MachineBasicBlock.cpp 50.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "codegen"

static cl::opt<bool> PrintSlotIndexes(
    "print-slotindexes",
    cl::desc("When printing machine IR, annotate instructions and blocks with "
             "SlotIndexes when available"),
    cl::init(true), cl::Hidden);

MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
    : BB(B), Number(-1), xParent(&MF) {
  Insts.Parent = this;
  if (B)
    IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
}

MachineBasicBlock::~MachineBasicBlock() {
}

/// Return the MCSymbol for this basic block.
MCSymbol *MachineBasicBlock::getSymbol() const {
  if (!CachedMCSymbol) {
    const MachineFunction *MF = getParent();
    MCContext &Ctx = MF->getContext();
    auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();

    assert(getNumber() >= 0 && "cannot get label for unreachable MBB");

    // We emit a non-temporary symbol for every basic block if we have BBLabels
    // or -- with basic block sections -- when a basic block begins a section.
    // With basic block symbols, we use a unary encoding which can
    // compress the symbol names significantly. For basic block sections where
    // this block is the first in a cluster, we use a non-temp descriptive name.
    // Otherwise we fall back to use temp label.
    if (MF->hasBBLabels()) {
      auto Iter = MF->getBBSectionsSymbolPrefix().begin();
      if (getNumber() < 0 ||
          getNumber() >= (int)MF->getBBSectionsSymbolPrefix().size())
        report_fatal_error("Unreachable MBB: " + Twine(getNumber()));
      // The basic blocks for function foo are named a.BB.foo, aa.BB.foo, and
      // so on.
      std::string Prefix(Iter + 1, Iter + getNumber() + 1);
      std::reverse(Prefix.begin(), Prefix.end());
      CachedMCSymbol =
          Ctx.getOrCreateSymbol(Twine(Prefix) + ".BB." + Twine(MF->getName()));
    } else if (MF->hasBBSections() && isBeginSection()) {
      SmallString<5> Suffix;
      if (SectionID == MBBSectionID::ColdSectionID) {
        Suffix += ".cold";
      } else if (SectionID == MBBSectionID::ExceptionSectionID) {
        Suffix += ".eh";
      } else {
        Suffix += "." + std::to_string(SectionID.Number);
      }
      CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
    } else {
      CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
                                             Twine(MF->getFunctionNumber()) +
                                             "_" + Twine(getNumber()));
    }
  }
  return CachedMCSymbol;
}


raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
  MBB.print(OS);
  return OS;
}

Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
  return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
}

/// When an MBB is added to an MF, we need to update the parent pointer of the
/// MBB, the MBB numbering, and any instructions in the MBB to be on the right
/// operand list for registers.
///
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
/// gets the next available unique MBB number. If it is removed from a
/// MachineFunction, it goes back to being #-1.
void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
    MachineBasicBlock *N) {
  MachineFunction &MF = *N->getParent();
  N->Number = MF.addToMBBNumbering(N);

  // Make sure the instructions have their operands in the reginfo lists.
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
  for (MachineBasicBlock::instr_iterator
         I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
    I->AddRegOperandsToUseLists(RegInfo);
}

void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
    MachineBasicBlock *N) {
  N->getParent()->removeFromMBBNumbering(N->Number);
  N->Number = -1;
}

/// When we add an instruction to a basic block list, we update its parent
/// pointer and add its operands from reg use/def lists if appropriate.
void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
  assert(!N->getParent() && "machine instruction already in a basic block");
  N->setParent(Parent);

  // Add the instruction's register operands to their corresponding
  // use/def lists.
  MachineFunction *MF = Parent->getParent();
  N->AddRegOperandsToUseLists(MF->getRegInfo());
  MF->handleInsertion(*N);
}

/// When we remove an instruction from a basic block list, we update its parent
/// pointer and remove its operands from reg use/def lists if appropriate.
void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
  assert(N->getParent() && "machine instruction not in a basic block");

  // Remove from the use/def lists.
  if (MachineFunction *MF = N->getMF()) {
    MF->handleRemoval(*N);
    N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
  }

  N->setParent(nullptr);
}

/// When moving a range of instructions from one MBB list to another, we need to
/// update the parent pointers and the use/def lists.
void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
                                                       instr_iterator First,
                                                       instr_iterator Last) {
  assert(Parent->getParent() == FromList.Parent->getParent() &&
         "cannot transfer MachineInstrs between MachineFunctions");

  // If it's within the same BB, there's nothing to do.
  if (this == &FromList)
    return;

  assert(Parent != FromList.Parent && "Two lists have the same parent?");

  // If splicing between two blocks within the same function, just update the
  // parent pointers.
  for (; First != Last; ++First)
    First->setParent(Parent);
}

void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
  assert(!MI->getParent() && "MI is still in a block!");
  Parent->getParent()->DeleteMachineInstr(MI);
}

MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
  instr_iterator I = instr_begin(), E = instr_end();
  while (I != E && I->isPHI())
    ++I;
  assert((I == E || !I->isInsideBundle()) &&
         "First non-phi MI cannot be inside a bundle!");
  return I;
}

