GlobalMerge.cpp 24.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
//===- GlobalMerge.cpp - Internal globals merging -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass merges globals with internal linkage into one. This way all the
// globals which were merged into a biggest one can be addressed using offsets
// from the same base pointer (no need for separate base pointer for each of the
// global). Such a transformation can significantly reduce the register pressure
// when many globals are involved.
//
// For example, consider the code which touches several global variables at
// once:
//
// static int foo[N], bar[N], baz[N];
//
// for (i = 0; i < N; ++i) {
//    foo[i] = bar[i] * baz[i];
// }
//
//  On ARM the addresses of 3 arrays should be kept in the registers, thus
//  this code has quite large register pressure (loop body):
//
//  ldr     r1, [r5], #4
//  ldr     r2, [r6], #4
//  mul     r1, r2, r1
//  str     r1, [r0], #4
//
//  Pass converts the code to something like:
//
//  static struct {
//    int foo[N];
//    int bar[N];
//    int baz[N];
//  } merged;
//
//  for (i = 0; i < N; ++i) {
//    merged.foo[i] = merged.bar[i] * merged.baz[i];
//  }
//
//  and in ARM code this becomes:
//
//  ldr     r0, [r5, #40]
//  ldr     r1, [r5, #80]
//  mul     r0, r1, r0
//  str     r0, [r5], #4
//
//  note that we saved 2 registers here almostly "for free".
//
// However, merging globals can have tradeoffs:
// - it confuses debuggers, tools, and users
// - it makes linker optimizations less useful (order files, LOHs, ...)
// - it forces usage of indexed addressing (which isn't necessarily "free")
// - it can increase register pressure when the uses are disparate enough.
//
// We use heuristics to discover the best global grouping we can (cf cl::opts).
//
// ===---------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <string>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "global-merge"

// FIXME: This is only useful as a last-resort way to disable the pass.
static cl::opt<bool>
EnableGlobalMerge("enable-global-merge", cl::Hidden,
                  cl::desc("Enable the global merge pass"),
                  cl::init(true));

static cl::opt<unsigned>
GlobalMergeMaxOffset("global-merge-max-offset", cl::Hidden,
                     cl::desc("Set maximum offset for global merge pass"),
                     cl::init(0));

static cl::opt<bool> GlobalMergeGroupByUse(
    "global-merge-group-by-use", cl::Hidden,
    cl::desc("Improve global merge pass to look at uses"), cl::init(true));

static cl::opt<bool> GlobalMergeIgnoreSingleUse(
    "global-merge-ignore-single-use", cl::Hidden,
    cl::desc("Improve global merge pass to ignore globals only used alone"),
    cl::init(true));

static cl::opt<bool>
EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
                         cl::desc("Enable global merge pass on constants"),
                         cl::init(false));

// FIXME: this could be a transitional option, and we probably need to remove
// it if only we are sure this optimization could always benefit all targets.
static cl::opt<cl::boolOrDefault>
EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
     cl::desc("Enable global merge pass on external linkage"));

STATISTIC(NumMerged, "Number of globals merged");

namespace {

  class GlobalMerge : public FunctionPass {
    const TargetMachine *TM = nullptr;

    // FIXME: Infer the maximum possible offset depending on the actual users
    // (these max offsets are different for the users inside Thumb or ARM
    // functions), see the code that passes in the offset in the ARM backend
    // for more information.
    unsigned MaxOffset;

    /// Whether we should try to optimize for size only.
    /// Currently, this applies a dead simple heuristic: only consider globals
    /// used in minsize functions for merging.
    /// FIXME: This could learn about optsize, and be used in the cost model.
    bool OnlyOptimizeForSize = false;

    /// Whether we should merge global variables that have external linkage.
    bool MergeExternalGlobals = false;

    bool IsMachO;

    bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
                 Module &M, bool isConst, unsigned AddrSpace) const;

    /// Merge everything in \p Globals for which the corresponding bit
    /// in \p GlobalSet is set.
    bool doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
                 const BitVector &GlobalSet, Module &M, bool isConst,
                 unsigned AddrSpace) const;

    /// Check if the given variable has been identified as must keep
    /// \pre setMustKeepGlobalVariables must have been called on the Module that
    ///      contains GV
    bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
      return MustKeepGlobalVariables.count(GV);
    }

    /// Collect every variables marked as "used" or used in a landing pad
    /// instruction for this Module.
    void setMustKeepGlobalVariables(Module &M);

