DwarfExpression.cpp 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
//===- llvm/CodeGen/DwarfExpression.cpp - Dwarf Debug Framework -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing dwarf debug info into asm files.
//
//===----------------------------------------------------------------------===//

#include "DwarfExpression.h"
#include "DwarfCompileUnit.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstdint>

using namespace llvm;

void DwarfExpression::emitConstu(uint64_t Value) {
  if (Value < 32)
    emitOp(dwarf::DW_OP_lit0 + Value);
  else if (Value == std::numeric_limits<uint64_t>::max()) {
    // Only do this for 64-bit values as the DWARF expression stack uses
    // target-address-size values.
    emitOp(dwarf::DW_OP_lit0);
    emitOp(dwarf::DW_OP_not);
  } else {
    emitOp(dwarf::DW_OP_constu);
    emitUnsigned(Value);
  }
}

void DwarfExpression::addReg(int DwarfReg, const char *Comment) {
  assert(DwarfReg >= 0 && "invalid negative dwarf register number");
  assert((isUnknownLocation() || isRegisterLocation()) &&
         "location description already locked down");
  LocationKind = Register;
  if (DwarfReg < 32) {
    emitOp(dwarf::DW_OP_reg0 + DwarfReg, Comment);
  } else {
    emitOp(dwarf::DW_OP_regx, Comment);
    emitUnsigned(DwarfReg);
  }
}

void DwarfExpression::addBReg(int DwarfReg, int Offset) {
  assert(DwarfReg >= 0 && "invalid negative dwarf register number");
  assert(!isRegisterLocation() && "location description already locked down");
  if (DwarfReg < 32) {
    emitOp(dwarf::DW_OP_breg0 + DwarfReg);
  } else {
    emitOp(dwarf::DW_OP_bregx);
    emitUnsigned(DwarfReg);
  }
  emitSigned(Offset);
}

void DwarfExpression::addFBReg(int Offset) {
  emitOp(dwarf::DW_OP_fbreg);
  emitSigned(Offset);
}

void DwarfExpression::addOpPiece(unsigned SizeInBits, unsigned OffsetInBits) {
  if (!SizeInBits)
    return;

  const unsigned SizeOfByte = 8;
  if (OffsetInBits > 0 || SizeInBits % SizeOfByte) {
    emitOp(dwarf::DW_OP_bit_piece);
    emitUnsigned(SizeInBits);
    emitUnsigned(OffsetInBits);
  } else {
    emitOp(dwarf::DW_OP_piece);
    unsigned ByteSize = SizeInBits / SizeOfByte;
    emitUnsigned(ByteSize);
  }
  this->OffsetInBits += SizeInBits;
}

void DwarfExpression::addShr(unsigned ShiftBy) {
  emitConstu(ShiftBy);
  emitOp(dwarf::DW_OP_shr);
}

void DwarfExpression::addAnd(unsigned Mask) {
  emitConstu(Mask);
  emitOp(dwarf::DW_OP_and);
}

bool DwarfExpression::addMachineReg(const TargetRegisterInfo &TRI,
                                    unsigned MachineReg, unsigned MaxSize) {
  if (!llvm::Register::isPhysicalRegister(MachineReg)) {
    if (isFrameRegister(TRI, MachineReg)) {
      DwarfRegs.push_back(Register::createRegister(-1, nullptr));
      return true;
    }
    return false;
  }

  int Reg = TRI.getDwarfRegNum(MachineReg, false);

  // If this is a valid register number, emit it.
  if (Reg >= 0) {
    DwarfRegs.push_back(Register::createRegister(Reg, nullptr));
    return true;
  }

  // Walk up the super-register chain until we find a valid number.
  // For example, EAX on x86_64 is a 32-bit fragment of RAX with offset 0.
  for (MCSuperRegIterator SR(MachineReg, &TRI); SR.isValid(); ++SR) {
    Reg = TRI.getDwarfRegNum(*SR, false);
    if (Reg >= 0) {
      unsigned Idx = TRI.getSubRegIndex(*SR, MachineReg);
      unsigned Size = TRI.getSubRegIdxSize(Idx);
      unsigned RegOffset = TRI.getSubRegIdxOffset(Idx);
      DwarfRegs.push_back(Register::createRegister(Reg, "super-register"));
      // Use a DW_OP_bit_piece to describe the sub-register.
      setSubRegisterPiece(Size, RegOffset);
      return true;
    }
  }