MachineBasicBlock::iterator
MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();

  iterator E = end();
  while (I != E && (I->isPHI() || I->isPosition() ||
                    TII->isBasicBlockPrologue(*I)))
    ++I;
  // FIXME: This needs to change if we wish to bundle labels
  // inside the bundle.
  assert((I == E || !I->isInsideBundle()) &&
         "First non-phi / non-label instruction is inside a bundle!");
  return I;
}

MachineBasicBlock::iterator
MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();

  iterator E = end();
  while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
                    TII->isBasicBlockPrologue(*I)))
    ++I;
  // FIXME: This needs to change if we wish to bundle labels / dbg_values
  // inside the bundle.
  assert((I == E || !I->isInsideBundle()) &&
         "First non-phi / non-label / non-debug "
         "instruction is inside a bundle!");
  return I;
}

MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
  iterator B = begin(), E = end(), I = E;
  while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
    ; /*noop */
  while (I != E && !I->isTerminator())
    ++I;
  return I;
}

MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
  instr_iterator B = instr_begin(), E = instr_end(), I = E;
  while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
    ; /*noop */
  while (I != E && !I->isTerminator())
    ++I;
  return I;
}

MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
  // Skip over begin-of-block dbg_value instructions.
  return skipDebugInstructionsForward(begin(), end());
}

MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
  // Skip over end-of-block dbg_value instructions.
  instr_iterator B = instr_begin(), I = instr_end();
  while (I != B) {
    --I;
    // Return instruction that starts a bundle.
    if (I->isDebugInstr() || I->isInsideBundle())
      continue;
    return I;
  }
  // The block is all debug values.
  return end();
}

bool MachineBasicBlock::hasEHPadSuccessor() const {
  for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
    if ((*I)->isEHPad())
      return true;
  return false;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
  print(dbgs());
}
#endif

bool MachineBasicBlock::mayHaveInlineAsmBr() const {
  for (const MachineBasicBlock *Succ : successors()) {
    if (Succ->isInlineAsmBrIndirectTarget())
      return true;
  }
  return false;
}

bool MachineBasicBlock::isLegalToHoistInto() const {
  if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
    return false;
  return true;
}

StringRef MachineBasicBlock::getName() const {
  if (const BasicBlock *LBB = getBasicBlock())
    return LBB->getName();
  else
    return StringRef("", 0);
}

/// Return a hopefully unique identifier for this block.
std::string MachineBasicBlock::getFullName() const {
  std::string Name;
  if (getParent())
    Name = (getParent()->getName() + ":").str();
  if (getBasicBlock())
    Name += getBasicBlock()->getName();
  else
    Name += ("BB" + Twine(getNumber())).str();
  return Name;
}

void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
                              bool IsStandalone) const {
  const MachineFunction *MF = getParent();
  if (!MF) {
    OS << "Can't print out MachineBasicBlock because parent MachineFunction"
       << " is null\n";
    return;
  }
  const Function &F = MF->getFunction();
  const Module *M = F.getParent();
  ModuleSlotTracker MST(M);
  MST.incorporateFunction(F);
  print(OS, MST, Indexes, IsStandalone);
}

void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
                              const SlotIndexes *Indexes,
                              bool IsStandalone) const {
  const MachineFunction *MF = getParent();
  if (!MF) {
    OS << "Can't print out MachineBasicBlock because parent MachineFunction"
       << " is null\n";
    return;
  }

  if (Indexes && PrintSlotIndexes)
    OS << Indexes->getMBBStartIdx(this) << '\t';

  OS << "bb." << getNumber();
  bool HasAttributes = false;
  if (const auto *BB = getBasicBlock()) {
    if (BB->hasName()) {
      OS << "." << BB->getName();
    } else {
      HasAttributes = true;
      OS << " (";
      int Slot = MST.getLocalSlot(BB);
      if (Slot == -1)
        OS << "<ir-block badref>";
      else
        OS << (Twine("%ir-block.") + Twine(Slot)).str();
    }
  }

  if (hasAddressTaken()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "address-taken";
    HasAttributes = true;
  }
  if (isEHPad()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "landing-pad";
    HasAttributes = true;
  }
  if (getAlignment() != Align(1)) {
    OS << (HasAttributes ? ", " : " (");
    OS << "align " << Log2(getAlignment());
    HasAttributes = true;
  }
  if (HasAttributes)
    OS << ")";
  OS << ":\n";

  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  const MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
  bool HasLineAttributes = false;

  // Print the preds of this block according to the CFG.
  if (!pred_empty() && IsStandalone) {
    if (Indexes) OS << '\t';
    // Don't indent(2), align with previous line attributes.
    OS << "; predecessors: ";
    for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
      if (I != pred_begin())
        OS << ", ";
      OS << printMBBReference(**I);
    }
    OS << '\n';
    HasLineAttributes = true;
  }

  if (!succ_empty()) {
    if (Indexes) OS << '\t';
    // Print the successors
    OS.indent(2) << "successors: ";
    for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
      if (I != succ_begin())
        OS << ", ";
      OS << printMBBReference(**I);
      if (!Probs.empty())
        OS << '('
           << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
           << ')';
    }
    if (!Probs.empty() && IsStandalone) {
      // Print human readable probabilities as comments.
      OS << "; ";
      for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
        const BranchProbability &BP = getSuccProbability(I);
        if (I != succ_begin())
          OS << ", ";
        OS << printMBBReference(**I) << '('
           << format("%.2f%%",
                     rint(((double)BP.getNumerator() / BP.getDenominator()) *
                          100.0 * 100.0) /
                         100.0)
           << ')';
      }
    }

