BitcodeWriter.cpp 184 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//

#include "llvm/Bitcode/BitcodeWriter.h"
#include "ValueEnumerator.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/Bitstream/BitCodes.h"
#include "llvm/Bitstream/BitstreamWriter.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/IRSymtab.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

static cl::opt<unsigned>
    IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
                   cl::desc("Number of metadatas above which we emit an index "
                            "to enable lazy-loading"));

static cl::opt<bool> WriteRelBFToSummary(
    "write-relbf-to-summary", cl::Hidden, cl::init(false),
    cl::desc("Write relative block frequency to function summary "));

extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;

namespace {

/// These are manifest constants used by the bitcode writer. They do not need to
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
  // VALUE_SYMTAB_BLOCK abbrev id's.
  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  VST_ENTRY_7_ABBREV,
  VST_ENTRY_6_ABBREV,
  VST_BBENTRY_6_ABBREV,

  // CONSTANTS_BLOCK abbrev id's.
  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  CONSTANTS_INTEGER_ABBREV,
  CONSTANTS_CE_CAST_Abbrev,
  CONSTANTS_NULL_Abbrev,

  // FUNCTION_BLOCK abbrev id's.
  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  FUNCTION_INST_UNOP_ABBREV,
  FUNCTION_INST_UNOP_FLAGS_ABBREV,
  FUNCTION_INST_BINOP_ABBREV,
  FUNCTION_INST_BINOP_FLAGS_ABBREV,
  FUNCTION_INST_CAST_ABBREV,
  FUNCTION_INST_RET_VOID_ABBREV,
  FUNCTION_INST_RET_VAL_ABBREV,
  FUNCTION_INST_UNREACHABLE_ABBREV,
  FUNCTION_INST_GEP_ABBREV,
};

/// Abstract class to manage the bitcode writing, subclassed for each bitcode
/// file type.
class BitcodeWriterBase {
protected:
  /// The stream created and owned by the client.
  BitstreamWriter &Stream;

  StringTableBuilder &StrtabBuilder;

public:
  /// Constructs a BitcodeWriterBase object that writes to the provided
  /// \p Stream.
  BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
      : Stream(Stream), StrtabBuilder(StrtabBuilder) {}

protected:
  void writeBitcodeHeader();
  void writeModuleVersion();
};

void BitcodeWriterBase::writeModuleVersion() {
  // VERSION: [version#]
  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
}

/// Base class to manage the module bitcode writing, currently subclassed for
/// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
class ModuleBitcodeWriterBase : public BitcodeWriterBase {
protected:
  /// The Module to write to bitcode.
  const Module &M;

  /// Enumerates ids for all values in the module.
  ValueEnumerator VE;

  /// Optional per-module index to write for ThinLTO.
  const ModuleSummaryIndex *Index;

  /// Map that holds the correspondence between GUIDs in the summary index,
  /// that came from indirect call profiles, and a value id generated by this
  /// class to use in the VST and summary block records.
  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;

  /// Tracks the last value id recorded in the GUIDToValueMap.
  unsigned GlobalValueId;

  /// Saves the offset of the VSTOffset record that must eventually be
  /// backpatched with the offset of the actual VST.
  uint64_t VSTOffsetPlaceholder = 0;

public:
  /// Constructs a ModuleBitcodeWriterBase object for the given Module,
  /// writing to the provided \p Buffer.
  ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
                          BitstreamWriter &Stream,
                          bool ShouldPreserveUseListOrder,
                          const ModuleSummaryIndex *Index)
      : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
        VE(M, ShouldPreserveUseListOrder), Index(Index) {
    // Assign ValueIds to any callee values in the index that came from
    // indirect call profiles and were recorded as a GUID not a Value*
    // (which would have been assigned an ID by the ValueEnumerator).
    // The starting ValueId is just after the number of values in the
    // ValueEnumerator, so that they can be emitted in the VST.
    GlobalValueId = VE.getValues().size();
    if (!Index)
      return;
    for (const auto &GUIDSummaryLists : *Index)
      // Examine all summaries for this GUID.
      for (auto &Summary : GUIDSummaryLists.second.SummaryList)
        if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
          // For each call in the function summary, see if the call
          // is to a GUID (which means it is for an indirect call,
          // otherwise we would have a Value for it). If so, synthesize
          // a value id.
          for (auto &CallEdge : FS->calls())
            if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
              assignValueId(CallEdge.first.getGUID());
  }

protected:
  void writePerModuleGlobalValueSummary();

private:
  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
                                           GlobalValueSummary *Summary,
                                           unsigned ValueID,
                                           unsigned FSCallsAbbrev,
                                           unsigned FSCallsProfileAbbrev,
                                           const Function &F);
  void writeModuleLevelReferences(const GlobalVariable &V,
                                  SmallVector<uint64_t, 64> &NameVals,
                                  unsigned FSModRefsAbbrev,
                                  unsigned FSModVTableRefsAbbrev);

  void assignValueId(GlobalValue::GUID ValGUID) {
    GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
  }

  unsigned getValueId(GlobalValue::GUID ValGUID) {
    const auto &VMI = GUIDToValueIdMap.find(ValGUID);
    // Expect that any GUID value had a value Id assigned by an
    // earlier call to assignValueId.
    assert(VMI != GUIDToValueIdMap.end() &&
           "GUID does not have assigned value Id");
    return VMI->second;
  }

  // Helper to get the valueId for the type of value recorded in VI.
  unsigned getValueId(ValueInfo VI) {
    if (!VI.haveGVs() || !VI.getValue())
      return getValueId(VI.getGUID());
    return VE.getValueID(VI.getValue());
  }

  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
};

/// Class to manage the bitcode writing for a module.
class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
  /// Pointer to the buffer allocated by caller for bitcode writing.
  const SmallVectorImpl<char> &Buffer;

  /// True if a module hash record should be written.
  bool GenerateHash;

  /// If non-null, when GenerateHash is true, the resulting hash is written
  /// into ModHash.
  ModuleHash *ModHash;

  SHA1 Hasher;

