InlineAsmLowering.cpp
24.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
//===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
///
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#define DEBUG_TYPE "inline-asm-lowering"
using namespace llvm;
void InlineAsmLowering::anchor() {}
namespace {
/// GISelAsmOperandInfo - This contains information for each constraint that we
/// are lowering.
class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
public:
/// Regs - If this is a register or register class operand, this
/// contains the set of assigned registers corresponding to the operand.
SmallVector<Register, 1> Regs;
explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
: TargetLowering::AsmOperandInfo(Info) {}
};
using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
class ExtraFlags {
unsigned Flags = 0;
public:
explicit ExtraFlags(const CallBase &CB) {
const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
if (IA->hasSideEffects())
Flags |= InlineAsm::Extra_HasSideEffects;
if (IA->isAlignStack())
Flags |= InlineAsm::Extra_IsAlignStack;
if (CB.isConvergent())
Flags |= InlineAsm::Extra_IsConvergent;
Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
}
void update(const TargetLowering::AsmOperandInfo &OpInfo) {
// Ideally, we would only check against memory constraints. However, the
// meaning of an Other constraint can be target-specific and we can't easily
// reason about it. Therefore, be conservative and set MayLoad/MayStore
// for Other constraints as well.
if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
OpInfo.ConstraintType == TargetLowering::C_Other) {
if (OpInfo.Type == InlineAsm::isInput)
Flags |= InlineAsm::Extra_MayLoad;
else if (OpInfo.Type == InlineAsm::isOutput)
Flags |= InlineAsm::Extra_MayStore;
else if (OpInfo.Type == InlineAsm::isClobber)
Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
}
}
unsigned get() const { return Flags; }
};
} // namespace
/// Assign virtual/physical registers for the specified register operand.
static void getRegistersForValue(MachineFunction &MF,
MachineIRBuilder &MIRBuilder,
GISelAsmOperandInfo &OpInfo,
GISelAsmOperandInfo &RefOpInfo) {
const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
// No work to do for memory operations.
if (OpInfo.ConstraintType == TargetLowering::C_Memory)
return;
// If this is a constraint for a single physreg, or a constraint for a
// register class, find it.
Register AssignedReg;
const TargetRegisterClass *RC;
std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
&TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
// RC is unset only on failure. Return immediately.
if (!RC)
return;
// No need to allocate a matching input constraint since the constraint it's
// matching to has already been allocated.
if (OpInfo.isMatchingInputConstraint())
return;
// Initialize NumRegs.
unsigned NumRegs = 1;
if (OpInfo.ConstraintVT != MVT::Other)
NumRegs =
TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
// If this is a constraint for a specific physical register, but the type of
// the operand requires more than one register to be passed, we allocate the
// required amount of physical registers, starting from the selected physical
// register.
// For this, first retrieve a register iterator for the given register class
TargetRegisterClass::iterator I = RC->begin();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
// Advance the iterator to the assigned register (if set)
if (AssignedReg) {
for (; *I != AssignedReg; ++I)
assert(I != RC->end() && "AssignedReg should be a member of provided RC");
}
// Finally, assign the registers. If the AssignedReg isn't set, create virtual
// registers with the provided register class
for (; NumRegs; --NumRegs, ++I) {
assert(I != RC->end() && "Ran out of registers to allocate!");
Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
OpInfo.Regs.push_back(R);
}
}
/// Return an integer indicating how general CT is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
switch (CT) {
case TargetLowering::C_Immediate:
case TargetLowering::C_Other:
case TargetLowering::C_Unknown:
return 0;
case TargetLowering::C_Register:
return 1;
case TargetLowering::C_RegisterClass:
return 2;
case TargetLowering::C_Memory:
return 3;
}
llvm_unreachable("Invalid constraint type");
}
static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
const TargetLowering *TLI) {
assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
unsigned BestIdx = 0;
TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
int BestGenerality = -1;
// Loop over the options, keeping track of the most general one.
for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
TargetLowering::ConstraintType CType =
TLI->getConstraintType(OpInfo.Codes[i]);
// Indirect 'other' or 'immediate' constraints are not allowed.
