Utils.cpp
19.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file This file implements the utility functions used by the GlobalISel
/// pipeline.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#define DEBUG_TYPE "globalisel-utils"
using namespace llvm;
Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, Register Reg,
const TargetRegisterClass &RegClass) {
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
return MRI.createVirtualRegister(&RegClass);
return Reg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt,
const TargetRegisterClass &RegClass, const MachineOperand &RegMO) {
Register Reg = RegMO.getReg();
// Assume physical registers are properly constrained.
assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
// If we created a new virtual register because the class is not compatible
// then create a copy between the new and the old register.
if (ConstrainedReg != Reg) {
MachineBasicBlock::iterator InsertIt(&InsertPt);
MachineBasicBlock &MBB = *InsertPt.getParent();
if (RegMO.isUse()) {
BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), ConstrainedReg)
.addReg(Reg);
} else {
assert(RegMO.isDef() && "Must be a definition");
BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), Reg)
.addReg(ConstrainedReg);
}
} else {
if (GISelChangeObserver *Observer = MF.getObserver()) {
if (!RegMO.isDef()) {
MachineInstr *RegDef = MRI.getVRegDef(Reg);
Observer->changedInstr(*RegDef);
}
Observer->changingAllUsesOfReg(MRI, Reg);
Observer->finishedChangingAllUsesOfReg();
}
}
return ConstrainedReg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
const MachineOperand &RegMO, unsigned OpIdx) {
Register Reg = RegMO.getReg();
// Assume physical registers are properly constrained.
assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
// Some of the target independent instructions, like COPY, may not impose any
// register class constraints on some of their operands: If it's a use, we can
// skip constraining as the instruction defining the register would constrain
// it.
// We can't constrain unallocatable register classes, because we can't create
// virtual registers for these classes, so we need to let targets handled this
// case.
if (RegClass && !RegClass->isAllocatable())
RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
if (!RegClass) {
assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
"Register class constraint is required unless either the "
"instruction is target independent or the operand is a use");
// FIXME: Just bailing out like this here could be not enough, unless we
// expect the users of this function to do the right thing for PHIs and
// COPY:
// v1 = COPY v0
// v2 = COPY v1
// v1 here may end up not being constrained at all. Please notice that to
// reproduce the issue we likely need a destination pattern of a selection
// rule producing such extra copies, not just an input GMIR with them as
// every existing target using selectImpl handles copies before calling it
// and they never reach this function.
return Reg;
}
return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
RegMO);
}
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
assert(!isPreISelGenericOpcode(I.getOpcode()) &&
"A selected instruction is expected");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
MachineOperand &MO = I.getOperand(OpI);
// There's nothing to be done on non-register operands.
if (!MO.isReg())
continue;
LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
assert(MO.isReg() && "Unsupported non-reg operand");
Register Reg = MO.getReg();
// Physical registers don't need to be constrained.
if (Register::isPhysicalRegister(Reg))
continue;
// Register operands with a value of 0 (e.g. predicate operands) don't need
// to be constrained.
if (Reg == 0)
continue;
// If the operand is a vreg, we should constrain its regclass, and only
// insert COPYs if that's impossible.
// constrainOperandRegClass does that for us.
MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
MO, OpI));
// Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
// done.
if (MO.isUse()) {
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
I.tieOperands(DefIdx, OpI);
}
}
return true;
}
bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
MachineRegisterInfo &MRI) {
// Give up if either DstReg or SrcReg is a physical register.
if (DstReg.isPhysical() || SrcReg.isPhysical())
return false;
// Give up if the types don't match.
if (MRI.getType(DstReg) != MRI.getType(SrcReg))
return false;
// Replace if either DstReg has no constraints or the register
// constraints match.
return !MRI.getRegClassOrRegBank(DstReg) ||
MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
}
bool llvm::isTriviallyDead(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
// If we can move an instruction, we can remove it. Otherwise, it has
// a side-effect of some sort.
bool SawStore = false;
if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
return false;
// Instructions without side-effects are dead iff they only define dead vregs.
