InlineAsmLowering.cpp 24.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
//===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
///
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"

#define DEBUG_TYPE "inline-asm-lowering"

using namespace llvm;

void InlineAsmLowering::anchor() {}

namespace {

/// GISelAsmOperandInfo - This contains information for each constraint that we
/// are lowering.
class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
public:
  /// Regs - If this is a register or register class operand, this
  /// contains the set of assigned registers corresponding to the operand.
  SmallVector<Register, 1> Regs;

  explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
      : TargetLowering::AsmOperandInfo(Info) {}
};

using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;

class ExtraFlags {
  unsigned Flags = 0;

public:
  explicit ExtraFlags(const CallBase &CB) {
    const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
    if (IA->hasSideEffects())
      Flags |= InlineAsm::Extra_HasSideEffects;
    if (IA->isAlignStack())
      Flags |= InlineAsm::Extra_IsAlignStack;
    if (CB.isConvergent())
      Flags |= InlineAsm::Extra_IsConvergent;
    Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
  }

  void update(const TargetLowering::AsmOperandInfo &OpInfo) {
    // Ideally, we would only check against memory constraints.  However, the
    // meaning of an Other constraint can be target-specific and we can't easily
    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
    // for Other constraints as well.
    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
        OpInfo.ConstraintType == TargetLowering::C_Other) {
      if (OpInfo.Type == InlineAsm::isInput)
        Flags |= InlineAsm::Extra_MayLoad;
      else if (OpInfo.Type == InlineAsm::isOutput)
        Flags |= InlineAsm::Extra_MayStore;
      else if (OpInfo.Type == InlineAsm::isClobber)
        Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
    }
  }

  unsigned get() const { return Flags; }
};

} // namespace

/// Assign virtual/physical registers for the specified register operand.
static void getRegistersForValue(MachineFunction &MF,
                                 MachineIRBuilder &MIRBuilder,
                                 GISelAsmOperandInfo &OpInfo,
                                 GISelAsmOperandInfo &RefOpInfo) {

  const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();

  // No work to do for memory operations.
  if (OpInfo.ConstraintType == TargetLowering::C_Memory)
    return;

  // If this is a constraint for a single physreg, or a constraint for a
  // register class, find it.
  Register AssignedReg;
  const TargetRegisterClass *RC;
  std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
      &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
  // RC is unset only on failure. Return immediately.
  if (!RC)
    return;

  // No need to allocate a matching input constraint since the constraint it's
  // matching to has already been allocated.
  if (OpInfo.isMatchingInputConstraint())
    return;

  // Initialize NumRegs.
  unsigned NumRegs = 1;
  if (OpInfo.ConstraintVT != MVT::Other)
    NumRegs =
        TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);

  // If this is a constraint for a specific physical register, but the type of
  // the operand requires more than one register to be passed, we allocate the
  // required amount of physical registers, starting from the selected physical
  // register.
  // For this, first retrieve a register iterator for the given register class
  TargetRegisterClass::iterator I = RC->begin();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();

  // Advance the iterator to the assigned register (if set)
  if (AssignedReg) {
    for (; *I != AssignedReg; ++I)
      assert(I != RC->end() && "AssignedReg should be a member of provided RC");
  }

  // Finally, assign the registers. If the AssignedReg isn't set, create virtual
  // registers with the provided register class
  for (; NumRegs; --NumRegs, ++I) {
    assert(I != RC->end() && "Ran out of registers to allocate!");
    Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
    OpInfo.Regs.push_back(R);
  }
}

/// Return an integer indicating how general CT is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
  switch (CT) {
  case TargetLowering::C_Immediate:
  case TargetLowering::C_Other:
  case TargetLowering::C_Unknown:
    return 0;
  case TargetLowering::C_Register:
    return 1;
  case TargetLowering::C_RegisterClass:
    return 2;
  case TargetLowering::C_Memory:
    return 3;
  }
  llvm_unreachable("Invalid constraint type");
}

static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
                             const TargetLowering *TLI) {
  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
  unsigned BestIdx = 0;
  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
  int BestGenerality = -1;

  // Loop over the options, keeping track of the most general one.
  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
    TargetLowering::ConstraintType CType =
        TLI->getConstraintType(OpInfo.Codes[i]);

    // Indirect 'other' or 'immediate' constraints are not allowed.
    if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
                               CType == TargetLowering::C_Register ||
                               CType == TargetLowering::C_RegisterClass))
      continue;