    /// Collect every variables marked as "used"
    void collectUsedGlobalVariables(Module &M, StringRef Name);

    /// Keep track of the GlobalVariable that must not be merged away
    SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;

  public:
    static char ID;             // Pass identification, replacement for typeid.

    explicit GlobalMerge()
        : FunctionPass(ID), MaxOffset(GlobalMergeMaxOffset) {
      initializeGlobalMergePass(*PassRegistry::getPassRegistry());
    }

    explicit GlobalMerge(const TargetMachine *TM, unsigned MaximalOffset,
                         bool OnlyOptimizeForSize, bool MergeExternalGlobals)
        : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset),
          OnlyOptimizeForSize(OnlyOptimizeForSize),
          MergeExternalGlobals(MergeExternalGlobals) {
      initializeGlobalMergePass(*PassRegistry::getPassRegistry());
    }

    bool doInitialization(Module &M) override;
    bool runOnFunction(Function &F) override;
    bool doFinalization(Module &M) override;

    StringRef getPassName() const override { return "Merge internal globals"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      FunctionPass::getAnalysisUsage(AU);
    }
  };

} // end anonymous namespace

char GlobalMerge::ID = 0;

INITIALIZE_PASS(GlobalMerge, DEBUG_TYPE, "Merge global variables", false, false)

bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
                          Module &M, bool isConst, unsigned AddrSpace) const {
  auto &DL = M.getDataLayout();
  // FIXME: Find better heuristics
  llvm::stable_sort(
      Globals, [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) {
        return DL.getTypeAllocSize(GV1->getValueType()) <
               DL.getTypeAllocSize(GV2->getValueType());
      });

  // If we want to just blindly group all globals together, do so.
  if (!GlobalMergeGroupByUse) {
    BitVector AllGlobals(Globals.size());
    AllGlobals.set();
    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
  }

  // If we want to be smarter, look at all uses of each global, to try to
  // discover all sets of globals used together, and how many times each of
  // these sets occurred.
  //
  // Keep this reasonably efficient, by having an append-only list of all sets
  // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of
  // code (currently, a Function) to the set of globals seen so far that are
  // used together in that unit (GlobalUsesByFunction).
  //
  // When we look at the Nth global, we know that any new set is either:
  // - the singleton set {N}, containing this global only, or
  // - the union of {N} and a previously-discovered set, containing some
  //   combination of the previous N-1 globals.
  // Using that knowledge, when looking at the Nth global, we can keep:
  // - a reference to the singleton set {N} (CurGVOnlySetIdx)
  // - a list mapping each previous set to its union with {N} (EncounteredUGS),
  //   if it actually occurs.

  // We keep track of the sets of globals used together "close enough".
  struct UsedGlobalSet {
    BitVector Globals;
    unsigned UsageCount = 1;

    UsedGlobalSet(size_t Size) : Globals(Size) {}
  };

  // Each set is unique in UsedGlobalSets.
  std::vector<UsedGlobalSet> UsedGlobalSets;

  // Avoid repeating the create-global-set pattern.
  auto CreateGlobalSet = [&]() -> UsedGlobalSet & {
    UsedGlobalSets.emplace_back(Globals.size());
    return UsedGlobalSets.back();
  };

  // The first set is the empty set.
  CreateGlobalSet().UsageCount = 0;

  // We define "close enough" to be "in the same function".
  // FIXME: Grouping uses by function is way too aggressive, so we should have
  // a better metric for distance between uses.
  // The obvious alternative would be to group by BasicBlock, but that's in
  // turn too conservative..
  // Anything in between wouldn't be trivial to compute, so just stick with
  // per-function grouping.

  // The value type is an index into UsedGlobalSets.
  // The default (0) conveniently points to the empty set.
  DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction;

  // Now, look at each merge-eligible global in turn.