    OS << '\n';
    HasLineAttributes = true;
  }

  if (!livein_empty() && MRI.tracksLiveness()) {
    if (Indexes) OS << '\t';
    OS.indent(2) << "liveins: ";

    bool First = true;
    for (const auto &LI : liveins()) {
      if (!First)
        OS << ", ";
      First = false;
      OS << printReg(LI.PhysReg, TRI);
      if (!LI.LaneMask.all())
        OS << ":0x" << PrintLaneMask(LI.LaneMask);
    }
    HasLineAttributes = true;
  }

  if (HasLineAttributes)
    OS << '\n';

  bool IsInBundle = false;
  for (const MachineInstr &MI : instrs()) {
    if (Indexes && PrintSlotIndexes) {
      if (Indexes->hasIndex(MI))
        OS << Indexes->getInstructionIndex(MI);
      OS << '\t';
    }

    if (IsInBundle && !MI.isInsideBundle()) {
      OS.indent(2) << "}\n";
      IsInBundle = false;
    }

    OS.indent(IsInBundle ? 4 : 2);
    MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
             /*AddNewLine=*/false, &TII);

    if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
      OS << " {";
      IsInBundle = true;
    }
    OS << '\n';
  }

  if (IsInBundle)
    OS.indent(2) << "}\n";

  if (IrrLoopHeaderWeight && IsStandalone) {
    if (Indexes) OS << '\t';
    OS.indent(2) << "; Irreducible loop header weight: "
                 << IrrLoopHeaderWeight.getValue() << '\n';
  }
}

void MachineBasicBlock::printAsOperand(raw_ostream &OS,
                                       bool /*PrintType*/) const {
  OS << "%bb." << getNumber();
}

void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
  LiveInVector::iterator I = find_if(
      LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
  if (I == LiveIns.end())
    return;

  I->LaneMask &= ~LaneMask;
  if (I->LaneMask.none())
    LiveIns.erase(I);
}

MachineBasicBlock::livein_iterator
MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
  // Get non-const version of iterator.
  LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
  return LiveIns.erase(LI);
}

bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
  livein_iterator I = find_if(
      LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
  return I != livein_end() && (I->LaneMask & LaneMask).any();
}

void MachineBasicBlock::sortUniqueLiveIns() {
  llvm::sort(LiveIns,
             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
               return LI0.PhysReg < LI1.PhysReg;
             });
  // Liveins are sorted by physreg now we can merge their lanemasks.
  LiveInVector::const_iterator I = LiveIns.begin();
  LiveInVector::const_iterator J;
  LiveInVector::iterator Out = LiveIns.begin();
  for (; I != LiveIns.end(); ++Out, I = J) {
    MCRegister PhysReg = I->PhysReg;
    LaneBitmask LaneMask = I->LaneMask;
    for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
      LaneMask |= J->LaneMask;
    Out->PhysReg = PhysReg;
    Out->LaneMask = LaneMask;
  }
  LiveIns.erase(Out, LiveIns.end());
}

Register
MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
  assert(getParent() && "MBB must be inserted in function");
  assert(PhysReg.isPhysical() && "Expected physreg");
  assert(RC && "Register class is required");
  assert((isEHPad() || this == &getParent()->front()) &&
         "Only the entry block and landing pads can have physreg live ins");

  bool LiveIn = isLiveIn(PhysReg);
  iterator I = SkipPHIsAndLabels(begin()), E = end();
  MachineRegisterInfo &MRI = getParent()->getRegInfo();
  const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();

  // Look for an existing copy.
  if (LiveIn)
    for (;I != E && I->isCopy(); ++I)
      if (I->getOperand(1).getReg() == PhysReg) {
        Register VirtReg = I->getOperand(0).getReg();
        if (!MRI.constrainRegClass(VirtReg, RC))
          llvm_unreachable("Incompatible live-in register class.");
        return VirtReg;
      }

  // No luck, create a virtual register.
  Register VirtReg = MRI.createVirtualRegister(RC);
  BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
    .addReg(PhysReg, RegState::Kill);
  if (!LiveIn)
    addLiveIn(PhysReg);
  return VirtReg;
}

void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
  getParent()->splice(NewAfter->getIterator(), getIterator());
}

void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
  getParent()->splice(++NewBefore->getIterator(), getIterator());
}

void MachineBasicBlock::updateTerminator(
    MachineBasicBlock *PreviousLayoutSuccessor) {
  LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
                    << "\n");

  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
  // A block with no successors has no concerns with fall-through edges.
  if (this->succ_empty())
    return;

  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  DebugLoc DL = findBranchDebugLoc();
  bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
  (void) B;
  assert(!B && "UpdateTerminators requires analyzable predecessors!");
  if (Cond.empty()) {
    if (TBB) {
      // The block has an unconditional branch. If its successor is now its
      // layout successor, delete the branch.
      if (isLayoutSuccessor(TBB))
        TII->removeBranch(*this);
    } else {
      // The block has an unconditional fallthrough, or the end of the block is
      // unreachable.