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
Register Reg = MO.getReg();
if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
return false;
}
return true;
}
static void reportGISelDiagnostic(DiagnosticSeverity Severity,
MachineFunction &MF,
const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
bool IsFatal = Severity == DS_Error &&
TPC.isGlobalISelAbortEnabled();
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || IsFatal)
R << (" (in function: " + MF.getName() + ")").str();
if (IsFatal)
report_fatal_error(R.getMsg());
else
MORE.emit(R);
}
void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
const char *PassName, StringRef Msg,
const MachineInstr &MI) {
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
MI.getDebugLoc(), MI.getParent());
R << Msg;
// Printing MI is expensive; only do it if expensive remarks are enabled.
if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
R << ": " << ore::MNV("Inst", MI);
reportGISelFailure(MF, TPC, MORE, R);
}
Optional<int64_t> llvm::getConstantVRegVal(Register VReg,
const MachineRegisterInfo &MRI) {
Optional<ValueAndVReg> ValAndVReg =
getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
"Value found while looking through instrs");
if (!ValAndVReg)
return None;
return ValAndVReg->Value;
}
Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
bool HandleFConstant) {
SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
MachineInstr *MI;
auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
return Opcode == TargetOpcode::G_CONSTANT ||
(HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
};
auto GetImmediateValue = [HandleFConstant,
&MRI](const MachineInstr &MI) -> Optional<APInt> {
const MachineOperand &CstVal = MI.getOperand(1);
if (!CstVal.isImm() && !CstVal.isCImm() &&
(!HandleFConstant || !CstVal.isFPImm()))
return None;
if (!CstVal.isFPImm()) {
unsigned BitWidth =
MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
: CstVal.getCImm()->getValue();
assert(Val.getBitWidth() == BitWidth &&
"Value bitwidth doesn't match definition type");
return Val;
}
return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
};
while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
LookThroughInstrs) {
switch (MI->getOpcode()) {
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
SeenOpcodes.push_back(std::make_pair(
MI->getOpcode(),
MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
VReg = MI->getOperand(1).getReg();
break;
case TargetOpcode::COPY:
VReg = MI->getOperand(1).getReg();
if (Register::isPhysicalRegister(VReg))
return None;
break;
case TargetOpcode::G_INTTOPTR:
VReg = MI->getOperand(1).getReg();
break;
default:
return None;
}
}
if (!MI || !IsConstantOpcode(MI->getOpcode()))
return None;
Optional<APInt> MaybeVal = GetImmediateValue(*MI);
if (!MaybeVal)
return None;
APInt &Val = *MaybeVal;
while (!SeenOpcodes.empty()) {
std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
switch (OpcodeAndSize.first) {
case TargetOpcode::G_TRUNC:
Val = Val.trunc(OpcodeAndSize.second);
break;
case TargetOpcode::G_SEXT:
Val = Val.sext(OpcodeAndSize.second);
break;
case TargetOpcode::G_ZEXT:
Val = Val.zext(OpcodeAndSize.second);
break;
}
}
if (Val.getBitWidth() > 64)
return None;
return ValueAndVReg{Val.getSExtValue(), VReg};
}
const llvm::ConstantFP *
llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
return nullptr;
return MI->getOperand(1).getFPImm();
}
namespace {
struct DefinitionAndSourceRegister {
llvm::MachineInstr *MI;
Register Reg;
};
} // namespace
static llvm::Optional<DefinitionAndSourceRegister>
getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
Register DefSrcReg = Reg;
auto *DefMI = MRI.getVRegDef(Reg);
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
if (!DstTy.isValid())
return None;
while (DefMI->getOpcode() == TargetOpcode::COPY) {
Register SrcReg = DefMI->getOperand(1).getReg();
auto SrcTy = MRI.getType(SrcReg);
if (!SrcTy.isValid() || SrcTy != DstTy)
break;
DefMI = MRI.getVRegDef(SrcReg);
DefSrcReg = SrcReg;
}
return DefinitionAndSourceRegister{DefMI, DefSrcReg};
}
llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
Optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->MI : nullptr;
}