  /// The start bit of the identification block.
  uint64_t BitcodeStartBit;

public:
  /// Constructs a ModuleBitcodeWriter object for the given Module,
  /// writing to the provided \p Buffer.
  ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
                      StringTableBuilder &StrtabBuilder,
                      BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
                      const ModuleSummaryIndex *Index, bool GenerateHash,
                      ModuleHash *ModHash = nullptr)
      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
                                ShouldPreserveUseListOrder, Index),
        Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
        BitcodeStartBit(Stream.GetCurrentBitNo()) {}

  /// Emit the current module to the bitstream.
  void write();

private:
  uint64_t bitcodeStartBit() { return BitcodeStartBit; }

  size_t addToStrtab(StringRef Str);

  void writeAttributeGroupTable();
  void writeAttributeTable();
  void writeTypeTable();
  void writeComdats();
  void writeValueSymbolTableForwardDecl();
  void writeModuleInfo();
  void writeValueAsMetadata(const ValueAsMetadata *MD,
                            SmallVectorImpl<uint64_t> &Record);
  void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
                    unsigned Abbrev);
  unsigned createDILocationAbbrev();
  void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
                       unsigned &Abbrev);
  unsigned createGenericDINodeAbbrev();
  void writeGenericDINode(const GenericDINode *N,
                          SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
  void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
                       unsigned Abbrev);
  void writeDIEnumerator(const DIEnumerator *N,
                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
                        unsigned Abbrev);
  void writeDIDerivedType(const DIDerivedType *N,
                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDICompositeType(const DICompositeType *N,
                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDISubroutineType(const DISubroutineType *N,
                             SmallVectorImpl<uint64_t> &Record,
                             unsigned Abbrev);
  void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
                   unsigned Abbrev);
  void writeDICompileUnit(const DICompileUnit *N,
                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDISubprogram(const DISubprogram *N,
                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDILexicalBlock(const DILexicalBlock *N,
                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDILexicalBlockFile(const DILexicalBlockFile *N,
                               SmallVectorImpl<uint64_t> &Record,
                               unsigned Abbrev);
  void writeDICommonBlock(const DICommonBlock *N,
                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
                        unsigned Abbrev);
  void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
                    unsigned Abbrev);
  void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
                        unsigned Abbrev);
  void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
                     unsigned Abbrev);
  void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
                                    SmallVectorImpl<uint64_t> &Record,
                                    unsigned Abbrev);
  void writeDITemplateValueParameter(const DITemplateValueParameter *N,
                                     SmallVectorImpl<uint64_t> &Record,
                                     unsigned Abbrev);
  void writeDIGlobalVariable(const DIGlobalVariable *N,
                             SmallVectorImpl<uint64_t> &Record,
                             unsigned Abbrev);
  void writeDILocalVariable(const DILocalVariable *N,
                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDILabel(const DILabel *N,
                    SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDIExpression(const DIExpression *N,
                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
                                       SmallVectorImpl<uint64_t> &Record,
                                       unsigned Abbrev);
  void writeDIObjCProperty(const DIObjCProperty *N,
                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  void writeDIImportedEntity(const DIImportedEntity *N,
                             SmallVectorImpl<uint64_t> &Record,
                             unsigned Abbrev);
  unsigned createNamedMetadataAbbrev();
  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
  unsigned createMetadataStringsAbbrev();
  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
                            SmallVectorImpl<uint64_t> &Record);
  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
                            SmallVectorImpl<uint64_t> &Record,
                            std::vector<unsigned> *MDAbbrevs = nullptr,
                            std::vector<uint64_t> *IndexPos = nullptr);
  void writeModuleMetadata();
  void writeFunctionMetadata(const Function &F);
  void writeFunctionMetadataAttachment(const Function &F);
  void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
                                    const GlobalObject &GO);
  void writeModuleMetadataKinds();
  void writeOperandBundleTags();
  void writeSyncScopeNames();
  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
  void writeModuleConstants();
  bool pushValueAndType(const Value *V, unsigned InstID,
                        SmallVectorImpl<unsigned> &Vals);
  void writeOperandBundles(const CallBase &CB, unsigned InstID);
  void pushValue(const Value *V, unsigned InstID,
                 SmallVectorImpl<unsigned> &Vals);
  void pushValueSigned(const Value *V, unsigned InstID,
                       SmallVectorImpl<uint64_t> &Vals);
  void writeInstruction(const Instruction &I, unsigned InstID,
                        SmallVectorImpl<unsigned> &Vals);
  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
  void writeGlobalValueSymbolTable(
      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
  void writeUseList(UseListOrder &&Order);
  void writeUseListBlock(const Function *F);
  void
  writeFunction(const Function &F,
                DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
  void writeBlockInfo();
  void writeModuleHash(size_t BlockStartPos);

  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
    return unsigned(SSID);
  }
};

/// Class to manage the bitcode writing for a combined index.
class IndexBitcodeWriter : public BitcodeWriterBase {
  /// The combined index to write to bitcode.
  const ModuleSummaryIndex &Index;

  /// When writing a subset of the index for distributed backends, client
  /// provides a map of modules to the corresponding GUIDs/summaries to write.
  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;

  /// Map that holds the correspondence between the GUID used in the combined
  /// index and a value id generated by this class to use in references.
  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;

  /// Tracks the last value id recorded in the GUIDToValueMap.
  unsigned GlobalValueId = 0;

public:
  /// Constructs a IndexBitcodeWriter object for the given combined index,
  /// writing to the provided \p Buffer. When writing a subset of the index
  /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
  IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
                     const ModuleSummaryIndex &Index,
                     const std::map<std::string, GVSummaryMapTy>
                         *ModuleToSummariesForIndex = nullptr)
      : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
        ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
    // Assign unique value ids to all summaries to be written, for use
    // in writing out the call graph edges. Save the mapping from GUID
    // to the new global value id to use when writing those edges, which
    // are currently saved in the index in terms of GUID.
    forEachSummary([&](GVInfo I, bool) {
      GUIDToValueIdMap[I.first] = ++GlobalValueId;
    });
  }

  /// The below iterator returns the GUID and associated summary.
  using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;