      // Unfortunately, whether the end of the block is unreachable is not
      // immediately obvious; we must fall back to checking the successor list,
      // and assuming that if the passed in block is in the succesor list and
      // not an EHPad, it must be the intended target.
      if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
          PreviousLayoutSuccessor->isEHPad())
        return;

      // If the unconditional successor block is not the current layout
      // successor, insert a branch to jump to it.
      if (!isLayoutSuccessor(PreviousLayoutSuccessor))
        TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
    }
    return;
  }

  if (FBB) {
    // The block has a non-fallthrough conditional branch. If one of its
    // successors is its layout successor, rewrite it to a fallthrough
    // conditional branch.
    if (isLayoutSuccessor(TBB)) {
      if (TII->reverseBranchCondition(Cond))
        return;
      TII->removeBranch(*this);
      TII->insertBranch(*this, FBB, nullptr, Cond, DL);
    } else if (isLayoutSuccessor(FBB)) {
      TII->removeBranch(*this);
      TII->insertBranch(*this, TBB, nullptr, Cond, DL);
    }
    return;
  }

  // We now know we're going to fallthrough to PreviousLayoutSuccessor.
  assert(PreviousLayoutSuccessor);
  assert(!PreviousLayoutSuccessor->isEHPad());
  assert(isSuccessor(PreviousLayoutSuccessor));

  if (PreviousLayoutSuccessor == TBB) {
    // We had a fallthrough to the same basic block as the conditional jump
    // targets.  Remove the conditional jump, leaving an unconditional
    // fallthrough or an unconditional jump.
    TII->removeBranch(*this);
    if (!isLayoutSuccessor(TBB)) {
      Cond.clear();
      TII->insertBranch(*this, TBB, nullptr, Cond, DL);
    }
    return;
  }

  // The block has a fallthrough conditional branch.
  if (isLayoutSuccessor(TBB)) {
    if (TII->reverseBranchCondition(Cond)) {
      // We can't reverse the condition, add an unconditional branch.
      Cond.clear();
      TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
      return;
    }
    TII->removeBranch(*this);
    TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
  } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
    TII->removeBranch(*this);
    TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
  }
}

void MachineBasicBlock::validateSuccProbs() const {
#ifndef NDEBUG
  int64_t Sum = 0;
  for (auto Prob : Probs)
    Sum += Prob.getNumerator();
  // Due to precision issue, we assume that the sum of probabilities is one if
  // the difference between the sum of their numerators and the denominator is
  // no greater than the number of successors.
  assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
             Probs.size() &&
         "The sum of successors's probabilities exceeds one.");
#endif // NDEBUG
}

void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
                                     BranchProbability Prob) {
  // Probability list is either empty (if successor list isn't empty, this means
  // disabled optimization) or has the same size as successor list.
  if (!(Probs.empty() && !Successors.empty()))
    Probs.push_back(Prob);
  Successors.push_back(Succ);
  Succ->addPredecessor(this);
}

void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
  // We need to make sure probability list is either empty or has the same size
  // of successor list. When this function is called, we can safely delete all
  // probability in the list.
  Probs.clear();
  Successors.push_back(Succ);
  Succ->addPredecessor(this);
}

void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
                                       MachineBasicBlock *New,
                                       bool NormalizeSuccProbs) {
  succ_iterator OldI = llvm::find(successors(), Old);
  assert(OldI != succ_end() && "Old is not a successor of this block!");
  assert(llvm::find(successors(), New) == succ_end() &&
         "New is already a successor of this block!");

  // Add a new successor with equal probability as the original one. Note
  // that we directly copy the probability using the iterator rather than
  // getting a potentially synthetic probability computed when unknown. This
  // preserves the probabilities as-is and then we can renormalize them and
  // query them effectively afterward.
  addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
                                  : *getProbabilityIterator(OldI));
  if (NormalizeSuccProbs)
    normalizeSuccProbs();
}

void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
                                        bool NormalizeSuccProbs) {
  succ_iterator I = find(Successors, Succ);
  removeSuccessor(I, NormalizeSuccProbs);
}

MachineBasicBlock::succ_iterator
MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
  assert(I != Successors.end() && "Not a current successor!");

  // If probability list is empty it means we don't use it (disabled
  // optimization).
  if (!Probs.empty()) {
    probability_iterator WI = getProbabilityIterator(I);
    Probs.erase(WI);
    if (NormalizeSuccProbs)
      normalizeSuccProbs();
  }