  // Keep track of the sets we already encountered to which we added the
  // current global.
  // Each element matches the same-index element in UsedGlobalSets.
  // This lets us efficiently tell whether a set has already been expanded to
  // include the current global.
  std::vector<size_t> EncounteredUGS;

  for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) {
    GlobalVariable *GV = Globals[GI];

    // Reset the encountered sets for this global...
    std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0);
    // ...and grow it in case we created new sets for the previous global.
    EncounteredUGS.resize(UsedGlobalSets.size());

    // We might need to create a set that only consists of the current global.
    // Keep track of its index into UsedGlobalSets.
    size_t CurGVOnlySetIdx = 0;

    // For each global, look at all its Uses.
    for (auto &U : GV->uses()) {
      // This Use might be a ConstantExpr.  We're interested in Instruction
      // users, so look through ConstantExpr...
      Use *UI, *UE;
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
        if (CE->use_empty())
          continue;
        UI = &*CE->use_begin();
        UE = nullptr;
      } else if (isa<Instruction>(U.getUser())) {
        UI = &U;
        UE = UI->getNext();
      } else {
        continue;
      }

      // ...to iterate on all the instruction users of the global.
      // Note that we iterate on Uses and not on Users to be able to getNext().
      for (; UI != UE; UI = UI->getNext()) {
        Instruction *I = dyn_cast<Instruction>(UI->getUser());
        if (!I)
          continue;

        Function *ParentFn = I->getParent()->getParent();

        // If we're only optimizing for size, ignore non-minsize functions.
        if (OnlyOptimizeForSize && !ParentFn->hasMinSize())
          continue;

        size_t UGSIdx = GlobalUsesByFunction[ParentFn];

        // If this is the first global the basic block uses, map it to the set
        // consisting of this global only.
        if (!UGSIdx) {
          // If that set doesn't exist yet, create it.
          if (!CurGVOnlySetIdx) {
            CurGVOnlySetIdx = UsedGlobalSets.size();
            CreateGlobalSet().Globals.set(GI);
          } else {
            ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount;
          }

          GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx;
          continue;
        }

        // If we already encountered this BB, just increment the counter.
        if (UsedGlobalSets[UGSIdx].Globals.test(GI)) {
          ++UsedGlobalSets[UGSIdx].UsageCount;
          continue;
        }

        // If not, the previous set wasn't actually used in this function.
        --UsedGlobalSets[UGSIdx].UsageCount;

        // If we already expanded the previous set to include this global, just
        // reuse that expanded set.
        if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) {
          ++UsedGlobalSets[ExpandedIdx].UsageCount;
          GlobalUsesByFunction[ParentFn] = ExpandedIdx;
          continue;
        }

        // If not, create a new set consisting of the union of the previous set
        // and this global.  Mark it as encountered, so we can reuse it later.
        GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] =
            UsedGlobalSets.size();

        UsedGlobalSet &NewUGS = CreateGlobalSet();
        NewUGS.Globals.set(GI);
        NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals;
      }
    }
  }

  // Now we found a bunch of sets of globals used together.  We accumulated
  // the number of times we encountered the sets (i.e., the number of blocks
  // that use that exact set of globals).
  //
  // Multiply that by the size of the set to give us a crude profitability
  // metric.
  llvm::stable_sort(UsedGlobalSets,
                    [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) {
                      return UGS1.Globals.count() * UGS1.UsageCount <
                             UGS2.Globals.count() * UGS2.UsageCount;
                    });

  // We can choose to merge all globals together, but ignore globals never used
  // with another global.  This catches the obviously non-profitable cases of
  // having a single global, but is aggressive enough for any other case.
  if (GlobalMergeIgnoreSingleUse) {
    BitVector AllGlobals(Globals.size());
    for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
      const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
      if (UGS.UsageCount == 0)
        continue;
      if (UGS.Globals.count() > 1)
        AllGlobals |= UGS.Globals;
    }
    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
  }

  // Starting from the sets with the best (=biggest) profitability, find a
  // good combination.
  // The ideal (and expensive) solution can only be found by trying all
  // combinations, looking for the one with the best profitability.
  // Don't be smart about it, and just pick the first compatible combination,
  // starting with the sets with the best profitability.
  BitVector PickedGlobals(Globals.size());
  bool Changed = false;

  for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
    const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
    if (UGS.UsageCount == 0)
      continue;
    if (PickedGlobals.anyCommon(UGS.Globals))
      continue;
    PickedGlobals |= UGS.Globals;
    // If the set only contains one global, there's no point in merging.
    // Ignore the global for inclusion in other sets though, so keep it in
    // PickedGlobals.
    if (UGS.Globals.count() < 2)
      continue;
    Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace);
  }

  return Changed;
}

bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
                          const BitVector &GlobalSet, Module &M, bool isConst,
                          unsigned AddrSpace) const {
  assert(Globals.size() > 1);

  Type *Int32Ty = Type::getInt32Ty(M.getContext());
  Type *Int8Ty = Type::getInt8Ty(M.getContext());
  auto &DL = M.getDataLayout();