  // Otherwise, attempt to find a covering set of sub-register numbers.
  // For example, Q0 on ARM is a composition of D0+D1.
  unsigned CurPos = 0;
  // The size of the register in bits.
  const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(MachineReg);
  unsigned RegSize = TRI.getRegSizeInBits(*RC);
  // Keep track of the bits in the register we already emitted, so we
  // can avoid emitting redundant aliasing subregs. Because this is
  // just doing a greedy scan of all subregisters, it is possible that
  // this doesn't find a combination of subregisters that fully cover
  // the register (even though one may exist).
  SmallBitVector Coverage(RegSize, false);
  for (MCSubRegIterator SR(MachineReg, &TRI); SR.isValid(); ++SR) {
    unsigned Idx = TRI.getSubRegIndex(MachineReg, *SR);
    unsigned Size = TRI.getSubRegIdxSize(Idx);
    unsigned Offset = TRI.getSubRegIdxOffset(Idx);
    Reg = TRI.getDwarfRegNum(*SR, false);
    if (Reg < 0)
      continue;

    // Used to build the intersection between the bits we already
    // emitted and the bits covered by this subregister.
    SmallBitVector CurSubReg(RegSize, false);
    CurSubReg.set(Offset, Offset + Size);

    // If this sub-register has a DWARF number and we haven't covered
    // its range, and its range covers the value, emit a DWARF piece for it.
    if (Offset < MaxSize && CurSubReg.test(Coverage)) {
      // Emit a piece for any gap in the coverage.
      if (Offset > CurPos)
        DwarfRegs.push_back(Register::createSubRegister(
            -1, Offset - CurPos, "no DWARF register encoding"));
      if (Offset == 0 && Size >= MaxSize)
        DwarfRegs.push_back(Register::createRegister(Reg, "sub-register"));
      else
        DwarfRegs.push_back(Register::createSubRegister(
            Reg, std::min<unsigned>(Size, MaxSize - Offset), "sub-register"));
    }
    // Mark it as emitted.
    Coverage.set(Offset, Offset + Size);
    CurPos = Offset + Size;
  }
  // Failed to find any DWARF encoding.
  if (CurPos == 0)
    return false;
  // Found a partial or complete DWARF encoding.
  if (CurPos < RegSize)
    DwarfRegs.push_back(Register::createSubRegister(
        -1, RegSize - CurPos, "no DWARF register encoding"));
  return true;
}

void DwarfExpression::addStackValue() {
  if (DwarfVersion >= 4)
    emitOp(dwarf::DW_OP_stack_value);
}

void DwarfExpression::addSignedConstant(int64_t Value) {
  assert(isImplicitLocation() || isUnknownLocation());
  LocationKind = Implicit;
  emitOp(dwarf::DW_OP_consts);
  emitSigned(Value);
}

void DwarfExpression::addUnsignedConstant(uint64_t Value) {
  assert(isImplicitLocation() || isUnknownLocation());
  LocationKind = Implicit;
  emitConstu(Value);
}

void DwarfExpression::addUnsignedConstant(const APInt &Value) {
  assert(isImplicitLocation() || isUnknownLocation());
  LocationKind = Implicit;

  unsigned Size = Value.getBitWidth();
  const uint64_t *Data = Value.getRawData();

  // Chop it up into 64-bit pieces, because that's the maximum that
  // addUnsignedConstant takes.
  unsigned Offset = 0;
  while (Offset < Size) {
    addUnsignedConstant(*Data++);
    if (Offset == 0 && Size <= 64)
      break;
    addStackValue();
    addOpPiece(std::min(Size - Offset, 64u), Offset);
    Offset += 64;
  }
}

bool DwarfExpression::addMachineRegExpression(const TargetRegisterInfo &TRI,
                                              DIExpressionCursor &ExprCursor,
                                              unsigned MachineReg,
                                              unsigned FragmentOffsetInBits) {
  auto Fragment = ExprCursor.getFragmentInfo();
  if (!addMachineReg(TRI, MachineReg, Fragment ? Fragment->SizeInBits : ~1U)) {
    LocationKind = Unknown;
    return false;
  }

  bool HasComplexExpression = false;
  auto Op = ExprCursor.peek();
  if (Op && Op->getOp() != dwarf::DW_OP_LLVM_fragment)
    HasComplexExpression = true;