    // If this is an 'other' or 'immediate' constraint, see if the operand is
    // valid for it. For example, on X86 we might have an 'rI' constraint. If
    // the operand is an integer in the range [0..31] we want to use I (saving a
    // load of a register), otherwise we must use 'r'.
    if (CType == TargetLowering::C_Other ||
        CType == TargetLowering::C_Immediate) {
      assert(OpInfo.Codes[i].size() == 1 &&
             "Unhandled multi-letter 'other' constraint");
      // FIXME: prefer immediate constraints if the target allows it
    }

    // Things with matching constraints can only be registers, per gcc
    // documentation.  This mainly affects "g" constraints.
    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
      continue;

    // This constraint letter is more general than the previous one, use it.
    int Generality = getConstraintGenerality(CType);
    if (Generality > BestGenerality) {
      BestType = CType;
      BestIdx = i;
      BestGenerality = Generality;
    }
  }

  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
  OpInfo.ConstraintType = BestType;
}

static void computeConstraintToUse(const TargetLowering *TLI,
                                   TargetLowering::AsmOperandInfo &OpInfo) {
  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");

  // Single-letter constraints ('r') are very common.
  if (OpInfo.Codes.size() == 1) {
    OpInfo.ConstraintCode = OpInfo.Codes[0];
    OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
  } else {
    chooseConstraint(OpInfo, TLI);
  }

  // 'X' matches anything.
  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
    // Labels and constants are handled elsewhere ('X' is the only thing
    // that matches labels).  For Functions, the type here is the type of
    // the result, which is not what we want to look at; leave them alone.
    Value *Val = OpInfo.CallOperandVal;
    if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
      return;

    // Otherwise, try to resolve it to something we know about by looking at
    // the actual operand type.
    if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
      OpInfo.ConstraintCode = Repl;
      OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
    }
  }
}

static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
  unsigned Flag = I.getOperand(OpIdx).getImm();
  return InlineAsm::getNumOperandRegisters(Flag);
}

static bool buildAnyextOrCopy(Register Dst, Register Src,
                              MachineIRBuilder &MIRBuilder) {
  const TargetRegisterInfo *TRI =
      MIRBuilder.getMF().getSubtarget().getRegisterInfo();
  MachineRegisterInfo *MRI = MIRBuilder.getMRI();

  auto SrcTy = MRI->getType(Src);
  if (!SrcTy.isValid()) {
    LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
    return false;
  }
  unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
  unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);

  if (DstSize < SrcSize) {
    LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
    return false;
  }

  // Attempt to anyext small scalar sources.
  if (DstSize > SrcSize) {
    if (!SrcTy.isScalar()) {
      LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
                           "destination register class\n");
      return false;
    }
    Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
  }

  MIRBuilder.buildCopy(Dst, Src);
  return true;
}

bool InlineAsmLowering::lowerInlineAsm(
    MachineIRBuilder &MIRBuilder, const CallBase &Call,
    std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
    const {
  const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());

  /// ConstraintOperands - Information about all of the constraints.
  GISelAsmOperandInfoVector ConstraintOperands;

  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();

  MachineRegisterInfo *MRI = MIRBuilder.getMRI();

  TargetLowering::AsmOperandInfoVector TargetConstraints =
      TLI->ParseConstraints(DL, TRI, Call);

  ExtraFlags ExtraInfo(Call);
  unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
  unsigned ResNo = 0; // ResNo - The result number of the next output.
  for (auto &T : TargetConstraints) {
    ConstraintOperands.push_back(GISelAsmOperandInfo(T));
    GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();

    // Compute the value type for each operand.
    if (OpInfo.Type == InlineAsm::isInput ||
        (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {

      OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));

      if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
        LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
        return false;
      }

      Type *OpTy = OpInfo.CallOperandVal->getType();

      // If this is an indirect operand, the operand is a pointer to the
      // accessed type.
      if (OpInfo.isIndirect) {
        PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
        if (!PtrTy)
          report_fatal_error("Indirect operand for inline asm not a pointer!");
        OpTy = PtrTy->getElementType();
      }

      // FIXME: Support aggregate input operands
      if (!OpTy->isSingleValueType()) {
        LLVM_DEBUG(
            dbgs() << "Aggregate input operands are not supported yet\n");
        return false;
      }

      OpInfo.ConstraintVT = TLI->getValueType(DL, OpTy, true).getSimpleVT();

    } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
      assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
      if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
        OpInfo.ConstraintVT =
            TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
      } else {
        assert(ResNo == 0 && "Asm only has one result!");
        OpInfo.ConstraintVT = TLI->getSimpleValueType(DL, Call.getType());
      }
      ++ResNo;
    } else {
      OpInfo.ConstraintVT = MVT::Other;
    }