  LLVM_DEBUG(dbgs() << " Trying to merge set, starts with #"
                    << GlobalSet.find_first() << "\n");

  bool Changed = false;
  ssize_t i = GlobalSet.find_first();
  while (i != -1) {
    ssize_t j = 0;
    uint64_t MergedSize = 0;
    std::vector<Type*> Tys;
    std::vector<Constant*> Inits;
    std::vector<unsigned> StructIdxs;

    bool HasExternal = false;
    StringRef FirstExternalName;
    Align MaxAlign;
    unsigned CurIdx = 0;
    for (j = i; j != -1; j = GlobalSet.find_next(j)) {
      Type *Ty = Globals[j]->getValueType();

      // Make sure we use the same alignment AsmPrinter would use.
      Align Alignment = DL.getPreferredAlign(Globals[j]);
      unsigned Padding = alignTo(MergedSize, Alignment) - MergedSize;
      MergedSize += Padding;
      MergedSize += DL.getTypeAllocSize(Ty);
      if (MergedSize > MaxOffset) {
        break;
      }
      if (Padding) {
        Tys.push_back(ArrayType::get(Int8Ty, Padding));
        Inits.push_back(ConstantAggregateZero::get(Tys.back()));
        ++CurIdx;
      }
      Tys.push_back(Ty);
      Inits.push_back(Globals[j]->getInitializer());
      StructIdxs.push_back(CurIdx++);

      MaxAlign = std::max(MaxAlign, Alignment);

      if (Globals[j]->hasExternalLinkage() && !HasExternal) {
        HasExternal = true;
        FirstExternalName = Globals[j]->getName();
      }
    }

    // Exit early if there is only one global to merge.
    if (Tys.size() < 2) {
      i = j;
      continue;
    }

    // If merged variables doesn't have external linkage, we needn't to expose
    // the symbol after merging.
    GlobalValue::LinkageTypes Linkage = HasExternal
                                            ? GlobalValue::ExternalLinkage
                                            : GlobalValue::InternalLinkage;
    // Use a packed struct so we can control alignment.
    StructType *MergedTy = StructType::get(M.getContext(), Tys, true);
    Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);

    // On Darwin external linkage needs to be preserved, otherwise
    // dsymutil cannot preserve the debug info for the merged
    // variables.  If they have external linkage, use the symbol name
    // of the first variable merged as the suffix of global symbol
    // name.  This avoids a link-time naming conflict for the
    // _MergedGlobals symbols.
    Twine MergedName =
        (IsMachO && HasExternal)
            ? "_MergedGlobals_" + FirstExternalName
            : "_MergedGlobals";
    auto MergedLinkage = IsMachO ? Linkage : GlobalValue::PrivateLinkage;
    auto *MergedGV = new GlobalVariable(
        M, MergedTy, isConst, MergedLinkage, MergedInit, MergedName, nullptr,
        GlobalVariable::NotThreadLocal, AddrSpace);

    MergedGV->setAlignment(MaxAlign);
    MergedGV->setSection(Globals[i]->getSection());

    const StructLayout *MergedLayout = DL.getStructLayout(MergedTy);
    for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) {
      GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
      std::string Name(Globals[k]->getName());
      GlobalValue::VisibilityTypes Visibility = Globals[k]->getVisibility();
      GlobalValue::DLLStorageClassTypes DLLStorage =
          Globals[k]->getDLLStorageClass();

      // Copy metadata while adjusting any debug info metadata by the original
      // global's offset within the merged global.
      MergedGV->copyMetadata(Globals[k],
                             MergedLayout->getElementOffset(StructIdxs[idx]));

      Constant *Idx[2] = {
          ConstantInt::get(Int32Ty, 0),
          ConstantInt::get(Int32Ty, StructIdxs[idx]),
      };
      Constant *GEP =
          ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx);
      Globals[k]->replaceAllUsesWith(GEP);
      Globals[k]->eraseFromParent();

      // When the linkage is not internal we must emit an alias for the original
      // variable name as it may be accessed from another object. On non-Mach-O
      // we can also emit an alias for internal linkage as it's safe to do so.
      // It's not safe on Mach-O as the alias (and thus the portion of the
      // MergedGlobals variable) may be dead stripped at link time.
      if (Linkage != GlobalValue::InternalLinkage || !IsMachO) {
        GlobalAlias *GA = GlobalAlias::create(Tys[StructIdxs[idx]], AddrSpace,
                                              Linkage, Name, GEP, &M);
        GA->setVisibility(Visibility);
        GA->setDLLStorageClass(DLLStorage);
      }