  /// Calls the callback for each value GUID and summary to be written to
  /// bitcode. This hides the details of whether they are being pulled from the
  /// entire index or just those in a provided ModuleToSummariesForIndex map.
  template<typename Functor>
  void forEachSummary(Functor Callback) {
    if (ModuleToSummariesForIndex) {
      for (auto &M : *ModuleToSummariesForIndex)
        for (auto &Summary : M.second) {
          Callback(Summary, false);
          // Ensure aliasee is handled, e.g. for assigning a valueId,
          // even if we are not importing the aliasee directly (the
          // imported alias will contain a copy of aliasee).
          if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
            Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
        }
    } else {
      for (auto &Summaries : Index)
        for (auto &Summary : Summaries.second.SummaryList)
          Callback({Summaries.first, Summary.get()}, false);
    }
  }

  /// Calls the callback for each entry in the modulePaths StringMap that
  /// should be written to the module path string table. This hides the details
  /// of whether they are being pulled from the entire index or just those in a
  /// provided ModuleToSummariesForIndex map.
  template <typename Functor> void forEachModule(Functor Callback) {
    if (ModuleToSummariesForIndex) {
      for (const auto &M : *ModuleToSummariesForIndex) {
        const auto &MPI = Index.modulePaths().find(M.first);
        if (MPI == Index.modulePaths().end()) {
          // This should only happen if the bitcode file was empty, in which
          // case we shouldn't be importing (the ModuleToSummariesForIndex
          // would only include the module we are writing and index for).
          assert(ModuleToSummariesForIndex->size() == 1);
          continue;
        }
        Callback(*MPI);
      }
    } else {
      for (const auto &MPSE : Index.modulePaths())
        Callback(MPSE);
    }
  }

  /// Main entry point for writing a combined index to bitcode.
  void write();

private:
  void writeModStrings();
  void writeCombinedGlobalValueSummary();

  Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
    auto VMI = GUIDToValueIdMap.find(ValGUID);
    if (VMI == GUIDToValueIdMap.end())
      return None;
    return VMI->second;
  }

  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
};

} // end anonymous namespace

static unsigned getEncodedCastOpcode(unsigned Opcode) {
  switch (Opcode) {
  default: llvm_unreachable("Unknown cast instruction!");
  case Instruction::Trunc   : return bitc::CAST_TRUNC;
  case Instruction::ZExt    : return bitc::CAST_ZEXT;
  case Instruction::SExt    : return bitc::CAST_SEXT;
  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  case Instruction::FPExt   : return bitc::CAST_FPEXT;
  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  case Instruction::BitCast : return bitc::CAST_BITCAST;
  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  }
}

static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
  switch (Opcode) {
  default: llvm_unreachable("Unknown binary instruction!");
  case Instruction::FNeg: return bitc::UNOP_FNEG;
  }
}

static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
  switch (Opcode) {
  default: llvm_unreachable("Unknown binary instruction!");
  case Instruction::Add:
  case Instruction::FAdd: return bitc::BINOP_ADD;
  case Instruction::Sub:
  case Instruction::FSub: return bitc::BINOP_SUB;
  case Instruction::Mul:
  case Instruction::FMul: return bitc::BINOP_MUL;
  case Instruction::UDiv: return bitc::BINOP_UDIV;
  case Instruction::FDiv:
  case Instruction::SDiv: return bitc::BINOP_SDIV;
  case Instruction::URem: return bitc::BINOP_UREM;
  case Instruction::FRem:
  case Instruction::SRem: return bitc::BINOP_SREM;
  case Instruction::Shl:  return bitc::BINOP_SHL;
  case Instruction::LShr: return bitc::BINOP_LSHR;
  case Instruction::AShr: return bitc::BINOP_ASHR;
  case Instruction::And:  return bitc::BINOP_AND;
  case Instruction::Or:   return bitc::BINOP_OR;
  case Instruction::Xor:  return bitc::BINOP_XOR;
  }
}

static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  switch (Op) {
  default: llvm_unreachable("Unknown RMW operation!");
  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  case AtomicRMWInst::Add: return bitc::RMW_ADD;
  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  case AtomicRMWInst::And: return bitc::RMW_AND;
  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  case AtomicRMWInst::Or: return bitc::RMW_OR;
  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  case AtomicRMWInst::Max: return bitc::RMW_MAX;
  case AtomicRMWInst::Min: return bitc::RMW_MIN;
  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
  case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
  }
}

static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
  switch (Ordering) {
  case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
  case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
  case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
  case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
  case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
  case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
  case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  }
  llvm_unreachable("Invalid ordering");
}

static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
                              StringRef Str, unsigned AbbrevToUse) {
  SmallVector<unsigned, 64> Vals;

  // Code: [strchar x N]
  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
      AbbrevToUse = 0;
    Vals.push_back(Str[i]);
  }