    // Compute the constraint code and ConstraintType to use.
    computeConstraintToUse(TLI, OpInfo);

    // The selected constraint type might expose new sideeffects
    ExtraInfo.update(OpInfo);
  }

  // At this point, all operand types are decided.
  // Create the MachineInstr, but don't insert it yet since input
  // operands still need to insert instructions before this one
  auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
                  .addExternalSymbol(IA->getAsmString().c_str())
                  .addImm(ExtraInfo.get());

  // Starting from this operand: flag followed by register(s) will be added as
  // operands to Inst for each constraint. Used for matching input constraints.
  unsigned StartIdx = Inst->getNumOperands();

  // Collects the output operands for later processing
  GISelAsmOperandInfoVector OutputOperands;

  for (auto &OpInfo : ConstraintOperands) {
    GISelAsmOperandInfo &RefOpInfo =
        OpInfo.isMatchingInputConstraint()
            ? ConstraintOperands[OpInfo.getMatchedOperand()]
            : OpInfo;

    // Assign registers for register operands
    getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);

    switch (OpInfo.Type) {
    case InlineAsm::isOutput:
      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
        unsigned ConstraintID =
            TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
        assert(ConstraintID != InlineAsm::Constraint_Unknown &&
               "Failed to convert memory constraint code to constraint id.");

        // Add information to the INLINEASM instruction to know about this
        // output.
        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
        OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
        Inst.addImm(OpFlags);
        ArrayRef<Register> SourceRegs =
            GetOrCreateVRegs(*OpInfo.CallOperandVal);
        assert(
            SourceRegs.size() == 1 &&
            "Expected the memory output to fit into a single virtual register");
        Inst.addReg(SourceRegs[0]);
      } else {
        // Otherwise, this outputs to a register (directly for C_Register /
        // C_RegisterClass. Find a register that we can use.
        assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
               OpInfo.ConstraintType == TargetLowering::C_RegisterClass);

        if (OpInfo.Regs.empty()) {
          LLVM_DEBUG(dbgs()
                     << "Couldn't allocate output register for constraint\n");
          return false;
        }

        // Add information to the INLINEASM instruction to know that this
        // register is set.
        unsigned Flag = InlineAsm::getFlagWord(
            OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
                                  : InlineAsm::Kind_RegDef,
            OpInfo.Regs.size());
        if (OpInfo.Regs.front().isVirtual()) {
          // Put the register class of the virtual registers in the flag word.
          // That way, later passes can recompute register class constraints for
          // inline assembly as well as normal instructions. Don't do this for
          // tied operands that can use the regclass information from the def.
          const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
          Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
        }

        Inst.addImm(Flag);

        for (Register Reg : OpInfo.Regs) {
          Inst.addReg(Reg,
                      RegState::Define | getImplRegState(Reg.isPhysical()) |
                          (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
        }

        // Remember this output operand for later processing
        OutputOperands.push_back(OpInfo);
      }

      break;
    case InlineAsm::isInput: {
      if (OpInfo.isMatchingInputConstraint()) {
        unsigned DefIdx = OpInfo.getMatchedOperand();
        // Find operand with register def that corresponds to DefIdx.
        unsigned InstFlagIdx = StartIdx;
        for (unsigned i = 0; i < DefIdx; ++i)
          InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
        assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");

        unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
        if (InlineAsm::isMemKind(MatchedOperandFlag)) {
          LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
                               "supported. This should be target specific.\n");
          return false;
        }
        if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
            !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
          LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
          return false;
        }

        // We want to tie input to register in next operand.
        unsigned DefRegIdx = InstFlagIdx + 1;
        Register Def = Inst->getOperand(DefRegIdx).getReg();

        ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
        assert(SrcRegs.size() == 1 && "Single register is expected here");

        // When Def is physreg: use given input.
        Register In = SrcRegs[0];
        // When Def is vreg: copy input to new vreg with same reg class as Def.
        if (Def.isVirtual()) {
          In = MRI->createVirtualRegister(MRI->getRegClass(Def));
          if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder))
            return false;
        }

        // Add Flag and input register operand (In) to Inst. Tie In to Def.
        unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
        unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
        Inst.addImm(Flag);
        Inst.addReg(In);
        Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
        break;
      }