  (*I)->removePredecessor(this);
  return Successors.erase(I);
}

void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
                                         MachineBasicBlock *New) {
  if (Old == New)
    return;

  succ_iterator E = succ_end();
  succ_iterator NewI = E;
  succ_iterator OldI = E;
  for (succ_iterator I = succ_begin(); I != E; ++I) {
    if (*I == Old) {
      OldI = I;
      if (NewI != E)
        break;
    }
    if (*I == New) {
      NewI = I;
      if (OldI != E)
        break;
    }
  }
  assert(OldI != E && "Old is not a successor of this block");

  // If New isn't already a successor, let it take Old's place.
  if (NewI == E) {
    Old->removePredecessor(this);
    New->addPredecessor(this);
    *OldI = New;
    return;
  }

  // New is already a successor.
  // Update its probability instead of adding a duplicate edge.
  if (!Probs.empty()) {
    auto ProbIter = getProbabilityIterator(NewI);
    if (!ProbIter->isUnknown())
      *ProbIter += *getProbabilityIterator(OldI);
  }
  removeSuccessor(OldI);
}

void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
                                      succ_iterator I) {
  if (Orig->Probs.empty())
    addSuccessor(*I, Orig->getSuccProbability(I));
  else
    addSuccessorWithoutProb(*I);
}

void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
  Predecessors.push_back(Pred);
}

void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
  pred_iterator I = find(Predecessors, Pred);
  assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
  Predecessors.erase(I);
}

void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
  if (this == FromMBB)
    return;

  while (!FromMBB->succ_empty()) {
    MachineBasicBlock *Succ = *FromMBB->succ_begin();

    // If probability list is empty it means we don't use it (disabled
    // optimization).
    if (!FromMBB->Probs.empty()) {
      auto Prob = *FromMBB->Probs.begin();
      addSuccessor(Succ, Prob);
    } else
      addSuccessorWithoutProb(Succ);

    FromMBB->removeSuccessor(Succ);
  }
}

void
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
  if (this == FromMBB)
    return;

  while (!FromMBB->succ_empty()) {
    MachineBasicBlock *Succ = *FromMBB->succ_begin();
    if (!FromMBB->Probs.empty()) {
      auto Prob = *FromMBB->Probs.begin();
      addSuccessor(Succ, Prob);
    } else
      addSuccessorWithoutProb(Succ);
    FromMBB->removeSuccessor(Succ);

    // Fix up any PHI nodes in the successor.
    Succ->replacePhiUsesWith(FromMBB, this);
  }
  normalizeSuccProbs();
}

bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
  return is_contained(predecessors(), MBB);
}

bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
  return is_contained(successors(), MBB);
}

bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
  MachineFunction::const_iterator I(this);
  return std::next(I) == MachineFunction::const_iterator(MBB);
}

MachineBasicBlock *MachineBasicBlock::getFallThrough() {
  MachineFunction::iterator Fallthrough = getIterator();
  ++Fallthrough;
  // If FallthroughBlock is off the end of the function, it can't fall through.
  if (Fallthrough == getParent()->end())
    return nullptr;

  // If FallthroughBlock isn't a successor, no fallthrough is possible.
  if (!isSuccessor(&*Fallthrough))
    return nullptr;

  // Analyze the branches, if any, at the end of the block.
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
  if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
    // If we couldn't analyze the branch, examine the last instruction.
    // If the block doesn't end in a known control barrier, assume fallthrough
    // is possible. The isPredicated check is needed because this code can be
    // called during IfConversion, where an instruction which is normally a
    // Barrier is predicated and thus no longer an actual control barrier.
    return (empty() || !back().isBarrier() || TII->isPredicated(back()))
               ? &*Fallthrough
               : nullptr;
  }

  // If there is no branch, control always falls through.
  if (!TBB) return &*Fallthrough;

  // If there is some explicit branch to the fallthrough block, it can obviously
  // reach, even though the branch should get folded to fall through implicitly.
  if (MachineFunction::iterator(TBB) == Fallthrough ||
      MachineFunction::iterator(FBB) == Fallthrough)
    return &*Fallthrough;

  // If it's an unconditional branch to some block not the fall through, it
  // doesn't fall through.
  if (Cond.empty()) return nullptr;

  // Otherwise, if it is conditional and has no explicit false block, it falls
  // through.
  return (FBB == nullptr) ? &*Fallthrough : nullptr;
}

bool MachineBasicBlock::canFallThrough() {
  return getFallThrough() != nullptr;
}

MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
    MachineBasicBlock *Succ, Pass &P,
    std::vector<SparseBitVector<>> *LiveInSets) {
  if (!canSplitCriticalEdge(Succ))
    return nullptr;

  MachineFunction *MF = getParent();
  MachineBasicBlock *PrevFallthrough = getNextNode();
  DebugLoc DL;  // FIXME: this is nowhere

  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
  MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
  LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
                    << " -- " << printMBBReference(*NMBB) << " -- "
                    << printMBBReference(*Succ) << '\n');

  LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
  SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
  if (LIS)
    LIS->insertMBBInMaps(NMBB);
  else if (Indexes)
    Indexes->insertMBBInMaps(NMBB);

