RegisterBankInfo.cpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the RegisterBankInfo class.
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#include <algorithm> // For std::max.

#define DEBUG_TYPE "registerbankinfo"

using namespace llvm;

STATISTIC(NumPartialMappingsCreated,
          "Number of partial mappings dynamically created");
STATISTIC(NumPartialMappingsAccessed,
          "Number of partial mappings dynamically accessed");
STATISTIC(NumValueMappingsCreated,
          "Number of value mappings dynamically created");
STATISTIC(NumValueMappingsAccessed,
          "Number of value mappings dynamically accessed");
STATISTIC(NumOperandsMappingsCreated,
          "Number of operands mappings dynamically created");
STATISTIC(NumOperandsMappingsAccessed,
          "Number of operands mappings dynamically accessed");
STATISTIC(NumInstructionMappingsCreated,
          "Number of instruction mappings dynamically created");
STATISTIC(NumInstructionMappingsAccessed,
          "Number of instruction mappings dynamically accessed");

const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;

//------------------------------------------------------------------------------
// RegisterBankInfo implementation.
//------------------------------------------------------------------------------
RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
                                   unsigned NumRegBanks)
    : RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
#ifndef NDEBUG
  for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
    assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
    assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
  }
#endif // NDEBUG
}

bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
#ifndef NDEBUG
  for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
    const RegisterBank &RegBank = getRegBank(Idx);
    assert(Idx == RegBank.getID() &&
           "ID does not match the index in the array");
    LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
    assert(RegBank.verify(TRI) && "RegBank is invalid");
  }
#endif // NDEBUG
  return true;
}

const RegisterBank *
RegisterBankInfo::getRegBank(Register Reg, const MachineRegisterInfo &MRI,
                             const TargetRegisterInfo &TRI) const {
  if (Register::isPhysicalRegister(Reg)) {
    // FIXME: This was probably a copy to a virtual register that does have a
    // type we could use.
    return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg, TRI), LLT());
  }

  assert(Reg && "NoRegister does not have a register bank");
  const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
  if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
    return RB;
  if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
    return &getRegBankFromRegClass(*RC, MRI.getType(Reg));
  return nullptr;
}

const TargetRegisterClass &
RegisterBankInfo::getMinimalPhysRegClass(Register Reg,
                                         const TargetRegisterInfo &TRI) const {
  assert(Register::isPhysicalRegister(Reg) && "Reg must be a physreg");
  const auto &RegRCIt = PhysRegMinimalRCs.find(Reg);
  if (RegRCIt != PhysRegMinimalRCs.end())
    return *RegRCIt->second;
  const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClass(Reg);
  PhysRegMinimalRCs[Reg] = PhysRC;
  return *PhysRC;
}

const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
    const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
    const MachineRegisterInfo &MRI) const {
  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();

  // The mapping of the registers may be available via the
  // register class constraints.
  const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, TRI);

  if (!RC)
    return nullptr;

  Register Reg = MI.getOperand(OpIdx).getReg();
  const RegisterBank &RegBank = getRegBankFromRegClass(*RC, MRI.getType(Reg));
  // Sanity check that the target properly implemented getRegBankFromRegClass.
  assert(RegBank.covers(*RC) &&
         "The mapping of the register bank does not make sense");
  return &RegBank;
}

const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
    Register Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {

  // If the register already has a class, fallback to MRI::constrainRegClass.
  auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
  if (RegClassOrBank.is<const TargetRegisterClass *>())
    return MRI.constrainRegClass(Reg, &RC);

  const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
  // Otherwise, all we can do is ensure the bank covers the class, and set it.
  if (RB && !RB->covers(RC))
    return nullptr;

  // If nothing was set or the class is simply compatible, set it.
  MRI.setRegClass(Reg, &RC);
  return &RC;
}

/// Check whether or not \p MI should be treated like a copy
/// for the mappings.
/// Copy like instruction are special for mapping because
/// they don't have actual register constraints. Moreover,
/// they sometimes have register classes assigned and we can
/// just use that instead of failing to provide a generic mapping.
static bool isCopyLike(const MachineInstr &MI) {
  return MI.isCopy() || MI.isPHI() ||
         MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
}

const RegisterBankInfo::InstructionMapping &
RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
  // For copies we want to walk over the operands and try to find one
  // that has a register bank since the instruction itself will not get
  // us any constraint.
  bool IsCopyLike = isCopyLike(MI);
  // For copy like instruction, only the mapping of the definition
  // is important. The rest is not constrained.
  unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();

  const MachineFunction &MF = *MI.getMF();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  // We may need to query the instruction encoding to guess the mapping.
  const TargetInstrInfo &TII = *STI.getInstrInfo();