  // If the register can only be described by a complex expression (i.e.,
  // multiple subregisters) it doesn't safely compose with another complex
  // expression. For example, it is not possible to apply a DW_OP_deref
  // operation to multiple DW_OP_pieces, since composite location descriptions
  // do not push anything on the DWARF stack.
  //
  // DW_OP_entry_value operations can only hold a DWARF expression or a
  // register location description, so we can't emit a single entry value
  // covering a composite location description. In the future we may want to
  // emit entry value operations for each register location in the composite
  // location, but until that is supported do not emit anything.
  if ((HasComplexExpression || IsEmittingEntryValue) && DwarfRegs.size() > 1) {
    if (IsEmittingEntryValue)
      cancelEntryValue();
    DwarfRegs.clear();
    LocationKind = Unknown;
    return false;
  }

  // Handle simple register locations. If we are supposed to emit
  // a call site parameter expression and if that expression is just a register
  // location, emit it with addBReg and offset 0, because we should emit a DWARF
  // expression representing a value, rather than a location.
  if (!isMemoryLocation() && !HasComplexExpression &&
      (!isParameterValue() || isEntryValue())) {
    for (auto &Reg : DwarfRegs) {
      if (Reg.DwarfRegNo >= 0)
        addReg(Reg.DwarfRegNo, Reg.Comment);
      addOpPiece(Reg.SubRegSize);
    }

    if (isEntryValue())
      finalizeEntryValue();

    if (isEntryValue() && !isIndirect() && !isParameterValue() &&
        DwarfVersion >= 4)
      emitOp(dwarf::DW_OP_stack_value);

    DwarfRegs.clear();
    return true;
  }

  // Don't emit locations that cannot be expressed without DW_OP_stack_value.
  if (DwarfVersion < 4)
    if (any_of(ExprCursor, [](DIExpression::ExprOperand Op) -> bool {
          return Op.getOp() == dwarf::DW_OP_stack_value;
        })) {
      DwarfRegs.clear();
      LocationKind = Unknown;
      return false;
    }

  assert(DwarfRegs.size() == 1);
  auto Reg = DwarfRegs[0];
  bool FBReg = isFrameRegister(TRI, MachineReg);
  int SignedOffset = 0;
  assert(!Reg.isSubRegister() && "full register expected");

  // Pattern-match combinations for which more efficient representations exist.
  // [Reg, DW_OP_plus_uconst, Offset] --> [DW_OP_breg, Offset].
  if (Op && (Op->getOp() == dwarf::DW_OP_plus_uconst)) {
    uint64_t Offset = Op->getArg(0);
    uint64_t IntMax = static_cast<uint64_t>(std::numeric_limits<int>::max());
    if (Offset <= IntMax) {
      SignedOffset = Offset;
      ExprCursor.take();
    }
  }

  // [Reg, DW_OP_constu, Offset, DW_OP_plus]  --> [DW_OP_breg, Offset]
  // [Reg, DW_OP_constu, Offset, DW_OP_minus] --> [DW_OP_breg,-Offset]
  // If Reg is a subregister we need to mask it out before subtracting.
  if (Op && Op->getOp() == dwarf::DW_OP_constu) {
    uint64_t Offset = Op->getArg(0);
    uint64_t IntMax = static_cast<uint64_t>(std::numeric_limits<int>::max());
    auto N = ExprCursor.peekNext();
    if (N && N->getOp() == dwarf::DW_OP_plus && Offset <= IntMax) {
      SignedOffset = Offset;
      ExprCursor.consume(2);
    } else if (N && N->getOp() == dwarf::DW_OP_minus &&
               !SubRegisterSizeInBits && Offset <= IntMax + 1) {
      SignedOffset = -static_cast<int64_t>(Offset);
      ExprCursor.consume(2);
    }
  }