  // Emit the finished record.
  Stream.EmitRecord(Code, Vals, AbbrevToUse);
}

static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  switch (Kind) {
  case Attribute::Alignment:
    return bitc::ATTR_KIND_ALIGNMENT;
  case Attribute::AllocSize:
    return bitc::ATTR_KIND_ALLOC_SIZE;
  case Attribute::AlwaysInline:
    return bitc::ATTR_KIND_ALWAYS_INLINE;
  case Attribute::ArgMemOnly:
    return bitc::ATTR_KIND_ARGMEMONLY;
  case Attribute::Builtin:
    return bitc::ATTR_KIND_BUILTIN;
  case Attribute::ByVal:
    return bitc::ATTR_KIND_BY_VAL;
  case Attribute::Convergent:
    return bitc::ATTR_KIND_CONVERGENT;
  case Attribute::InAlloca:
    return bitc::ATTR_KIND_IN_ALLOCA;
  case Attribute::Cold:
    return bitc::ATTR_KIND_COLD;
  case Attribute::InaccessibleMemOnly:
    return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
  case Attribute::InaccessibleMemOrArgMemOnly:
    return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
  case Attribute::InlineHint:
    return bitc::ATTR_KIND_INLINE_HINT;
  case Attribute::InReg:
    return bitc::ATTR_KIND_IN_REG;
  case Attribute::JumpTable:
    return bitc::ATTR_KIND_JUMP_TABLE;
  case Attribute::MinSize:
    return bitc::ATTR_KIND_MIN_SIZE;
  case Attribute::Naked:
    return bitc::ATTR_KIND_NAKED;
  case Attribute::Nest:
    return bitc::ATTR_KIND_NEST;
  case Attribute::NoAlias:
    return bitc::ATTR_KIND_NO_ALIAS;
  case Attribute::NoBuiltin:
    return bitc::ATTR_KIND_NO_BUILTIN;
  case Attribute::NoCapture:
    return bitc::ATTR_KIND_NO_CAPTURE;
  case Attribute::NoDuplicate:
    return bitc::ATTR_KIND_NO_DUPLICATE;
  case Attribute::NoFree:
    return bitc::ATTR_KIND_NOFREE;
  case Attribute::NoImplicitFloat:
    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  case Attribute::NoInline:
    return bitc::ATTR_KIND_NO_INLINE;
  case Attribute::NoRecurse:
    return bitc::ATTR_KIND_NO_RECURSE;
  case Attribute::NoMerge:
    return bitc::ATTR_KIND_NO_MERGE;
  case Attribute::NonLazyBind:
    return bitc::ATTR_KIND_NON_LAZY_BIND;
  case Attribute::NonNull:
    return bitc::ATTR_KIND_NON_NULL;
  case Attribute::Dereferenceable:
    return bitc::ATTR_KIND_DEREFERENCEABLE;
  case Attribute::DereferenceableOrNull:
    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
  case Attribute::NoRedZone:
    return bitc::ATTR_KIND_NO_RED_ZONE;
  case Attribute::NoReturn:
    return bitc::ATTR_KIND_NO_RETURN;
  case Attribute::NoSync:
    return bitc::ATTR_KIND_NOSYNC;
  case Attribute::NoCfCheck:
    return bitc::ATTR_KIND_NOCF_CHECK;
  case Attribute::NoUnwind:
    return bitc::ATTR_KIND_NO_UNWIND;
  case Attribute::NullPointerIsValid:
    return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
  case Attribute::OptForFuzzing:
    return bitc::ATTR_KIND_OPT_FOR_FUZZING;
  case Attribute::OptimizeForSize:
    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  case Attribute::OptimizeNone:
    return bitc::ATTR_KIND_OPTIMIZE_NONE;
  case Attribute::ReadNone:
    return bitc::ATTR_KIND_READ_NONE;
  case Attribute::ReadOnly:
    return bitc::ATTR_KIND_READ_ONLY;
  case Attribute::Returned:
    return bitc::ATTR_KIND_RETURNED;
  case Attribute::ReturnsTwice:
    return bitc::ATTR_KIND_RETURNS_TWICE;
  case Attribute::SExt:
    return bitc::ATTR_KIND_S_EXT;
  case Attribute::Speculatable:
    return bitc::ATTR_KIND_SPECULATABLE;
  case Attribute::StackAlignment:
    return bitc::ATTR_KIND_STACK_ALIGNMENT;
  case Attribute::StackProtect:
    return bitc::ATTR_KIND_STACK_PROTECT;
  case Attribute::StackProtectReq:
    return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  case Attribute::StackProtectStrong:
    return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  case Attribute::SafeStack:
    return bitc::ATTR_KIND_SAFESTACK;
  case Attribute::ShadowCallStack:
    return bitc::ATTR_KIND_SHADOWCALLSTACK;
  case Attribute::StrictFP:
    return bitc::ATTR_KIND_STRICT_FP;
  case Attribute::StructRet:
    return bitc::ATTR_KIND_STRUCT_RET;
  case Attribute::SanitizeAddress:
    return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  case Attribute::SanitizeHWAddress:
    return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
  case Attribute::SanitizeThread:
    return bitc::ATTR_KIND_SANITIZE_THREAD;
  case Attribute::SanitizeMemory:
    return bitc::ATTR_KIND_SANITIZE_MEMORY;
  case Attribute::SpeculativeLoadHardening:
    return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
  case Attribute::SwiftError:
    return bitc::ATTR_KIND_SWIFT_ERROR;
  case Attribute::SwiftSelf:
    return bitc::ATTR_KIND_SWIFT_SELF;
  case Attribute::UWTable:
    return bitc::ATTR_KIND_UW_TABLE;
  case Attribute::WillReturn:
    return bitc::ATTR_KIND_WILLRETURN;
  case Attribute::WriteOnly:
    return bitc::ATTR_KIND_WRITEONLY;
  case Attribute::ZExt:
    return bitc::ATTR_KIND_Z_EXT;
  case Attribute::ImmArg:
    return bitc::ATTR_KIND_IMMARG;
  case Attribute::SanitizeMemTag:
    return bitc::ATTR_KIND_SANITIZE_MEMTAG;
  case Attribute::Preallocated:
    return bitc::ATTR_KIND_PREALLOCATED;
  case Attribute::NoUndef:
    return bitc::ATTR_KIND_NOUNDEF;
  case Attribute::EndAttrKinds:
    llvm_unreachable("Can not encode end-attribute kinds marker.");
  case Attribute::None:
    llvm_unreachable("Can not encode none-attribute.");
  case Attribute::EmptyKey:
  case Attribute::TombstoneKey:
    llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
  }

  llvm_unreachable("Trying to encode unknown attribute");
}

void ModuleBitcodeWriter::writeAttributeGroupTable() {
  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
      VE.getAttributeGroups();
  if (AttrGrps.empty()) return;

  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);

  SmallVector<uint64_t, 64> Record;
  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
    unsigned AttrListIndex = Pair.first;
    AttributeSet AS = Pair.second;
    Record.push_back(VE.getAttributeGroupID(Pair));
    Record.push_back(AttrListIndex);

    for (Attribute Attr : AS) {
      if (Attr.isEnumAttribute()) {
        Record.push_back(0);
        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
      } else if (Attr.isIntAttribute()) {
        Record.push_back(1);
        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
        Record.push_back(Attr.getValueAsInt());
      } else if (Attr.isStringAttribute()) {
        StringRef Kind = Attr.getKindAsString();
        StringRef Val = Attr.getValueAsString();