  // Before doing anything complicated check if the mapping is not
  // directly available.
  bool CompleteMapping = true;

  SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
  for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
       ++OpIdx) {
    const MachineOperand &MO = MI.getOperand(OpIdx);
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    // The register bank of Reg is just a side effect of the current
    // excution and in particular, there is no reason to believe this
    // is the best default mapping for the current instruction.  Keep
    // it as an alternative register bank if we cannot figure out
    // something.
    const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
    // For copy-like instruction, we want to reuse the register bank
    // that is already set on Reg, if any, since those instructions do
    // not have any constraints.
    const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
    if (!CurRegBank) {
      // If this is a target specific instruction, we can deduce
      // the register bank from the encoding constraints.
      CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, MRI);
      if (!CurRegBank) {
        // All our attempts failed, give up.
        CompleteMapping = false;

        if (!IsCopyLike)
          // MI does not carry enough information to guess the mapping.
          return getInvalidInstructionMapping();
        continue;
      }
    }

    unsigned Size = getSizeInBits(Reg, MRI, TRI);
    const ValueMapping *ValMapping = &getValueMapping(0, Size, *CurRegBank);
    if (IsCopyLike) {
      if (!OperandsMapping[0]) {
        if (MI.isRegSequence()) {
          // For reg_sequence, the result size does not match the input.
          unsigned ResultSize = getSizeInBits(MI.getOperand(0).getReg(),
                                              MRI, TRI);
          OperandsMapping[0] = &getValueMapping(0, ResultSize, *CurRegBank);
        } else {
          OperandsMapping[0] = ValMapping;
        }
      }

      // The default handling assumes any register bank can be copied to any
      // other. If this isn't the case, the target should specially deal with
      // reg_sequence/phi. There may also be unsatisfiable copies.
      for (; OpIdx != EndIdx; ++OpIdx) {
        const MachineOperand &MO = MI.getOperand(OpIdx);
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();
        if (!Reg)
          continue;

        const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
        if (AltRegBank &&
            cannotCopy(*CurRegBank, *AltRegBank, getSizeInBits(Reg, MRI, TRI)))
          return getInvalidInstructionMapping();
      }

      CompleteMapping = true;
      break;
    }

    OperandsMapping[OpIdx] = ValMapping;
  }

  if (IsCopyLike && !CompleteMapping) {
    // No way to deduce the type from what we have.
    return getInvalidInstructionMapping();
  }

  assert(CompleteMapping && "Setting an uncomplete mapping");
  return getInstructionMapping(
      DefaultMappingID, /*Cost*/ 1,
      /*OperandsMapping*/ getOperandsMapping(OperandsMapping),
      NumOperandsForMapping);
}

/// Hashing function for PartialMapping.
static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
                                    const RegisterBank *RegBank) {
  return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
}

/// Overloaded version of hash_value for a PartialMapping.
hash_code
llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
  return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
                            PartMapping.RegBank);
}

const RegisterBankInfo::PartialMapping &
RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
                                    const RegisterBank &RegBank) const {
  ++NumPartialMappingsAccessed;

  hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
  const auto &It = MapOfPartialMappings.find(Hash);
  if (It != MapOfPartialMappings.end())
    return *It->second;

  ++NumPartialMappingsCreated;

  auto &PartMapping = MapOfPartialMappings[Hash];
  PartMapping = std::make_unique<PartialMapping>(StartIdx, Length, RegBank);
  return *PartMapping;
}

const RegisterBankInfo::ValueMapping &
RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
                                  const RegisterBank &RegBank) const {
  return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
}

static hash_code
hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
                 unsigned NumBreakDowns) {
  if (LLVM_LIKELY(NumBreakDowns == 1))
    return hash_value(*BreakDown);
  SmallVector<size_t, 8> Hashes(NumBreakDowns);
  for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
    Hashes.push_back(hash_value(BreakDown[Idx]));
  return hash_combine_range(Hashes.begin(), Hashes.end());
}

const RegisterBankInfo::ValueMapping &
RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
                                  unsigned NumBreakDowns) const {
  ++NumValueMappingsAccessed;

  hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
  const auto &It = MapOfValueMappings.find(Hash);
  if (It != MapOfValueMappings.end())
    return *It->second;

  ++NumValueMappingsCreated;

  auto &ValMapping = MapOfValueMappings[Hash];
  ValMapping = std::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
  return *ValMapping;
}

template <typename Iterator>
const RegisterBankInfo::ValueMapping *
RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {

  ++NumOperandsMappingsAccessed;

  // The addresses of the value mapping are unique.
  // Therefore, we can use them directly to hash the operand mapping.
  hash_code Hash = hash_combine_range(Begin, End);
  auto &Res = MapOfOperandsMappings[Hash];
  if (Res)
    return Res.get();

  ++NumOperandsMappingsCreated;

  // Create the array of ValueMapping.
  // Note: this array will not hash to this instance of operands
  // mapping, because we use the pointer of the ValueMapping
  // to hash and we expect them to uniquely identify an instance
  // of value mapping.
  Res = std::make_unique<ValueMapping[]>(std::distance(Begin, End));
  unsigned Idx = 0;
  for (Iterator It = Begin; It != End; ++It, ++Idx) {
    const ValueMapping *ValMap = *It;
    if (!ValMap)
      continue;
    Res[Idx] = *ValMap;
  }
  return Res.get();
}

const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
    const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
    const {
  return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
}

const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
    std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
    const {
  return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
}

static hash_code
hashInstructionMapping(unsigned ID, unsigned Cost,
                       const RegisterBankInfo::ValueMapping *OperandsMapping,
                       unsigned NumOperands) {
  return hash_combine(ID, Cost, OperandsMapping, NumOperands);
}

const RegisterBankInfo::InstructionMapping &
RegisterBankInfo::getInstructionMappingImpl(
    bool IsInvalid, unsigned ID, unsigned Cost,
    const RegisterBankInfo::ValueMapping *OperandsMapping,
    unsigned NumOperands) const {
  assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
           OperandsMapping == nullptr && NumOperands == 0) ||
          !IsInvalid) &&
         "Mismatch argument for invalid input");
  ++NumInstructionMappingsAccessed;

  hash_code Hash =
      hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
  const auto &It = MapOfInstructionMappings.find(Hash);
  if (It != MapOfInstructionMappings.end())
    return *It->second;

  ++NumInstructionMappingsCreated;

  auto &InstrMapping = MapOfInstructionMappings[Hash];
  InstrMapping = std::make_unique<InstructionMapping>(
      ID, Cost, OperandsMapping, NumOperands);
  return *InstrMapping;
}

const RegisterBankInfo::InstructionMapping &
RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
  const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
  if (Mapping.isValid())
    return Mapping;
  llvm_unreachable("The target must implement this");
}

RegisterBankInfo::InstructionMappings
RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
  InstructionMappings PossibleMappings;
  const auto &Mapping = getInstrMapping(MI);
  if (Mapping.isValid()) {
    // Put the default mapping first.
    PossibleMappings.push_back(&Mapping);
  }

  // Then the alternative mapping, if any.
  InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
  for (const InstructionMapping *AltMapping : AltMappings)
    PossibleMappings.push_back(AltMapping);
#ifndef NDEBUG
  for (const InstructionMapping *Mapping : PossibleMappings)
    assert(Mapping->verify(MI) && "Mapping is invalid");
#endif
  return PossibleMappings;
}

RegisterBankInfo::InstructionMappings
RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
  // No alternative for MI.
  return InstructionMappings();
}

void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
  MachineInstr &MI = OpdMapper.getMI();
  MachineRegisterInfo &MRI = OpdMapper.getMRI();
  LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
  for (unsigned OpIdx = 0,
                EndIdx = OpdMapper.getInstrMapping().getNumOperands();
       OpIdx != EndIdx; ++OpIdx) {
    LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
    MachineOperand &MO = MI.getOperand(OpIdx);
    if (!MO.isReg()) {
      LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
      continue;
    }
    if (!MO.getReg()) {
      LLVM_DEBUG(dbgs() << " is $noreg, nothing to be done\n");
      continue;
    }
    assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
               0 &&
           "Invalid mapping");
    assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
               1 &&
           "This mapping is too complex for this function");
    iterator_range<SmallVectorImpl<Register>::const_iterator> NewRegs =
        OpdMapper.getVRegs(OpIdx);
    if (NewRegs.empty()) {
      LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
      continue;
    }
    Register OrigReg = MO.getReg();
    Register NewReg = *NewRegs.begin();
    LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
    MO.setReg(NewReg);
    LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));