if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
CType == TargetLowering::C_Register ||
CType == TargetLowering::C_RegisterClass))
continue;
// If this is an 'other' or 'immediate' constraint, see if the operand is
// valid for it. For example, on X86 we might have an 'rI' constraint. If
// the operand is an integer in the range [0..31] we want to use I (saving a
// load of a register), otherwise we must use 'r'.
if (CType == TargetLowering::C_Other ||
CType == TargetLowering::C_Immediate) {
assert(OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint");
// FIXME: prefer immediate constraints if the target allows it
}
// Things with matching constraints can only be registers, per gcc
// documentation. This mainly affects "g" constraints.
if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
continue;
// This constraint letter is more general than the previous one, use it.
int Generality = getConstraintGenerality(CType);
if (Generality > BestGenerality) {
BestType = CType;
BestIdx = i;
BestGenerality = Generality;
}
}
OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
OpInfo.ConstraintType = BestType;
}
static void computeConstraintToUse(const TargetLowering *TLI,
TargetLowering::AsmOperandInfo &OpInfo) {
assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
// Single-letter constraints ('r') are very common.
if (OpInfo.Codes.size() == 1) {
OpInfo.ConstraintCode = OpInfo.Codes[0];
OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
} else {
chooseConstraint(OpInfo, TLI);
}
// 'X' matches anything.
if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
// Labels and constants are handled elsewhere ('X' is the only thing
// that matches labels). For Functions, the type here is the type of
// the result, which is not what we want to look at; leave them alone.
Value *Val = OpInfo.CallOperandVal;
if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
return;
// Otherwise, try to resolve it to something we know about by looking at
// the actual operand type.
if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
OpInfo.ConstraintCode = Repl;
OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
}
}
}
static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
unsigned Flag = I.getOperand(OpIdx).getImm();
return InlineAsm::getNumOperandRegisters(Flag);
}
static bool buildAnyextOrCopy(Register Dst, Register Src,
MachineIRBuilder &MIRBuilder) {
const TargetRegisterInfo *TRI =
MIRBuilder.getMF().getSubtarget().getRegisterInfo();
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
auto SrcTy = MRI->getType(Src);
if (!SrcTy.isValid()) {
LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
return false;
}
unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
if (DstSize < SrcSize) {
LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
return false;
}
// Attempt to anyext small scalar sources.
if (DstSize > SrcSize) {
if (!SrcTy.isScalar()) {
LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
"destination register class\n");
return false;
}
Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
}
MIRBuilder.buildCopy(Dst, Src);
return true;
}
bool InlineAsmLowering::lowerInlineAsm(
MachineIRBuilder &MIRBuilder, const CallBase &Call,
std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
const {
const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
/// ConstraintOperands - Information about all of the constraints.
GISelAsmOperandInfoVector ConstraintOperands;
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(DL, TRI, Call);
ExtraFlags ExtraInfo(Call);
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
unsigned ResNo = 0; // ResNo - The result number of the next output.
for (auto &T : TargetConstraints) {
ConstraintOperands.push_back(GISelAsmOperandInfo(T));
GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
// Compute the value type for each operand.
if (OpInfo.Type == InlineAsm::isInput ||
(OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));
if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
return false;
}
Type *OpTy = OpInfo.CallOperandVal->getType();
// If this is an indirect operand, the operand is a pointer to the
// accessed type.
if (OpInfo.isIndirect) {
PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
if (!PtrTy)
report_fatal_error("Indirect operand for inline asm not a pointer!");
OpTy = PtrTy->getElementType();
}
// FIXME: Support aggregate input operands
if (!OpTy->isSingleValueType()) {
LLVM_DEBUG(
dbgs() << "Aggregate input operands are not supported yet\n");
return false;
}
OpInfo.ConstraintVT = TLI->getValueType(DL, OpTy, true).getSimpleVT();
} else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
OpInfo.ConstraintVT =
TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
} else {
assert(ResNo == 0 && "Asm only has one result!");
OpInfo.ConstraintVT = TLI->getSimpleValueType(DL, Call.getType());
}
++ResNo;
} else {
OpInfo.ConstraintVT = MVT::Other;
}
// Compute the constraint code and ConstraintType to use.
computeConstraintToUse(TLI, OpInfo);
// The selected constraint type might expose new sideeffects
ExtraInfo.update(OpInfo);
}
// At this point, all operand types are decided.