        Record.push_back(Val.empty() ? 3 : 4);
        Record.append(Kind.begin(), Kind.end());
        Record.push_back(0);
        if (!Val.empty()) {
          Record.append(Val.begin(), Val.end());
          Record.push_back(0);
        }
      } else {
        assert(Attr.isTypeAttribute());
        Type *Ty = Attr.getValueAsType();
        Record.push_back(Ty ? 6 : 5);
        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
        if (Ty)
          Record.push_back(VE.getTypeID(Attr.getValueAsType()));
      }
    }

    Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
    Record.clear();
  }

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeAttributeTable() {
  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
  if (Attrs.empty()) return;

  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);

  SmallVector<uint64_t, 64> Record;
  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    AttributeList AL = Attrs[i];
    for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
      AttributeSet AS = AL.getAttributes(i);
      if (AS.hasAttributes())
        Record.push_back(VE.getAttributeGroupID({i, AS}));
    }

    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    Record.clear();
  }

  Stream.ExitBlock();
}

/// WriteTypeTable - Write out the type table for a module.
void ModuleBitcodeWriter::writeTypeTable() {
  const ValueEnumerator::TypeList &TypeList = VE.getTypes();

  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  SmallVector<uint64_t, 64> TypeVals;

  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();

  // Abbrev for TYPE_CODE_POINTER.
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for TYPE_CODE_FUNCTION.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for TYPE_CODE_STRUCT_ANON.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for TYPE_CODE_STRUCT_NAME.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for TYPE_CODE_STRUCT_NAMED.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for TYPE_CODE_ARRAY.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Emit an entry count so the reader can reserve space.
  TypeVals.push_back(TypeList.size());
  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  TypeVals.clear();

  // Loop over all of the types, emitting each in turn.
  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    Type *T = TypeList[i];
    int AbbrevToUse = 0;
    unsigned Code = 0;

    switch (T->getTypeID()) {
    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
    case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
    case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
    case Type::IntegerTyID:
      // INTEGER: [width]
      Code = bitc::TYPE_CODE_INTEGER;
      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
      break;
    case Type::PointerTyID: {
      PointerType *PTy = cast<PointerType>(T);
      // POINTER: [pointee type, address space]
      Code = bitc::TYPE_CODE_POINTER;
      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
      unsigned AddressSpace = PTy->getAddressSpace();
      TypeVals.push_back(AddressSpace);
      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
      break;
    }
    case Type::FunctionTyID: {
      FunctionType *FT = cast<FunctionType>(T);
      // FUNCTION: [isvararg, retty, paramty x N]
      Code = bitc::TYPE_CODE_FUNCTION;
      TypeVals.push_back(FT->isVarArg());
      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
      AbbrevToUse = FunctionAbbrev;
      break;
    }
    case Type::StructTyID: {
      StructType *ST = cast<StructType>(T);
      // STRUCT: [ispacked, eltty x N]
      TypeVals.push_back(ST->isPacked());
      // Output all of the element types.
      for (StructType::element_iterator I = ST->element_begin(),
           E = ST->element_end(); I != E; ++I)
        TypeVals.push_back(VE.getTypeID(*I));

      if (ST->isLiteral()) {
        Code = bitc::TYPE_CODE_STRUCT_ANON;
        AbbrevToUse = StructAnonAbbrev;
      } else {
        if (ST->isOpaque()) {
          Code = bitc::TYPE_CODE_OPAQUE;
        } else {
          Code = bitc::TYPE_CODE_STRUCT_NAMED;
          AbbrevToUse = StructNamedAbbrev;
        }

        // Emit the name if it is present.
        if (!ST->getName().empty())
          writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
                            StructNameAbbrev);
      }
      break;
    }
    case Type::ArrayTyID: {
      ArrayType *AT = cast<ArrayType>(T);
      // ARRAY: [numelts, eltty]
      Code = bitc::TYPE_CODE_ARRAY;
      TypeVals.push_back(AT->getNumElements());
      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
      AbbrevToUse = ArrayAbbrev;
      break;
    }
    case Type::FixedVectorTyID:
    case Type::ScalableVectorTyID: {
      VectorType *VT = cast<VectorType>(T);
      // VECTOR [numelts, eltty] or
      //        [numelts, eltty, scalable]
      Code = bitc::TYPE_CODE_VECTOR;
      TypeVals.push_back(VT->getElementCount().Min);
      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
      if (isa<ScalableVectorType>(VT))
        TypeVals.push_back(true);
      break;
    }
    }

    // Emit the finished record.
    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    TypeVals.clear();
  }

  Stream.ExitBlock();
}

static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
  switch (Linkage) {
  case GlobalValue::ExternalLinkage:
    return 0;
  case GlobalValue::WeakAnyLinkage:
    return 16;
  case GlobalValue::AppendingLinkage:
    return 2;
  case GlobalValue::InternalLinkage:
    return 3;
  case GlobalValue::LinkOnceAnyLinkage:
    return 18;
  case GlobalValue::ExternalWeakLinkage:
    return 7;
  case GlobalValue::CommonLinkage:
    return 8;
  case GlobalValue::PrivateLinkage:
    return 9;
  case GlobalValue::WeakODRLinkage:
    return 17;
  case GlobalValue::LinkOnceODRLinkage:
    return 19;
  case GlobalValue::AvailableExternallyLinkage:
    return 12;
  }
  llvm_unreachable("Invalid linkage");
}

static unsigned getEncodedLinkage(const GlobalValue &GV) {
  return getEncodedLinkage(GV.getLinkage());
}

static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
  uint64_t RawFlags = 0;
  RawFlags |= Flags.ReadNone;
  RawFlags |= (Flags.ReadOnly << 1);
  RawFlags |= (Flags.NoRecurse << 2);
  RawFlags |= (Flags.ReturnDoesNotAlias << 3);
  RawFlags |= (Flags.NoInline << 4);
  RawFlags |= (Flags.AlwaysInline << 5);
  return RawFlags;
}

// Decode the flags for GlobalValue in the summary
static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
  uint64_t RawFlags = 0;

  RawFlags |= Flags.NotEligibleToImport; // bool
  RawFlags |= (Flags.Live << 1);
  RawFlags |= (Flags.DSOLocal << 2);
  RawFlags |= (Flags.CanAutoHide << 3);