    // The OperandsMapper creates plain scalar, we may have to fix that.
    // Check if the types match and if not, fix that.
    LLT OrigTy = MRI.getType(OrigReg);
    LLT NewTy = MRI.getType(NewReg);
    if (OrigTy != NewTy) {
      // The default mapping is not supposed to change the size of
      // the storage. However, right now we don't necessarily bump all
      // the types to storage size. For instance, we can consider
      // s16 G_AND legal whereas the storage size is going to be 32.
      assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() &&
             "Types with difference size cannot be handled by the default "
             "mapping");
      LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
                        << OrigTy);
      MRI.setType(NewReg, OrigTy);
    }
    LLVM_DEBUG(dbgs() << '\n');
  }
}

unsigned RegisterBankInfo::getSizeInBits(Register Reg,
                                         const MachineRegisterInfo &MRI,
                                         const TargetRegisterInfo &TRI) const {
  if (Register::isPhysicalRegister(Reg)) {
    // The size is not directly available for physical registers.
    // Instead, we need to access a register class that contains Reg and
    // get the size of that register class.
    // Because this is expensive, we'll cache the register class by calling
    auto *RC = &getMinimalPhysRegClass(Reg, TRI);
    assert(RC && "Expecting Register class");
    return TRI.getRegSizeInBits(*RC);
  }
  return TRI.getRegSizeInBits(Reg, MRI);
}

//------------------------------------------------------------------------------
// Helper classes implementation.
//------------------------------------------------------------------------------
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
  print(dbgs());
  dbgs() << '\n';
}
#endif

bool RegisterBankInfo::PartialMapping::verify() const {
  assert(RegBank && "Register bank not set");
  assert(Length && "Empty mapping");
  assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
  // Check if the minimum width fits into RegBank.
  assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
  return true;
}

void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
  OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
  if (RegBank)
    OS << *RegBank;
  else
    OS << "nullptr";
}

bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
  if (NumBreakDowns < 2)
    return true;

  const PartialMapping *First = begin();
  for (const PartialMapping *Part = First + 1; Part != end(); ++Part) {
    if (Part->Length != First->Length || Part->RegBank != First->RegBank)
      return false;
  }

  return true;
}

bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
  assert(NumBreakDowns && "Value mapped nowhere?!");
  unsigned OrigValueBitWidth = 0;
  for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
    // Check that each register bank is big enough to hold the partial value:
    // this check is done by PartialMapping::verify
    assert(PartMap.verify() && "Partial mapping is invalid");
    // The original value should completely be mapped.
    // Thus the maximum accessed index + 1 is the size of the original value.
    OrigValueBitWidth =
        std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
  }
  assert(OrigValueBitWidth >= MeaningfulBitWidth &&
         "Meaningful bits not covered by the mapping");
  APInt ValueMask(OrigValueBitWidth, 0);
  for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
    // Check that the union of the partial mappings covers the whole value,
    // without overlaps.
    // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
    APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
                                          PartMap.getHighBitIdx() + 1);
    ValueMask ^= PartMapMask;
    assert((ValueMask & PartMapMask) == PartMapMask &&
           "Some partial mappings overlap");
  }
  assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
  return true;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
  print(dbgs());
  dbgs() << '\n';
}
#endif

void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
  OS << "#BreakDown: " << NumBreakDowns << " ";
  bool IsFirst = true;
  for (const PartialMapping &PartMap : *this) {
    if (!IsFirst)
      OS << ", ";
    OS << '[' << PartMap << ']';
    IsFirst = false;
  }
}

bool RegisterBankInfo::InstructionMapping::verify(
    const MachineInstr &MI) const {
  // Check that all the register operands are properly mapped.
  // Check the constructor invariant.
  // For PHI, we only care about mapping the definition.
  assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
         "NumOperands must match, see constructor");
  assert(MI.getParent() && MI.getMF() &&
         "MI must be connected to a MachineFunction");
  const MachineFunction &MF = *MI.getMF();
  const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
  (void)RBI;

  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    const MachineOperand &MO = MI.getOperand(Idx);
    if (!MO.isReg()) {
      assert(!getOperandMapping(Idx).isValid() &&
             "We should not care about non-reg mapping");
      continue;
    }
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    assert(getOperandMapping(Idx).isValid() &&
           "We must have a mapping for reg operands");
    const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
    (void)MOMapping;
    // Register size in bits.
    // This size must match what the mapping expects.
    assert(MOMapping.verify(RBI->getSizeInBits(
               Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
           "Value mapping is invalid");
  }
  return true;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
  print(dbgs());
  dbgs() << '\n';
}
#endif

void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
  OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";

  for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
    const ValueMapping &ValMapping = getOperandMapping(OpIdx);
    if (OpIdx)
      OS << ", ";
    OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
  }
}

const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;