  if (FBReg)
    addFBReg(SignedOffset);
  else
    addBReg(Reg.DwarfRegNo, SignedOffset);
  DwarfRegs.clear();
  return true;
}

void DwarfExpression::setEntryValueFlags(const MachineLocation &Loc) {
  LocationFlags |= EntryValue;
  if (Loc.isIndirect())
    LocationFlags |= Indirect;
}

void DwarfExpression::setLocation(const MachineLocation &Loc,
                                  const DIExpression *DIExpr) {
  if (Loc.isIndirect())
    // Do not treat entry value descriptions of indirect parameters as memory
    // locations. This allows DwarfExpression::addReg() to add DW_OP_regN to an
    // entry value description.
    if (!DIExpr->isEntryValue())
      setMemoryLocationKind();

  if (DIExpr->isEntryValue())
    setEntryValueFlags(Loc);
}

void DwarfExpression::beginEntryValueExpression(
    DIExpressionCursor &ExprCursor) {
  auto Op = ExprCursor.take();
  (void)Op;
  assert(Op && Op->getOp() == dwarf::DW_OP_LLVM_entry_value);
  assert(!isMemoryLocation() &&
         "We don't support entry values of memory locations yet");
  assert(!IsEmittingEntryValue && "Already emitting entry value?");
  assert(Op->getArg(0) == 1 &&
         "Can currently only emit entry values covering a single operation");

  IsEmittingEntryValue = true;
  enableTemporaryBuffer();
}

void DwarfExpression::finalizeEntryValue() {
  assert(IsEmittingEntryValue && "Entry value not open?");
  disableTemporaryBuffer();

  emitOp(CU.getDwarf5OrGNULocationAtom(dwarf::DW_OP_entry_value));

  // Emit the entry value's size operand.
  unsigned Size = getTemporaryBufferSize();
  emitUnsigned(Size);

  // Emit the entry value's DWARF block operand.
  commitTemporaryBuffer();

  IsEmittingEntryValue = false;
}

void DwarfExpression::cancelEntryValue() {
  assert(IsEmittingEntryValue && "Entry value not open?");
  disableTemporaryBuffer();

  // The temporary buffer can't be emptied, so for now just assert that nothing
  // has been emitted to it.
  assert(getTemporaryBufferSize() == 0 &&
         "Began emitting entry value block before cancelling entry value");

  IsEmittingEntryValue = false;
}

unsigned DwarfExpression::getOrCreateBaseType(unsigned BitSize,
                                              dwarf::TypeKind Encoding) {
  // Reuse the base_type if we already have one in this CU otherwise we
  // create a new one.
  unsigned I = 0, E = CU.ExprRefedBaseTypes.size();
  for (; I != E; ++I)
    if (CU.ExprRefedBaseTypes[I].BitSize == BitSize &&
        CU.ExprRefedBaseTypes[I].Encoding == Encoding)
      break;

  if (I == E)
    CU.ExprRefedBaseTypes.emplace_back(BitSize, Encoding);
  return I;
}

/// Assuming a well-formed expression, match "DW_OP_deref*
/// DW_OP_LLVM_fragment?".
static bool isMemoryLocation(DIExpressionCursor ExprCursor) {
  while (ExprCursor) {
    auto Op = ExprCursor.take();
    switch (Op->getOp()) {
    case dwarf::DW_OP_deref:
    case dwarf::DW_OP_LLVM_fragment:
      break;
    default:
      return false;
    }
  }
  return true;
}

void DwarfExpression::addExpression(DIExpressionCursor &&ExprCursor,
                                    unsigned FragmentOffsetInBits) {
  // Entry values can currently only cover the initial register location,
  // and not any other parts of the following DWARF expression.
  assert(!IsEmittingEntryValue && "Can't emit entry value around expression");

  // If we need to mask out a subregister, do it now, unless the next
  // operation would emit an OpPiece anyway.
  auto N = ExprCursor.peek();
  if (SubRegisterSizeInBits && N && (N->getOp() != dwarf::DW_OP_LLVM_fragment))
    maskSubRegister();