  // Linkage don't need to be remapped at that time for the summary. Any future
  // change to the getEncodedLinkage() function will need to be taken into
  // account here as well.
  RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits

  return RawFlags;
}

static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
  uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
                      (Flags.Constant << 2) | Flags.VCallVisibility << 3;
  return RawFlags;
}

static unsigned getEncodedVisibility(const GlobalValue &GV) {
  switch (GV.getVisibility()) {
  case GlobalValue::DefaultVisibility:   return 0;
  case GlobalValue::HiddenVisibility:    return 1;
  case GlobalValue::ProtectedVisibility: return 2;
  }
  llvm_unreachable("Invalid visibility");
}

static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
  switch (GV.getDLLStorageClass()) {
  case GlobalValue::DefaultStorageClass:   return 0;
  case GlobalValue::DLLImportStorageClass: return 1;
  case GlobalValue::DLLExportStorageClass: return 2;
  }
  llvm_unreachable("Invalid DLL storage class");
}

static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
  switch (GV.getThreadLocalMode()) {
    case GlobalVariable::NotThreadLocal:         return 0;
    case GlobalVariable::GeneralDynamicTLSModel: return 1;
    case GlobalVariable::LocalDynamicTLSModel:   return 2;
    case GlobalVariable::InitialExecTLSModel:    return 3;
    case GlobalVariable::LocalExecTLSModel:      return 4;
  }
  llvm_unreachable("Invalid TLS model");
}

static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
  switch (C.getSelectionKind()) {
  case Comdat::Any:
    return bitc::COMDAT_SELECTION_KIND_ANY;
  case Comdat::ExactMatch:
    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
  case Comdat::Largest:
    return bitc::COMDAT_SELECTION_KIND_LARGEST;
  case Comdat::NoDuplicates:
    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
  case Comdat::SameSize:
    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
  }
  llvm_unreachable("Invalid selection kind");
}

static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
  switch (GV.getUnnamedAddr()) {
  case GlobalValue::UnnamedAddr::None:   return 0;
  case GlobalValue::UnnamedAddr::Local:  return 2;
  case GlobalValue::UnnamedAddr::Global: return 1;
  }
  llvm_unreachable("Invalid unnamed_addr");
}

size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
  if (GenerateHash)
    Hasher.update(Str);
  return StrtabBuilder.add(Str);
}

void ModuleBitcodeWriter::writeComdats() {
  SmallVector<unsigned, 64> Vals;
  for (const Comdat *C : VE.getComdats()) {
    // COMDAT: [strtab offset, strtab size, selection_kind]
    Vals.push_back(addToStrtab(C->getName()));
    Vals.push_back(C->getName().size());
    Vals.push_back(getEncodedComdatSelectionKind(*C));
    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
    Vals.clear();
  }
}

/// Write a record that will eventually hold the word offset of the
/// module-level VST. For now the offset is 0, which will be backpatched
/// after the real VST is written. Saves the bit offset to backpatch.
void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
  // Write a placeholder value in for the offset of the real VST,
  // which is written after the function blocks so that it can include
  // the offset of each function. The placeholder offset will be
  // updated when the real VST is written.
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
  // hold the real VST offset. Must use fixed instead of VBR as we don't
  // know how many VBR chunks to reserve ahead of time.
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Emit the placeholder
  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);

  // Compute and save the bit offset to the placeholder, which will be
  // patched when the real VST is written. We can simply subtract the 32-bit
  // fixed size from the current bit number to get the location to backpatch.
  VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
}

enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };

/// Determine the encoding to use for the given string name and length.
static StringEncoding getStringEncoding(StringRef Str) {
  bool isChar6 = true;
  for (char C : Str) {
    if (isChar6)
      isChar6 = BitCodeAbbrevOp::isChar6(C);
    if ((unsigned char)C & 128)
      // don't bother scanning the rest.
      return SE_Fixed8;
  }
  if (isChar6)
    return SE_Char6;
  return SE_Fixed7;
}

/// Emit top-level description of module, including target triple, inline asm,
/// descriptors for global variables, and function prototype info.
/// Returns the bit offset to backpatch with the location of the real VST.
void ModuleBitcodeWriter::writeModuleInfo() {
  // Emit various pieces of data attached to a module.
  if (!M.getTargetTriple().empty())
    writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
                      0 /*TODO*/);
  const std::string &DL = M.getDataLayoutStr();
  if (!DL.empty())
    writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
  if (!M.getModuleInlineAsm().empty())
    writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
                      0 /*TODO*/);

  // Emit information about sections and GC, computing how many there are. Also
  // compute the maximum alignment value.
  std::map<std::string, unsigned> SectionMap;
  std::map<std::string, unsigned> GCMap;
  unsigned MaxAlignment = 0;
  unsigned MaxGlobalType = 0;
  for (const GlobalVariable &GV : M.globals()) {
    MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
    if (GV.hasSection()) {
      // Give section names unique ID's.
      unsigned &Entry = SectionMap[std::string(GV.getSection())];
      if (!Entry) {
        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
                          0 /*TODO*/);
        Entry = SectionMap.size();
      }
    }
  }
  for (const Function &F : M) {
    MaxAlignment = std::max(MaxAlignment, F.getAlignment());
    if (F.hasSection()) {
      // Give section names unique ID's.
      unsigned &Entry = SectionMap[std::string(F.getSection())];
      if (!Entry) {
        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
                          0 /*TODO*/);
        Entry = SectionMap.size();
      }
    }
    if (F.hasGC()) {
      // Same for GC names.
      unsigned &Entry = GCMap[F.getGC()];
      if (!Entry) {
        writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
                          0 /*TODO*/);
        Entry = GCMap.size();
      }
    }
  }