  // On some targets like Mips, branches may kill virtual registers. Make sure
  // that LiveVariables is properly updated after updateTerminator replaces the
  // terminators.
  LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();

  // Collect a list of virtual registers killed by the terminators.
  SmallVector<Register, 4> KilledRegs;
  if (LV)
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = &*I;
      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0 ||
            !OI->isUse() || !OI->isKill() || OI->isUndef())
          continue;
        Register Reg = OI->getReg();
        if (Register::isPhysicalRegister(Reg) ||
            LV->getVarInfo(Reg).removeKill(*MI)) {
          KilledRegs.push_back(Reg);
          LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
          OI->setIsKill(false);
        }
      }
    }

  SmallVector<Register, 4> UsedRegs;
  if (LIS) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = &*I;

      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0)
          continue;

        Register Reg = OI->getReg();
        if (!is_contained(UsedRegs, Reg))
          UsedRegs.push_back(Reg);
      }
    }
  }

  ReplaceUsesOfBlockWith(Succ, NMBB);

  // If updateTerminator() removes instructions, we need to remove them from
  // SlotIndexes.
  SmallVector<MachineInstr*, 4> Terminators;
  if (Indexes) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      Terminators.push_back(&*I);
  }

  // Since we replaced all uses of Succ with NMBB, that should also be treated
  // as the fallthrough successor
  if (Succ == PrevFallthrough)
    PrevFallthrough = NMBB;
  updateTerminator(PrevFallthrough);

  if (Indexes) {
    SmallVector<MachineInstr*, 4> NewTerminators;
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      NewTerminators.push_back(&*I);

    for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
        E = Terminators.end(); I != E; ++I) {
      if (!is_contained(NewTerminators, *I))
        Indexes->removeMachineInstrFromMaps(**I);
    }
  }

  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
  NMBB->addSuccessor(Succ);
  if (!NMBB->isLayoutSuccessor(Succ)) {
    SmallVector<MachineOperand, 4> Cond;
    const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
    TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);

    if (Indexes) {
      for (MachineInstr &MI : NMBB->instrs()) {
        // Some instructions may have been moved to NMBB by updateTerminator(),
        // so we first remove any instruction that already has an index.
        if (Indexes->hasIndex(MI))
          Indexes->removeMachineInstrFromMaps(MI);
        Indexes->insertMachineInstrInMaps(MI);
      }
    }
  }

  // Fix PHI nodes in Succ so they refer to NMBB instead of this.
  Succ->replacePhiUsesWith(this, NMBB);

  // Inherit live-ins from the successor
  for (const auto &LI : Succ->liveins())
    NMBB->addLiveIn(LI);

  // Update LiveVariables.
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  if (LV) {
    // Restore kills of virtual registers that were killed by the terminators.
    while (!KilledRegs.empty()) {
      Register Reg = KilledRegs.pop_back_val();
      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
        if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
          continue;
        if (Register::isVirtualRegister(Reg))
          LV->getVarInfo(Reg).Kills.push_back(&*I);
        LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
        break;
      }
    }
    // Update relevant live-through information.
    if (LiveInSets != nullptr)
      LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
    else
      LV->addNewBlock(NMBB, this, Succ);
  }

  if (LIS) {
    // After splitting the edge and updating SlotIndexes, live intervals may be
    // in one of two situations, depending on whether this block was the last in
    // the function. If the original block was the last in the function, all
    // live intervals will end prior to the beginning of the new split block. If
    // the original block was not at the end of the function, all live intervals
    // will extend to the end of the new split block.

    bool isLastMBB =
      std::next(MachineFunction::iterator(NMBB)) == getParent()->end();

    SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
    SlotIndex PrevIndex = StartIndex.getPrevSlot();
    SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);

    // Find the registers used from NMBB in PHIs in Succ.
    SmallSet<Register, 8> PHISrcRegs;
    for (MachineBasicBlock::instr_iterator
         I = Succ->instr_begin(), E = Succ->instr_end();
         I != E && I->isPHI(); ++I) {
      for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
        if (I->getOperand(ni+1).getMBB() == NMBB) {
          MachineOperand &MO = I->getOperand(ni);
          Register Reg = MO.getReg();
          PHISrcRegs.insert(Reg);
          if (MO.isUndef())
            continue;

          LiveInterval &LI = LIS->getInterval(Reg);
          VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
          assert(VNI &&
                 "PHI sources should be live out of their predecessors.");
          LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
        }
      }
    }

    MachineRegisterInfo *MRI = &getParent()->getRegInfo();
    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
      Register Reg = Register::index2VirtReg(i);
      if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
        continue;

      LiveInterval &LI = LIS->getInterval(Reg);
      if (!LI.liveAt(PrevIndex))
        continue;

      bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
      if (isLiveOut && isLastMBB) {
        VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
        assert(VNI && "LiveInterval should have VNInfo where it is live.");
        LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
      } else if (!isLiveOut && !isLastMBB) {
        LI.removeSegment(StartIndex, EndIndex);
      }
    }