RegisterBankInfo::OperandsMapper::OperandsMapper(
    MachineInstr &MI, const InstructionMapping &InstrMapping,
    MachineRegisterInfo &MRI)
    : MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
  unsigned NumOpds = InstrMapping.getNumOperands();
  OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
  assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
}

iterator_range<SmallVectorImpl<Register>::iterator>
RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
  assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
  unsigned NumPartialVal =
      getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
  int StartIdx = OpToNewVRegIdx[OpIdx];

  if (StartIdx == OperandsMapper::DontKnowIdx) {
    // This is the first time we try to access OpIdx.
    // Create the cells that will hold all the partial values at the
    // end of the list of NewVReg.
    StartIdx = NewVRegs.size();
    OpToNewVRegIdx[OpIdx] = StartIdx;
    for (unsigned i = 0; i < NumPartialVal; ++i)
      NewVRegs.push_back(0);
  }
  SmallVectorImpl<Register>::iterator End =
      getNewVRegsEnd(StartIdx, NumPartialVal);

  return make_range(&NewVRegs[StartIdx], End);
}

SmallVectorImpl<Register>::const_iterator
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
                                                 unsigned NumVal) const {
  return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
}
SmallVectorImpl<Register>::iterator
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
                                                 unsigned NumVal) {
  assert((NewVRegs.size() == StartIdx + NumVal ||
          NewVRegs.size() > StartIdx + NumVal) &&
         "NewVRegs too small to contain all the partial mapping");
  return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
                                              : &NewVRegs[StartIdx + NumVal];
}

void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
  assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
  iterator_range<SmallVectorImpl<Register>::iterator> NewVRegsForOpIdx =
      getVRegsMem(OpIdx);
  const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
  const PartialMapping *PartMap = ValMapping.begin();
  for (Register &NewVReg : NewVRegsForOpIdx) {
    assert(PartMap != ValMapping.end() && "Out-of-bound access");
    assert(NewVReg == 0 && "Register has already been created");
    // The new registers are always bound to scalar with the right size.
    // The actual type has to be set when the target does the mapping
    // of the instruction.
    // The rationale is that this generic code cannot guess how the
    // target plans to split the input type.
    NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
    MRI.setRegBank(NewVReg, *PartMap->RegBank);
    ++PartMap;
  }
}

void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
                                                unsigned PartialMapIdx,
                                                Register NewVReg) {
  assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
  assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
             PartialMapIdx &&
         "Out-of-bound access for partial mapping");
  // Make sure the memory is initialized for that operand.
  (void)getVRegsMem(OpIdx);
  assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
         "This value is already set");
  NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
}

iterator_range<SmallVectorImpl<Register>::const_iterator>
RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
                                           bool ForDebug) const {
  (void)ForDebug;
  assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
  int StartIdx = OpToNewVRegIdx[OpIdx];

  if (StartIdx == OperandsMapper::DontKnowIdx)
    return make_range(NewVRegs.end(), NewVRegs.end());

  unsigned PartMapSize =
      getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
  SmallVectorImpl<Register>::const_iterator End =
      getNewVRegsEnd(StartIdx, PartMapSize);
  iterator_range<SmallVectorImpl<Register>::const_iterator> Res =
      make_range(&NewVRegs[StartIdx], End);
#ifndef NDEBUG
  for (Register VReg : Res)
    assert((VReg || ForDebug) && "Some registers are uninitialized");
#endif
  return Res;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
  print(dbgs(), true);
  dbgs() << '\n';
}
#endif

void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
                                             bool ForDebug) const {
  unsigned NumOpds = getInstrMapping().getNumOperands();
  if (ForDebug) {
    OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
    // Print out the internal state of the index table.
    OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
    bool IsFirst = true;
    for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
      if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
        if (!IsFirst)
          OS << ", ";
        OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
        IsFirst = false;
      }
    }
    OS << '\n';
  } else
    OS << "Mapping ID: " << getInstrMapping().getID() << ' ';

  OS << "Operand Mapping: ";
  // If we have a function, we can pretty print the name of the registers.
  // Otherwise we will print the raw numbers.
  const TargetRegisterInfo *TRI =
      getMI().getParent() && getMI().getMF()
          ? getMI().getMF()->getSubtarget().getRegisterInfo()
          : nullptr;
  bool IsFirst = true;
  for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
    if (OpToNewVRegIdx[Idx] == DontKnowIdx)
      continue;
    if (!IsFirst)
      OS << ", ";
    IsFirst = false;
    OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
    bool IsFirstNewVReg = true;
    for (Register VReg : getVRegs(Idx)) {
      if (!IsFirstNewVReg)
        OS << ", ";
      IsFirstNewVReg = false;
      OS << printReg(VReg, TRI);
    }
    OS << "])";
  }
}