// Create the MachineInstr, but don't insert it yet since input
// operands still need to insert instructions before this one
auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
.addExternalSymbol(IA->getAsmString().c_str())
.addImm(ExtraInfo.get());
// Starting from this operand: flag followed by register(s) will be added as
// operands to Inst for each constraint. Used for matching input constraints.
unsigned StartIdx = Inst->getNumOperands();
// Collects the output operands for later processing
GISelAsmOperandInfoVector OutputOperands;
for (auto &OpInfo : ConstraintOperands) {
GISelAsmOperandInfo &RefOpInfo =
OpInfo.isMatchingInputConstraint()
? ConstraintOperands[OpInfo.getMatchedOperand()]
: OpInfo;
// Assign registers for register operands
getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
switch (OpInfo.Type) {
case InlineAsm::isOutput:
if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
unsigned ConstraintID =
TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
assert(ConstraintID != InlineAsm::Constraint_Unknown &&
"Failed to convert memory constraint code to constraint id.");
// Add information to the INLINEASM instruction to know about this
// output.
unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
Inst.addImm(OpFlags);
ArrayRef<Register> SourceRegs =
GetOrCreateVRegs(*OpInfo.CallOperandVal);
assert(
SourceRegs.size() == 1 &&
"Expected the memory output to fit into a single virtual register");
Inst.addReg(SourceRegs[0]);
} else {
// Otherwise, this outputs to a register (directly for C_Register /
// C_RegisterClass. Find a register that we can use.
assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
if (OpInfo.Regs.empty()) {
LLVM_DEBUG(dbgs()
<< "Couldn't allocate output register for constraint\n");
return false;
}
// Add information to the INLINEASM instruction to know that this
// register is set.
unsigned Flag = InlineAsm::getFlagWord(
OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
: InlineAsm::Kind_RegDef,
OpInfo.Regs.size());
if (OpInfo.Regs.front().isVirtual()) {
// Put the register class of the virtual registers in the flag word.
// That way, later passes can recompute register class constraints for
// inline assembly as well as normal instructions. Don't do this for
// tied operands that can use the regclass information from the def.
const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
}
Inst.addImm(Flag);
for (Register Reg : OpInfo.Regs) {
Inst.addReg(Reg,
RegState::Define | getImplRegState(Reg.isPhysical()) |
(OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
}
// Remember this output operand for later processing
OutputOperands.push_back(OpInfo);
}
break;
case InlineAsm::isInput: {
if (OpInfo.isMatchingInputConstraint()) {
unsigned DefIdx = OpInfo.getMatchedOperand();
// Find operand with register def that corresponds to DefIdx.
unsigned InstFlagIdx = StartIdx;
for (unsigned i = 0; i < DefIdx; ++i)
InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
if (InlineAsm::isMemKind(MatchedOperandFlag)) {
LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
"supported. This should be target specific.\n");
return false;
}
if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
!InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
return false;
}
// We want to tie input to register in next operand.
unsigned DefRegIdx = InstFlagIdx + 1;
Register Def = Inst->getOperand(DefRegIdx).getReg();
ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
assert(SrcRegs.size() == 1 && "Single register is expected here");
// When Def is physreg: use given input.