    // Update all intervals for registers whose uses may have been modified by
    // updateTerminator().
    LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
  }

  if (MachineDominatorTree *MDT =
          P.getAnalysisIfAvailable<MachineDominatorTree>())
    MDT->recordSplitCriticalEdge(this, Succ, NMBB);

  if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NMBB joins loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == Succ &&
                 "Should not create irreducible loops!");
          if (MachineLoop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NMBB, MLI->getBase());
        }
      }
    }

  return NMBB;
}

bool MachineBasicBlock::canSplitCriticalEdge(
    const MachineBasicBlock *Succ) const {
  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
  // it in this generic function.
  if (Succ->isEHPad())
    return false;

  // Splitting the critical edge to a callbr's indirect block isn't advised.
  // Don't do it in this generic function.
  if (Succ->isInlineAsmBrIndirectTarget())
    return false;

  const MachineFunction *MF = getParent();
  // Performance might be harmed on HW that implements branching using exec mask
  // where both sides of the branches are always executed.
  if (MF->getTarget().requiresStructuredCFG())
    return false;

  // We may need to update this's terminator, but we can't do that if
  // analyzeBranch fails. If this uses a jump table, we won't touch it.
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  // AnalyzeBanch should modify this, since we did not allow modification.
  if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
                         /*AllowModify*/ false))
    return false;

  // Avoid bugpoint weirdness: A block may end with a conditional branch but
  // jumps to the same MBB is either case. We have duplicate CFG edges in that
  // case that we can't handle. Since this never happens in properly optimized
  // code, just skip those edges.
  if (TBB && TBB == FBB) {
    LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
                      << printMBBReference(*this) << '\n');
    return false;
  }
  return true;
}

/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
/// neighboring instructions so the bundle won't be broken by removing MI.
static void unbundleSingleMI(MachineInstr *MI) {
  // Removing the first instruction in a bundle.
  if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
    MI->unbundleFromSucc();
  // Removing the last instruction in a bundle.
  if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
    MI->unbundleFromPred();
  // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
  // are already fine.
}

MachineBasicBlock::instr_iterator
MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
  unbundleSingleMI(&*I);
  return Insts.erase(I);
}

MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
  unbundleSingleMI(MI);
  MI->clearFlag(MachineInstr::BundledPred);
  MI->clearFlag(MachineInstr::BundledSucc);
  return Insts.remove(MI);
}

MachineBasicBlock::instr_iterator
MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
  assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
         "Cannot insert instruction with bundle flags");
  // Set the bundle flags when inserting inside a bundle.
  if (I != instr_end() && I->isBundledWithPred()) {
    MI->setFlag(MachineInstr::BundledPred);
    MI->setFlag(MachineInstr::BundledSucc);
  }
  return Insts.insert(I, MI);
}

/// This method unlinks 'this' from the containing function, and returns it, but
/// does not delete it.
MachineBasicBlock *MachineBasicBlock::removeFromParent() {
  assert(getParent() && "Not embedded in a function!");
  getParent()->remove(this);
  return this;
}

/// This method unlinks 'this' from the containing function, and deletes it.
void MachineBasicBlock::eraseFromParent() {
  assert(getParent() && "Not embedded in a function!");
  getParent()->erase(this);
}

/// Given a machine basic block that branched to 'Old', change the code and CFG
/// so that it branches to 'New' instead.
void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
                                               MachineBasicBlock *New) {
  assert(Old != New && "Cannot replace self with self!");

  MachineBasicBlock::instr_iterator I = instr_end();
  while (I != instr_begin()) {
    --I;
    if (!I->isTerminator()) break;

    // Scan the operands of this machine instruction, replacing any uses of Old
    // with New.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
      if (I->getOperand(i).isMBB() &&
          I->getOperand(i).getMBB() == Old)
        I->getOperand(i).setMBB(New);
  }

  // Update the successor information.
  replaceSuccessor(Old, New);
}

void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
                                           MachineBasicBlock *New) {
  for (MachineInstr &MI : phis())
    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.getMBB() == Old)
        MO.setMBB(New);
    }
}

/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
/// instructions.  Return UnknownLoc if there is none.
DebugLoc
MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
  // Skip debug declarations, we don't want a DebugLoc from them.
  MBBI = skipDebugInstructionsForward(MBBI, instr_end());
  if (MBBI != instr_end())
    return MBBI->getDebugLoc();
  return {};
}

/// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
/// instructions.  Return UnknownLoc if there is none.
DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
  if (MBBI == instr_begin()) return {};
  // Skip debug instructions, we don't want a DebugLoc from them.
  MBBI = prev_nodbg(MBBI, instr_begin());
  if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
  return {};
}

/// Find and return the merged DebugLoc of the branch instructions of the block.
/// Return UnknownLoc if there is none.
DebugLoc
MachineBasicBlock::findBranchDebugLoc() {
  DebugLoc DL;
  auto TI = getFirstTerminator();
  while (TI != end() && !TI->isBranch())
    ++TI;

  if (TI != end()) {
    DL = TI->getDebugLoc();
    for (++TI ; TI != end() ; ++TI)
      if (TI->isBranch())
        DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
  }
  return DL;
}