      NumMerged++;
    }
    Changed = true;
    i = j;
  }

  return Changed;
}

void GlobalMerge::collectUsedGlobalVariables(Module &M, StringRef Name) {
  // Extract global variables from llvm.used array
  const GlobalVariable *GV = M.getGlobalVariable(Name);
  if (!GV || !GV->hasInitializer()) return;

  // Should be an array of 'i8*'.
  const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());

  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
    if (const GlobalVariable *G =
        dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
      MustKeepGlobalVariables.insert(G);
}

void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
  collectUsedGlobalVariables(M, "llvm.used");
  collectUsedGlobalVariables(M, "llvm.compiler.used");

  for (Function &F : M) {
    for (BasicBlock &BB : F) {
      Instruction *Pad = BB.getFirstNonPHI();
      if (!Pad->isEHPad())
        continue;

      // Keep globals used by landingpads and catchpads.
      for (const Use &U : Pad->operands()) {
        if (const GlobalVariable *GV =
                dyn_cast<GlobalVariable>(U->stripPointerCasts()))
          MustKeepGlobalVariables.insert(GV);
      }
    }
  }
}

bool GlobalMerge::doInitialization(Module &M) {
  if (!EnableGlobalMerge)
    return false;

  IsMachO = Triple(M.getTargetTriple()).isOSBinFormatMachO();

  auto &DL = M.getDataLayout();
  DenseMap<std::pair<unsigned, StringRef>, SmallVector<GlobalVariable *, 16>>
      Globals, ConstGlobals, BSSGlobals;
  bool Changed = false;
  setMustKeepGlobalVariables(M);

  // Grab all non-const globals.
  for (auto &GV : M.globals()) {
    // Merge is safe for "normal" internal or external globals only
    if (GV.isDeclaration() || GV.isThreadLocal() || GV.hasImplicitSection())
      continue;

    // It's not safe to merge globals that may be preempted
    if (TM && !TM->shouldAssumeDSOLocal(M, &GV))
      continue;

    if (!(MergeExternalGlobals && GV.hasExternalLinkage()) &&
        !GV.hasInternalLinkage())
      continue;

    PointerType *PT = dyn_cast<PointerType>(GV.getType());
    assert(PT && "Global variable is not a pointer!");

    unsigned AddressSpace = PT->getAddressSpace();
    StringRef Section = GV.getSection();

    // Ignore all 'special' globals.
    if (GV.getName().startswith("llvm.") ||
        GV.getName().startswith(".llvm."))
      continue;

    // Ignore all "required" globals:
    if (isMustKeepGlobalVariable(&GV))
      continue;

    Type *Ty = GV.getValueType();
    if (DL.getTypeAllocSize(Ty) < MaxOffset) {
      if (TM &&
          TargetLoweringObjectFile::getKindForGlobal(&GV, *TM).isBSS())
        BSSGlobals[{AddressSpace, Section}].push_back(&GV);
      else if (GV.isConstant())
        ConstGlobals[{AddressSpace, Section}].push_back(&GV);
      else
        Globals[{AddressSpace, Section}].push_back(&GV);
    }
  }

  for (auto &P : Globals)
    if (P.second.size() > 1)
      Changed |= doMerge(P.second, M, false, P.first.first);

  for (auto &P : BSSGlobals)
    if (P.second.size() > 1)
      Changed |= doMerge(P.second, M, false, P.first.first);

  if (EnableGlobalMergeOnConst)
    for (auto &P : ConstGlobals)
      if (P.second.size() > 1)
        Changed |= doMerge(P.second, M, true, P.first.first);

  return Changed;
}

bool GlobalMerge::runOnFunction(Function &F) {
  return false;
}

bool GlobalMerge::doFinalization(Module &M) {
  MustKeepGlobalVariables.clear();
  return false;
}

Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset,
                                  bool OnlyOptimizeForSize,
                                  bool MergeExternalByDefault) {
  bool MergeExternal = (EnableGlobalMergeOnExternal == cl::BOU_UNSET) ?
    MergeExternalByDefault : (EnableGlobalMergeOnExternal == cl::BOU_TRUE);
  return new GlobalMerge(TM, Offset, OnlyOptimizeForSize, MergeExternal);
}