  Optional<DIExpression::ExprOperand> PrevConvertOp = None;

  while (ExprCursor) {
    auto Op = ExprCursor.take();
    uint64_t OpNum = Op->getOp();

    if (OpNum >= dwarf::DW_OP_reg0 && OpNum <= dwarf::DW_OP_reg31) {
      emitOp(OpNum);
      continue;
    } else if (OpNum >= dwarf::DW_OP_breg0 && OpNum <= dwarf::DW_OP_breg31) {
      addBReg(OpNum - dwarf::DW_OP_breg0, Op->getArg(0));
      continue;
    }

    switch (OpNum) {
    case dwarf::DW_OP_LLVM_fragment: {
      unsigned SizeInBits = Op->getArg(1);
      unsigned FragmentOffset = Op->getArg(0);
      // The fragment offset must have already been adjusted by emitting an
      // empty DW_OP_piece / DW_OP_bit_piece before we emitted the base
      // location.
      assert(OffsetInBits >= FragmentOffset && "fragment offset not added?");
      assert(SizeInBits >= OffsetInBits - FragmentOffset && "size underflow");

      // If addMachineReg already emitted DW_OP_piece operations to represent
      // a super-register by splicing together sub-registers, subtract the size
      // of the pieces that was already emitted.
      SizeInBits -= OffsetInBits - FragmentOffset;

      // If addMachineReg requested a DW_OP_bit_piece to stencil out a
      // sub-register that is smaller than the current fragment's size, use it.
      if (SubRegisterSizeInBits)
        SizeInBits = std::min<unsigned>(SizeInBits, SubRegisterSizeInBits);

      // Emit a DW_OP_stack_value for implicit location descriptions.
      if (isImplicitLocation())
        addStackValue();

      // Emit the DW_OP_piece.
      addOpPiece(SizeInBits, SubRegisterOffsetInBits);
      setSubRegisterPiece(0, 0);
      // Reset the location description kind.
      LocationKind = Unknown;
      return;
    }
    case dwarf::DW_OP_plus_uconst:
      assert(!isRegisterLocation());
      emitOp(dwarf::DW_OP_plus_uconst);
      emitUnsigned(Op->getArg(0));
      break;
    case dwarf::DW_OP_plus:
    case dwarf::DW_OP_minus:
    case dwarf::DW_OP_mul:
    case dwarf::DW_OP_div:
    case dwarf::DW_OP_mod:
    case dwarf::DW_OP_or:
    case dwarf::DW_OP_and:
    case dwarf::DW_OP_xor:
    case dwarf::DW_OP_shl:
    case dwarf::DW_OP_shr:
    case dwarf::DW_OP_shra:
    case dwarf::DW_OP_lit0:
    case dwarf::DW_OP_not:
    case dwarf::DW_OP_dup:
    case dwarf::DW_OP_push_object_address:
      emitOp(OpNum);
      break;
    case dwarf::DW_OP_deref:
      assert(!isRegisterLocation());
      if (!isMemoryLocation() && ::isMemoryLocation(ExprCursor))
        // Turning this into a memory location description makes the deref
        // implicit.
        LocationKind = Memory;
      else
        emitOp(dwarf::DW_OP_deref);
      break;
    case dwarf::DW_OP_constu:
      assert(!isRegisterLocation());
      emitConstu(Op->getArg(0));
      break;
    case dwarf::DW_OP_LLVM_convert: {
      unsigned BitSize = Op->getArg(0);
      dwarf::TypeKind Encoding = static_cast<dwarf::TypeKind>(Op->getArg(1));
      if (DwarfVersion >= 5) {
        emitOp(dwarf::DW_OP_convert);
        // If targeting a location-list; simply emit the index into the raw
        // byte stream as ULEB128, DwarfDebug::emitDebugLocEntry has been
        // fitted with means to extract it later.
        // If targeting a inlined DW_AT_location; insert a DIEBaseTypeRef
        // (containing the index and a resolve mechanism during emit) into the
        // DIE value list.
        emitBaseTypeRef(getOrCreateBaseType(BitSize, Encoding));
      } else {
        if (PrevConvertOp && PrevConvertOp->getArg(0) < BitSize) {
          if (Encoding == dwarf::DW_ATE_signed)
            emitLegacySExt(PrevConvertOp->getArg(0));
          else if (Encoding == dwarf::DW_ATE_unsigned)
            emitLegacyZExt(PrevConvertOp->getArg(0));
          PrevConvertOp = None;
        } else {
          PrevConvertOp = Op;
        }
      }
      break;
    }
    case dwarf::DW_OP_stack_value:
      LocationKind = Implicit;
      break;
    case dwarf::DW_OP_swap:
      assert(!isRegisterLocation());
      emitOp(dwarf::DW_OP_swap);
      break;
    case dwarf::DW_OP_xderef:
      assert(!isRegisterLocation());
      emitOp(dwarf::DW_OP_xderef);
      break;
    case dwarf::DW_OP_deref_size:
      emitOp(dwarf::DW_OP_deref_size);
      emitData1(Op->getArg(0));
      break;
    case dwarf::DW_OP_LLVM_tag_offset:
      TagOffset = Op->getArg(0);
      break;
    case dwarf::DW_OP_regx:
      emitOp(dwarf::DW_OP_regx);
      emitUnsigned(Op->getArg(0));
      break;
    case dwarf::DW_OP_bregx:
      emitOp(dwarf::DW_OP_bregx);
      emitUnsigned(Op->getArg(0));
      emitSigned(Op->getArg(1));
      break;
    default:
      llvm_unreachable("unhandled opcode found in expression");
    }
  }