Register llvm::getSrcRegIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
Optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->Reg : Register();
}
llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
const MachineRegisterInfo &MRI) {
MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
if (Size == 32)
return APFloat(float(Val));
if (Size == 64)
return APFloat(Val);
if (Size != 16)
llvm_unreachable("Unsupported FPConstant size");
bool Ignored;
APFloat APF(Val);
APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
return APF;
}
Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
if (!MaybeOp2Cst)
return None;
auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
if (!MaybeOp1Cst)
return None;
LLT Ty = MRI.getType(Op1);
APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
switch (Opcode) {
default:
break;
case TargetOpcode::G_ADD:
return C1 + C2;
case TargetOpcode::G_AND:
return C1 & C2;
case TargetOpcode::G_ASHR:
return C1.ashr(C2);
case TargetOpcode::G_LSHR:
return C1.lshr(C2);
case TargetOpcode::G_MUL:
return C1 * C2;
case TargetOpcode::G_OR:
return C1 | C2;
case TargetOpcode::G_SHL:
return C1 << C2;
case TargetOpcode::G_SUB:
return C1 - C2;
case TargetOpcode::G_XOR:
return C1 ^ C2;
case TargetOpcode::G_UDIV:
if (!C2.getBoolValue())
break;
return C1.udiv(C2);
case TargetOpcode::G_SDIV:
if (!C2.getBoolValue())
break;
return C1.sdiv(C2);
case TargetOpcode::G_UREM:
if (!C2.getBoolValue())
break;
return C1.urem(C2);
case TargetOpcode::G_SREM:
if (!C2.getBoolValue())
break;
return C1.srem(C2);
}
return None;
}
bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
bool SNaN) {
const MachineInstr *DefMI = MRI.getVRegDef(Val);
if (!DefMI)
return false;
if (DefMI->getFlag(MachineInstr::FmNoNans))
return true;
if (SNaN) {
// FP operations quiet. For now, just handle the ones inserted during
// legalization.
switch (DefMI->getOpcode()) {
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FCANONICALIZE:
return true;
default:
return false;
}
}
return false;
}
Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
const MachinePointerInfo &MPO) {
auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
MachineFrameInfo &MFI = MF.getFrameInfo();
return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
MPO.Offset);
}
return Align(1);
}
Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1,
uint64_t Imm,
const MachineRegisterInfo &MRI) {
auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
if (MaybeOp1Cst) {
LLT Ty = MRI.getType(Op1);
APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
switch (Opcode) {
default:
break;
case TargetOpcode::G_SEXT_INREG:
return C1.trunc(Imm).sext(C1.getBitWidth());
}
}
return None;
}
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
AU.addPreserved<StackProtector>();
}
LLT llvm::getLCMType(LLT Ty0, LLT Ty1) {
if (!Ty0.isVector() && !Ty1.isVector()) {
unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits();
int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(),
Ty1.getSizeInBits());
return LLT::scalar(Mul / GCDSize);
}
if (Ty0.isVector() && !Ty1.isVector()) {
assert(Ty0.getElementType() == Ty1 && "not yet handled");
return Ty0;
}
if (Ty1.isVector() && !Ty0.isVector()) {
assert(Ty1.getElementType() == Ty0 && "not yet handled");
return Ty1;
}
if (Ty0.isVector() && Ty1.isVector()) {
assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled");
int GCDElts = greatestCommonDivisor(Ty0.getNumElements(),
Ty1.getNumElements());
int Mul = Ty0.getNumElements() * Ty1.getNumElements();
return LLT::vector(Mul / GCDElts, Ty0.getElementType());
}
llvm_unreachable("not yet handled");
}
LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
if (OrigTy.isVector() && TargetTy.isVector()) {
assert(OrigTy.getElementType() == TargetTy.getElementType());
int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
TargetTy.getNumElements());
return LLT::scalarOrVector(GCD, OrigTy.getElementType());
}
if (OrigTy.isVector() && !TargetTy.isVector()) {
assert(OrigTy.getElementType() == TargetTy);
return TargetTy;
}
assert(!OrigTy.isVector() && !TargetTy.isVector() &&
"GCD type of vector and scalar not implemented");
int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
TargetTy.getSizeInBits());
return LLT::scalar(GCD);
}