  // Emit abbrev for globals, now that we know # sections and max alignment.
  unsigned SimpleGVarAbbrev = 0;
  if (!M.global_empty()) {
    // Add an abbrev for common globals with no visibility or thread localness.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                              Log2_32_Ceil(MaxGlobalType+1)));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
                                                           //| explicitType << 1
                                                           //| constant
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
    if (MaxAlignment == 0)                                 // Alignment.
      Abbv->Add(BitCodeAbbrevOp(0));
    else {
      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                               Log2_32_Ceil(MaxEncAlignment+1)));
    }
    if (SectionMap.empty())                                    // Section.
      Abbv->Add(BitCodeAbbrevOp(0));
    else
      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                               Log2_32_Ceil(SectionMap.size()+1)));
    // Don't bother emitting vis + thread local.
    SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  }

  SmallVector<unsigned, 64> Vals;
  // Emit the module's source file name.
  {
    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
    if (Bits == SE_Char6)
      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
    else if (Bits == SE_Fixed7)
      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);

    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(AbbrevOpToUse);
    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));

    for (const auto P : M.getSourceFileName())
      Vals.push_back((unsigned char)P);

    // Emit the finished record.
    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
    Vals.clear();
  }

  // Emit the global variable information.
  for (const GlobalVariable &GV : M.globals()) {
    unsigned AbbrevToUse = 0;

    // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
    //             linkage, alignment, section, visibility, threadlocal,
    //             unnamed_addr, externally_initialized, dllstorageclass,
    //             comdat, attributes, DSO_Local]
    Vals.push_back(addToStrtab(GV.getName()));
    Vals.push_back(GV.getName().size());
    Vals.push_back(VE.getTypeID(GV.getValueType()));
    Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
    Vals.push_back(GV.isDeclaration() ? 0 :
                   (VE.getValueID(GV.getInitializer()) + 1));
    Vals.push_back(getEncodedLinkage(GV));
    Vals.push_back(Log2_32(GV.getAlignment())+1);
    Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
                                   : 0);
    if (GV.isThreadLocal() ||
        GV.getVisibility() != GlobalValue::DefaultVisibility ||
        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
        GV.isExternallyInitialized() ||
        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
        GV.hasComdat() ||
        GV.hasAttributes() ||
        GV.isDSOLocal() ||
        GV.hasPartition()) {
      Vals.push_back(getEncodedVisibility(GV));
      Vals.push_back(getEncodedThreadLocalMode(GV));
      Vals.push_back(getEncodedUnnamedAddr(GV));
      Vals.push_back(GV.isExternallyInitialized());
      Vals.push_back(getEncodedDLLStorageClass(GV));
      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);

      auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
      Vals.push_back(VE.getAttributeListID(AL));

      Vals.push_back(GV.isDSOLocal());
      Vals.push_back(addToStrtab(GV.getPartition()));
      Vals.push_back(GV.getPartition().size());
    } else {
      AbbrevToUse = SimpleGVarAbbrev;
    }

    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    Vals.clear();
  }

  // Emit the function proto information.
  for (const Function &F : M) {
    // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
    //             linkage, paramattrs, alignment, section, visibility, gc,
    //             unnamed_addr, prologuedata, dllstorageclass, comdat,
    //             prefixdata, personalityfn, DSO_Local, addrspace]
    Vals.push_back(addToStrtab(F.getName()));
    Vals.push_back(F.getName().size());
    Vals.push_back(VE.getTypeID(F.getFunctionType()));
    Vals.push_back(F.getCallingConv());
    Vals.push_back(F.isDeclaration());
    Vals.push_back(getEncodedLinkage(F));
    Vals.push_back(VE.getAttributeListID(F.getAttributes()));
    Vals.push_back(Log2_32(F.getAlignment())+1);
    Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
                                  : 0);
    Vals.push_back(getEncodedVisibility(F));
    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
    Vals.push_back(getEncodedUnnamedAddr(F));
    Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
                                       : 0);
    Vals.push_back(getEncodedDLLStorageClass(F));
    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
                                     : 0);
    Vals.push_back(
        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);

    Vals.push_back(F.isDSOLocal());
    Vals.push_back(F.getAddressSpace());
    Vals.push_back(addToStrtab(F.getPartition()));
    Vals.push_back(F.getPartition().size());

    unsigned AbbrevToUse = 0;
    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    Vals.clear();
  }

  // Emit the alias information.
  for (const GlobalAlias &A : M.aliases()) {
    // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
    //         visibility, dllstorageclass, threadlocal, unnamed_addr,
    //         DSO_Local]
    Vals.push_back(addToStrtab(A.getName()));
    Vals.push_back(A.getName().size());
    Vals.push_back(VE.getTypeID(A.getValueType()));
    Vals.push_back(A.getType()->getAddressSpace());
    Vals.push_back(VE.getValueID(A.getAliasee()));
    Vals.push_back(getEncodedLinkage(A));
    Vals.push_back(getEncodedVisibility(A));
    Vals.push_back(getEncodedDLLStorageClass(A));
    Vals.push_back(getEncodedThreadLocalMode(A));
    Vals.push_back(getEncodedUnnamedAddr(A));
    Vals.push_back(A.isDSOLocal());
    Vals.push_back(addToStrtab(A.getPartition()));
    Vals.push_back(A.getPartition().size());

    unsigned AbbrevToUse = 0;
    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    Vals.clear();
  }

  // Emit the ifunc information.
  for (const GlobalIFunc &I : M.ifuncs()) {
    // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
    //         val#, linkage, visibility, DSO_Local]
    Vals.push_back(addToStrtab(I.getName()));
    Vals.push_back(I.getName().size());
    Vals.push_back(VE.getTypeID(I.getValueType()));
    Vals.push_back(I.getType()->getAddressSpace());
    Vals.push_back(VE.getValueID(I.getResolver()));
    Vals.push_back(getEncodedLinkage(I));
    Vals.push_back(getEncodedVisibility(I));
    Vals.push_back(I.isDSOLocal());
    Vals.push_back(addToStrtab(I.getPartition()));
    Vals.push_back(I.getPartition().size());
    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
    Vals.clear();
  }

  writeValueSymbolTableForwardDecl();
}

static uint64_t getOptimizationFlags(const Value *V) {
  uint64_t Flags = 0;

