();
    const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
    InstrsSC.push_back(SC);
  }
}

/// True when the new instructions do not increase resource length
bool MachineCombiner::preservesResourceLen(
    MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs) {
  if (!TSchedModel.hasInstrSchedModel())
    return true;

  // Compute current resource length

  //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
  SmallVector <const MachineBasicBlock *, 1> MBBarr;
  MBBarr.push_back(MBB);
  unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);

  // Deal with SC rather than Instructions.
  SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
  SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;

  instr2instrSC(InsInstrs, InsInstrsSC);
  instr2instrSC(DelInstrs, DelInstrsSC);

  ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
  ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);

  // Compute new resource length.
  unsigned ResLenAfterCombine =
      BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);

  LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
                    << ResLenBeforeCombine
                    << " and after: " << ResLenAfterCombine << "\n";);
  LLVM_DEBUG(
      ResLenAfterCombine <=
      ResLenBeforeCombine + TII->getExtendResourceLenLimit()
          ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
          : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
                      "Length\n");

  return ResLenAfterCombine <=
         ResLenBeforeCombine + TII->getExtendResourceLenLimit();
}

/// \returns true when new instruction sequence should be generated
/// independent if it lengthens critical path or not
bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize,
                                   bool OptForSize) {
  if (OptForSize && (NewSize < OldSize))
    return true;
  if (!TSchedModel.hasInstrSchedModelOrItineraries())
    return true;
  return false;
}

/// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
/// depths if requested.
///
/// \param MBB basic block to insert instructions in
/// \param MI current machine instruction
/// \param InsInstrs new instructions to insert in \p MBB
/// \param DelInstrs instruction to delete from \p MBB
/// \param MinInstr is a pointer to the machine trace information
/// \param RegUnits set of live registers, needed to compute instruction depths
/// \param IncrementalUpdate if true, compute instruction depths incrementally,
///                          otherwise invalidate the trace
static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
                                     SmallVector<MachineInstr *, 16> InsInstrs,
                                     SmallVector<MachineInstr *, 16> DelInstrs,
                                     MachineTraceMetrics::Ensemble *MinInstr,
                                     SparseSet<LiveRegUnit> &RegUnits,
                                     bool IncrementalUpdate) {
  for (auto *InstrPtr : InsInstrs)
    MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);

  for (auto *InstrPtr : DelInstrs) {
    InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
    // Erase all LiveRegs defined by the removed instruction
    for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
      if (I->MI == InstrPtr)
        I = RegUnits.erase(I);
      else
        I++;
    }
  }

  if (IncrementalUpdate)
    for (auto *InstrPtr : InsInstrs)
      MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
  else
    MinInstr->invalidate(MBB);

  NumInstCombined++;
}

// Check that the difference between original and new latency is decreasing for
// later patterns. This helps to discover sub-optimal pattern orderings.
void MachineCombiner::verifyPatternOrder(
    MachineBasicBlock *MBB, MachineInstr &Root,
    SmallVector<MachineCombinerPattern, 16> &Patterns) {
  long PrevLatencyDiff = std::numeric_limits<long>::max();
  (void)PrevLatencyDiff; // Variable is used in assert only.
  for (auto P : Patterns) {
    SmallVector<MachineInstr *, 16> InsInstrs;
    SmallVector<MachineInstr *, 16> DelInstrs;
    DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
    TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
                                    InstrIdxForVirtReg);
    // Found pattern, but did not generate alternative sequence.
    // This can happen e.g. when an immediate could not be materialized
    // in a single instruction.
    if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
      continue;

    unsigned NewRootLatency, RootLatency;
    std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
        Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
    long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
    assert(CurrentLatencyDiff <= PrevLatencyDiff &&
           "Current pattern is better than previous pattern.");
    PrevLatencyDiff = CurrentLatencyDiff;
  }
}

/// Substitute a slow code sequence with a faster one by
/// evaluating instruction combining pattern.
/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
/// combining based on machine trace metrics. Only combine a sequence of
/// instructions  when this neither lengthens the critical path nor increases
/// resource pressure. When optimizing for codesize always combine when the new
/// sequence is shorter.
bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
  bool Changed = false;
  LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");

  bool IncrementalUpdate = false;
  auto BlockIter = MBB->begin();
  decltype(BlockIter) LastUpdate;
  // Check if the block is in a loop.
  const MachineLoop *ML = MLI->getLoopFor(MBB);
  if (!MinInstr)
    MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);

  SparseSet<LiveRegUnit> RegUnits;
  RegUnits.setUniverse(TRI->getNumRegUnits());

  bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);

  while (BlockIter != MBB->end()) {
    auto &MI = *BlockIter++;
    SmallVector<MachineCombinerPattern, 16> Patterns;
    // The motivating example is:
    //
    //     MUL  Other        MUL_op1 MUL_op2  Other
    //      \    /               \      |    /
    //      ADD/SUB      =>        MADD/MSUB
    //      (=Root)                (=NewRoot)

    // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
    // usually beneficial for code size it unfortunately can hurt performance
    // when the ADD is on the critical path, but the MUL is not. With the
    // substitution the MUL becomes part of the critical path (in form of the
    // MADD) and can lengthen it on architectures where the MADD latency is
    // longer than the ADD latency.
    //
    // For each instruction we check if it can be the root of a combiner
    // pattern. Then for each pattern the new code sequence in form of MI is
    // generated and evaluated. When the efficiency criteria (don't lengthen
    // critical path, don't use more resources) is met the new sequence gets
    // hooked up into the basic block before the old sequence is removed.
    //
    // The algorithm does not try to evaluate all patterns and pick the best.
    // This is only an artificial restriction though. In practice there is
    // mostly one pattern, and getMachineCombinerPatterns() can order patterns
    // based on an internal cost heuristic. If
    // machine-combiner-verify-pattern-order is enabled, all patterns are
    // checked to ensure later patterns do not provide better latency savings.

    if (!TII->getMachineCombinerPatterns(MI, Patterns))
      continue;

    if (VerifyPatternOrder)
      verifyPatternOrder(MBB, MI, Patterns);

    for (auto P : Patterns) {
      SmallVector<MachineInstr *, 16> InsInstrs;
      SmallVector<MachineInstr *, 16> DelInstrs;
      DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
      TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
                                      InstrIdxForVirtReg);
      unsigned NewInstCount = InsInstrs.size();
      unsigned OldInstCount = DelInstrs.size();
      // Found pattern, but did not generate alternative sequence.
      // This can happen e.g. when an immediate could not be materialized
      // in a single instruction.
      if (!NewInstCount)
        continue;

      LLVM_DEBUG(if (dump_intrs) {
        dbgs() << "\tFor the Pattern (" << (int)P
               << ") these instructions could be removed\n";
        for (auto const *InstrPtr : DelInstrs)
          InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
                          /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
        dbgs() << "\tThese instructions could replace the removed ones\n";
        for (auto const *InstrPtr : InsInstrs)
          InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
                          /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
      });

      bool SubstituteAlways = false;
      if (ML && TII->isThroughputPattern(P))
        SubstituteAlways = true;

      if (IncrementalUpdate) {
        // Update depths since the last incremental update.
        MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
        LastUpdate = BlockIter;
      }

      // Substitute when we optimize for codesize and the new sequence has
      // fewer instructions OR
      // the new sequence neither lengthens the critical path nor increases
      // resource pressure.
      if (SubstituteAlways ||
          doSubstitute(NewInstCount, OldInstCount, OptForSize)) {
        insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
                                 RegUnits, IncrementalUpdate);
        // Eagerly stop after the first pattern fires.
        Changed = true;
        break;
      } else {
        // For big basic blocks, we only compute the full trace the first time
        // we hit this. We do not invalidate the trace, but instead update the
        // instruction depths incrementally.
        // NOTE: Only the instruction depths up to MI are accurate. All other
        // trace information is not updated.
        MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
        Traces->verifyAnalysis();
        if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
                                    InstrIdxForVirtReg, P,
                                    !IncrementalUpdate) &&
            preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
          if (MBB->size() > inc_threshold) {
            // Use incremental depth updates for basic blocks above treshold
            IncrementalUpdate = true;
            LastUpdate = BlockIter;
          }

          insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
                                   RegUnits, IncrementalUpdate);

          // Eagerly stop after the first pattern fires.
          Changed = true;
          break;
        }
        // Cleanup instructions of the alternative code sequence. There is no
        // use for them.
        MachineFunction *MF = MBB->getParent();
        for (auto *InstrPtr : InsInstrs)
          MF->DeleteMachineInstr(InstrPtr);
      }
      InstrIdxForVirtReg.clear();
    }
  }

  if (Changed && IncrementalUpdate)
    Traces->invalidate(MBB);
  return Changed;
}

bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
  STI = &MF.getSubtarget();
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  SchedModel = STI->getSchedModel();
  TSchedModel.init(STI);
  MRI = &MF.getRegInfo();
  MLI = &getAnalysis<MachineLoopInfo>();
  Traces = &getAnalysis<MachineTraceMetrics>();
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  MBFI = (PSI && PSI->hasProfileSummary()) ?
         &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
         nullptr;
  MinInstr = nullptr;
  OptSize = MF.getFunction().hasOptSize();

  LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
  if (!TII->useMachineCombiner()) {
    LLVM_DEBUG(
        dbgs()
        << "  Skipping pass: Target does not support machine combiner\n");
    return false;
  }

  bool Changed = false;

  // Try to combine instructions.
  for (auto &MBB : MF)
    Changed |= combineInstructions(&MBB);

  return Changed;
}