/// Return probability of the edge from this block to MBB.
BranchProbability
MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
  if (Probs.empty())
    return BranchProbability(1, succ_size());

  const auto &Prob = *getProbabilityIterator(Succ);
  if (Prob.isUnknown()) {
    // For unknown probabilities, collect the sum of all known ones, and evenly
    // ditribute the complemental of the sum to each unknown probability.
    unsigned KnownProbNum = 0;
    auto Sum = BranchProbability::getZero();
    for (auto &P : Probs) {
      if (!P.isUnknown()) {
        Sum += P;
        KnownProbNum++;
      }
    }
    return Sum.getCompl() / (Probs.size() - KnownProbNum);
  } else
    return Prob;
}

/// Set successor probability of a given iterator.
void MachineBasicBlock::setSuccProbability(succ_iterator I,
                                           BranchProbability Prob) {
  assert(!Prob.isUnknown());
  if (Probs.empty())
    return;
  *getProbabilityIterator(I) = Prob;
}

/// Return probability iterator corresonding to the I successor iterator
MachineBasicBlock::const_probability_iterator
MachineBasicBlock::getProbabilityIterator(
    MachineBasicBlock::const_succ_iterator I) const {
  assert(Probs.size() == Successors.size() && "Async probability list!");
  const size_t index = std::distance(Successors.begin(), I);
  assert(index < Probs.size() && "Not a current successor!");
  return Probs.begin() + index;
}

/// Return probability iterator corresonding to the I successor iterator.
MachineBasicBlock::probability_iterator
MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
  assert(Probs.size() == Successors.size() && "Async probability list!");
  const size_t index = std::distance(Successors.begin(), I);
  assert(index < Probs.size() && "Not a current successor!");
  return Probs.begin() + index;
}

/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
/// as of just before "MI".
///
/// Search is localised to a neighborhood of
/// Neighborhood instructions before (searching for defs or kills) and N
/// instructions after (searching just for defs) MI.
MachineBasicBlock::LivenessQueryResult
MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
                                           MCRegister Reg, const_iterator Before,
                                           unsigned Neighborhood) const {
  unsigned N = Neighborhood;

  // Try searching forwards from Before, looking for reads or defs.
  const_iterator I(Before);
  for (; I != end() && N > 0; ++I) {
    if (I->isDebugInstr())
      continue;

    --N;

    PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);

    // Register is live when we read it here.
    if (Info.Read)
      return LQR_Live;
    // Register is dead if we can fully overwrite or clobber it here.
    if (Info.FullyDefined || Info.Clobbered)
      return LQR_Dead;
  }

  // If we reached the end, it is safe to clobber Reg at the end of a block of
  // no successor has it live in.
  if (I == end()) {
    for (MachineBasicBlock *S : successors()) {
      for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
        if (TRI->regsOverlap(LI.PhysReg, Reg))
          return LQR_Live;
      }
    }

    return LQR_Dead;
  }


  N = Neighborhood;

  // Start by searching backwards from Before, looking for kills, reads or defs.
  I = const_iterator(Before);
  // If this is the first insn in the block, don't search backwards.
  if (I != begin()) {
    do {
      --I;

      if (I->isDebugInstr())
        continue;

      --N;

      PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);

      // Defs happen after uses so they take precedence if both are present.

      // Register is dead after a dead def of the full register.
      if (Info.DeadDef)
        return LQR_Dead;
      // Register is (at least partially) live after a def.
      if (Info.Defined) {
        if (!Info.PartialDeadDef)
          return LQR_Live;
        // As soon as we saw a partial definition (dead or not),
        // we cannot tell if the value is partial live without
        // tracking the lanemasks. We are not going to do this,
        // so fall back on the remaining of the analysis.
        break;
      }
      // Register is dead after a full kill or clobber and no def.
      if (Info.Killed || Info.Clobbered)
        return LQR_Dead;
      // Register must be live if we read it.
      if (Info.Read)
        return LQR_Live;

    } while (I != begin() && N > 0);
  }

  // If all the instructions before this in the block are debug instructions,
  // skip over them.
  while (I != begin() && std::prev(I)->isDebugInstr())
    --I;

  // Did we get to the start of the block?
  if (I == begin()) {
    // If so, the register's state is definitely defined by the live-in state.
    for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
      if (TRI->regsOverlap(LI.PhysReg, Reg))
        return LQR_Live;

    return LQR_Dead;
  }

  // At this point we have no idea of the liveness of the register.
  return LQR_Unknown;
}

const uint32_t *
MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
  // EH funclet entry does not preserve any registers.
  return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
}

const uint32_t *
MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
  // If we see a return block with successors, this must be a funclet return,
  // which does not preserve any registers. If there are no successors, we don't
  // care what kind of return it is, putting a mask after it is a no-op.
  return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
}

void MachineBasicBlock::clearLiveIns() {
  LiveIns.clear();
}

MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
  assert(getParent()->getProperties().hasProperty(
      MachineFunctionProperties::Property::TracksLiveness) &&
      "Liveness information is accurate");
  return LiveIns.begin();
}

const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
const MBBSectionID
    MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);