Register In = SrcRegs[0];
// When Def is vreg: copy input to new vreg with same reg class as Def.
if (Def.isVirtual()) {
In = MRI->createVirtualRegister(MRI->getRegClass(Def));
if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder))
return false;
}
// Add Flag and input register operand (In) to Inst. Tie In to Def.
unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
Inst.addImm(Flag);
Inst.addReg(In);
Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
break;
}
if (OpInfo.ConstraintType == TargetLowering::C_Other &&
OpInfo.isIndirect) {
LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
"not supported yet\n");
return false;
}
if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
OpInfo.ConstraintType == TargetLowering::C_Other) {
std::vector<MachineOperand> Ops;
if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
OpInfo.ConstraintCode, Ops,
MIRBuilder)) {
LLVM_DEBUG(dbgs() << "Don't support constraint: "
<< OpInfo.ConstraintCode << " yet\n");
return false;
}
assert(Ops.size() > 0 &&
"Expected constraint to be lowered to at least one operand");
// Add information to the INLINEASM node to know about this input.
unsigned OpFlags =
InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
Inst.addImm(OpFlags);
Inst.add(Ops);
break;
}
if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
if (!OpInfo.isIndirect) {
LLVM_DEBUG(dbgs()
<< "Cannot indirectify memory input operands yet\n");
return false;
}
assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
unsigned ConstraintID =
TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
Inst.addImm(OpFlags);
ArrayRef<Register> SourceRegs =
GetOrCreateVRegs(*OpInfo.CallOperandVal);
assert(
SourceRegs.size() == 1 &&
"Expected the memory input to fit into a single virtual register");
Inst.addReg(SourceRegs[0]);
break;
}
assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
OpInfo.ConstraintType == TargetLowering::C_Register) &&
"Unknown constraint type!");
if (OpInfo.isIndirect) {
LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
"for constraint '"
<< OpInfo.ConstraintCode << "'\n");
return false;
}
// Copy the input into the appropriate registers.
if (OpInfo.Regs.empty()) {
LLVM_DEBUG(
dbgs()
<< "Couldn't allocate input register for register constraint\n");
return false;
}
unsigned NumRegs = OpInfo.Regs.size();
ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
assert(NumRegs == SourceRegs.size() &&
"Expected the number of input registers to match the number of "
"source registers");
if (NumRegs > 1) {
LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
"not supported yet\n");
return false;
}
unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
Inst.addImm(Flag);
if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
return false;
Inst.addReg(OpInfo.Regs[0]);
break;
}
case InlineAsm::isClobber: {
unsigned NumRegs = OpInfo.Regs.size();
if (NumRegs > 0) {
unsigned Flag =
InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
Inst.addImm(Flag);
for (Register Reg : OpInfo.Regs) {
Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
getImplRegState(Reg.isPhysical()));
}
}
break;
}
}
}
if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
Inst.addMetadata(SrcLoc);
// All inputs are handled, insert the instruction now
MIRBuilder.insertInstr(Inst);
// Finally, copy the output operands into the output registers
ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
if (ResRegs.size() != OutputOperands.size()) {
LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
"number of destination registers\n");
return false;
}
for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
GISelAsmOperandInfo &OpInfo = OutputOperands[i];
if (OpInfo.Regs.empty())
continue;
switch (OpInfo.ConstraintType) {
case TargetLowering::C_Register:
case TargetLowering::C_RegisterClass: {
if (OpInfo.Regs.size() > 1) {
LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
"registers are not supported yet\n");
return false;
}
Register SrcReg = OpInfo.Regs[0];
unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
// First copy the non-typed virtual register into a generic virtual
// register
Register Tmp1Reg =
MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
// Need to truncate the result of the register
MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
} else {
MIRBuilder.buildCopy(ResRegs[i], SrcReg);
}
break;
}
case TargetLowering::C_Immediate:
case TargetLowering::C_Other:
LLVM_DEBUG(
dbgs() << "Cannot lower target specific output constraints yet\n");
return false;
case TargetLowering::C_Memory:
break; // Already handled.
case TargetLowering::C_Unknown:
LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
return false;
}
}
return true;
}
bool InlineAsmLowering::lowerAsmOperandForConstraint(
Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
MachineIRBuilder &MIRBuilder) const {
if (Constraint.size() > 1)
return false;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default:
return false;
case 'i': // Simple Integer or Relocatable Constant
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
assert(CI->getBitWidth() <= 64 &&
"expected immediate to fit into 64-bits");
// Boolean constants should be zero-extended, others are sign-extended
bool IsBool = CI->getBitWidth() == 1;
int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
Ops.push_back(MachineOperand::CreateImm(ExtVal));
return true;
}
return false;
}
}