  if (isImplicitLocation() && !isParameterValue())
    // Turn this into an implicit location description.
    addStackValue();
}

/// add masking operations to stencil out a subregister.
void DwarfExpression::maskSubRegister() {
  assert(SubRegisterSizeInBits && "no subregister was registered");
  if (SubRegisterOffsetInBits > 0)
    addShr(SubRegisterOffsetInBits);
  uint64_t Mask = (1ULL << (uint64_t)SubRegisterSizeInBits) - 1ULL;
  addAnd(Mask);
}

void DwarfExpression::finalize() {
  assert(DwarfRegs.size() == 0 && "dwarf registers not emitted");
  // Emit any outstanding DW_OP_piece operations to mask out subregisters.
  if (SubRegisterSizeInBits == 0)
    return;
  // Don't emit a DW_OP_piece for a subregister at offset 0.
  if (SubRegisterOffsetInBits == 0)
    return;
  addOpPiece(SubRegisterSizeInBits, SubRegisterOffsetInBits);
}

void DwarfExpression::addFragmentOffset(const DIExpression *Expr) {
  if (!Expr || !Expr->isFragment())
    return;

  uint64_t FragmentOffset = Expr->getFragmentInfo()->OffsetInBits;
  assert(FragmentOffset >= OffsetInBits &&
         "overlapping or duplicate fragments");
  if (FragmentOffset > OffsetInBits)
    addOpPiece(FragmentOffset - OffsetInBits);
  OffsetInBits = FragmentOffset;
}

void DwarfExpression::emitLegacySExt(unsigned FromBits) {
  // (((X >> (FromBits - 1)) * (~0)) << FromBits) | X
  emitOp(dwarf::DW_OP_dup);
  emitOp(dwarf::DW_OP_constu);
  emitUnsigned(FromBits - 1);
  emitOp(dwarf::DW_OP_shr);
  emitOp(dwarf::DW_OP_lit0);
  emitOp(dwarf::DW_OP_not);
  emitOp(dwarf::DW_OP_mul);
  emitOp(dwarf::DW_OP_constu);
  emitUnsigned(FromBits);
  emitOp(dwarf::DW_OP_shl);
  emitOp(dwarf::DW_OP_or);
}

void DwarfExpression::emitLegacyZExt(unsigned FromBits) {
  // (X & (1 << FromBits - 1))
  emitOp(dwarf::DW_OP_constu);
  emitUnsigned((1ULL << FromBits) - 1);
  emitOp(dwarf::DW_OP_and);
}

void DwarfExpression::addWasmLocation(unsigned Index, uint64_t Offset) {
  assert(LocationKind == Implicit || LocationKind == Unknown);
  LocationKind = Implicit;
  emitOp(dwarf::DW_OP_WASM_location);
  emitUnsigned(Index);
  emitUnsigned(Offset);
}