      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
          OpInfo.isIndirect) {
        LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
                             "not supported yet\n");
        return false;
      }

      if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
          OpInfo.ConstraintType == TargetLowering::C_Other) {

        std::vector<MachineOperand> Ops;
        if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
                                          OpInfo.ConstraintCode, Ops,
                                          MIRBuilder)) {
          LLVM_DEBUG(dbgs() << "Don't support constraint: "
                            << OpInfo.ConstraintCode << " yet\n");
          return false;
        }

        assert(Ops.size() > 0 &&
               "Expected constraint to be lowered to at least one operand");

        // Add information to the INLINEASM node to know about this input.
        unsigned OpFlags =
            InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
        Inst.addImm(OpFlags);
        Inst.add(Ops);
        break;
      }

      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {

        if (!OpInfo.isIndirect) {
          LLVM_DEBUG(dbgs()
                     << "Cannot indirectify memory input operands yet\n");
          return false;
        }

        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");

        unsigned ConstraintID =
            TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
        OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
        Inst.addImm(OpFlags);
        ArrayRef<Register> SourceRegs =
            GetOrCreateVRegs(*OpInfo.CallOperandVal);
        assert(
            SourceRegs.size() == 1 &&
            "Expected the memory input to fit into a single virtual register");
        Inst.addReg(SourceRegs[0]);
        break;
      }

      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
              OpInfo.ConstraintType == TargetLowering::C_Register) &&
             "Unknown constraint type!");

      if (OpInfo.isIndirect) {
        LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
                             "for constraint '"
                          << OpInfo.ConstraintCode << "'\n");
        return false;
      }

      // Copy the input into the appropriate registers.
      if (OpInfo.Regs.empty()) {
        LLVM_DEBUG(
            dbgs()
            << "Couldn't allocate input register for register constraint\n");
        return false;
      }

      unsigned NumRegs = OpInfo.Regs.size();
      ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
      assert(NumRegs == SourceRegs.size() &&
             "Expected the number of input registers to match the number of "
             "source registers");

      if (NumRegs > 1) {
        LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
                             "not supported yet\n");
        return false;
      }

      unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
      Inst.addImm(Flag);
      if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
        return false;
      Inst.addReg(OpInfo.Regs[0]);
      break;
    }

    case InlineAsm::isClobber: {

      unsigned NumRegs = OpInfo.Regs.size();
      if (NumRegs > 0) {
        unsigned Flag =
            InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
        Inst.addImm(Flag);

        for (Register Reg : OpInfo.Regs) {
          Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
                               getImplRegState(Reg.isPhysical()));
        }
      }
      break;
    }
    }
  }

  if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
    Inst.addMetadata(SrcLoc);

  // All inputs are handled, insert the instruction now
  MIRBuilder.insertInstr(Inst);

  // Finally, copy the output operands into the output registers
  ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
  if (ResRegs.size() != OutputOperands.size()) {
    LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
                         "number of destination registers\n");
    return false;
  }
  for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
    GISelAsmOperandInfo &OpInfo = OutputOperands[i];

    if (OpInfo.Regs.empty())
      continue;

    switch (OpInfo.ConstraintType) {
    case TargetLowering::C_Register:
    case TargetLowering::C_RegisterClass: {
      if (OpInfo.Regs.size() > 1) {
        LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
                             "registers are not supported yet\n");
        return false;
      }

      Register SrcReg = OpInfo.Regs[0];
      unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
      if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
        // First copy the non-typed virtual register into a generic virtual
        // register
        Register Tmp1Reg =
            MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
        MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
        // Need to truncate the result of the register
        MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
      } else {
        MIRBuilder.buildCopy(ResRegs[i], SrcReg);
      }
      break;
    }
    case TargetLowering::C_Immediate:
    case TargetLowering::C_Other:
      LLVM_DEBUG(
          dbgs() << "Cannot lower target specific output constraints yet\n");
      return false;
    case TargetLowering::C_Memory:
      break; // Already handled.
    case TargetLowering::C_Unknown:
      LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
      return false;
    }
  }

  return true;
}

bool InlineAsmLowering::lowerAsmOperandForConstraint(
    Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
    MachineIRBuilder &MIRBuilder) const {
  if (Constraint.size() > 1)
    return false;

  char ConstraintLetter = Constraint[0];
  switch (ConstraintLetter) {
  default:
    return false;
  case 'i': // Simple Integer or Relocatable Constant
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
      assert(CI->getBitWidth() <= 64 &&
             "expected immediate to fit into 64-bits");
      // Boolean constants should be zero-extended, others are sign-extended
      bool IsBool = CI->getBitWidth() == 1;
      int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
      Ops.push_back(MachineOperand::CreateImm(ExtVal));
      return true;
    }
    return false;
  }
}