  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
    if (OBO->hasNoSignedWrap())
      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    if (OBO->hasNoUnsignedWrap())
      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
    if (PEO->isExact())
      Flags |= 1 << bitc::PEO_EXACT;
  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
    if (FPMO->hasAllowReassoc())
      Flags |= bitc::AllowReassoc;
    if (FPMO->hasNoNaNs())
      Flags |= bitc::NoNaNs;
    if (FPMO->hasNoInfs())
      Flags |= bitc::NoInfs;
    if (FPMO->hasNoSignedZeros())
      Flags |= bitc::NoSignedZeros;
    if (FPMO->hasAllowReciprocal())
      Flags |= bitc::AllowReciprocal;
    if (FPMO->hasAllowContract())
      Flags |= bitc::AllowContract;
    if (FPMO->hasApproxFunc())
      Flags |= bitc::ApproxFunc;
  }

  return Flags;
}

void ModuleBitcodeWriter::writeValueAsMetadata(
    const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
  // Mimic an MDNode with a value as one operand.
  Value *V = MD->getValue();
  Record.push_back(VE.getTypeID(V->getType()));
  Record.push_back(VE.getValueID(V));
  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
  Record.clear();
}

void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
                                       SmallVectorImpl<uint64_t> &Record,
                                       unsigned Abbrev) {
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    Metadata *MD = N->getOperand(i);
    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
           "Unexpected function-local metadata");
    Record.push_back(VE.getMetadataOrNullID(MD));
  }
  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
                                    : bitc::METADATA_NODE,
                    Record, Abbrev);
  Record.clear();
}

unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
  // Assume the column is usually under 128, and always output the inlined-at
  // location (it's never more expensive than building an array size 1).
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  return Stream.EmitAbbrev(std::move(Abbv));
}

void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
                                          SmallVectorImpl<uint64_t> &Record,
                                          unsigned &Abbrev) {
  if (!Abbrev)
    Abbrev = createDILocationAbbrev();

  Record.push_back(N->isDistinct());
  Record.push_back(N->getLine());
  Record.push_back(N->getColumn());
  Record.push_back(VE.getMetadataID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
  Record.push_back(N->isImplicitCode());

  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
  Record.clear();
}

unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
  // Assume the column is usually under 128, and always output the inlined-at
  // location (it's never more expensive than building an array size 1).
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  return Stream.EmitAbbrev(std::move(Abbv));
}

void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
                                             SmallVectorImpl<uint64_t> &Record,
                                             unsigned &Abbrev) {
  if (!Abbrev)
    Abbrev = createGenericDINodeAbbrev();

  Record.push_back(N->isDistinct());
  Record.push_back(N->getTag());
  Record.push_back(0); // Per-tag version field; unused for now.

  for (auto &I : N->operands())
    Record.push_back(VE.getMetadataOrNullID(I));

  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
                                          SmallVectorImpl<uint64_t> &Record,
                                          unsigned Abbrev) {
  const uint64_t Version = 2 << 1;
  Record.push_back((uint64_t)N->isDistinct() | Version);
  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));

  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
  Record.clear();
}

static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  if ((int64_t)V >= 0)
    Vals.push_back(V << 1);
  else
    Vals.push_back((-V << 1) | 1);
}

static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
  // We have an arbitrary precision integer value to write whose
  // bit width is > 64. However, in canonical unsigned integer
  // format it is likely that the high bits are going to be zero.
  // So, we only write the number of active words.
  unsigned NumWords = A.getActiveWords();
  const uint64_t *RawData = A.getRawData();
  for (unsigned i = 0; i < NumWords; i++)
    emitSignedInt64(Vals, RawData[i]);
}

void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
                                            SmallVectorImpl<uint64_t> &Record,
                                            unsigned Abbrev) {
  const uint64_t IsBigInt = 1 << 2;
  Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
  Record.push_back(N->getValue().getBitWidth());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  emitWideAPInt(Record, N->getValue());

  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
                                           SmallVectorImpl<uint64_t> &Record,
                                           unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(N->getTag());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(N->getSizeInBits());
  Record.push_back(N->getAlignInBits());
  Record.push_back(N->getEncoding());
  Record.push_back(N->getFlags());

  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
                                             SmallVectorImpl<uint64_t> &Record,
                                             unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(N->getTag());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
  Record.push_back(N->getSizeInBits());
  Record.push_back(N->getAlignInBits());
  Record.push_back(N->getOffsetInBits());
  Record.push_back(N->getFlags());
  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));

  // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
  // that there is no DWARF address space associated with DIDerivedType.
  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
    Record.push_back(*DWARFAddressSpace + 1);
  else
    Record.push_back(0);

  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDICompositeType(
    const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  const unsigned IsNotUsedInOldTypeRef = 0x2;
  Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
  Record.push_back(N->getTag());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
  Record.push_back(N->getSizeInBits());
  Record.push_back(N->getAlignInBits());
  Record.push_back(N->getOffsetInBits());
  Record.push_back(N->getFlags());
  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
  Record.push_back(N->getRuntimeLang());
  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
  Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));

  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDISubroutineType(
    const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  const unsigned HasNoOldTypeRefs = 0x2;
  Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
  Record.push_back(N->getFlags());
  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
  Record.push_back(N->getCC());

  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
                                      SmallVectorImpl<uint64_t> &Record,
                                      unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
  if (N->getRawChecksum()) {
    Record.push_back(N->getRawChecksum()->Kind);
    Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
  } else {
    // Maintain backwards compatibility with the old internal representation of
    // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
    Record.push_back(0);
    Record.push_back(VE.getMetadataOrNullID(nullptr));
  }
  auto Source = N->getRawSource();
  if (Source)
    Record.push_back(VE.getMetadataOrNullID(*Source));

  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
                                             SmallVectorImpl<uint64_t> &Record,
                                             unsigned Abbrev) {
  assert(N->isDistinct() && "Expected distinct compile units");
  Record.push_back(/* IsDistinct */ true);
  Record.push_back(N->getSourceLanguage());
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
  Record.push_back(N->isOptimized());
  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
  Record.push_back(N->getRuntimeVersion());
  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
  Record.push_back(N->getEmissionKind());
  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
  Record.push_back(/* subprograms */ 0);
  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
  Record.push_back(N->getDWOId());
  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
  Record.push_back(N->getSplitDebugInlining());
  Record.push_back(N->getDebugInfoForProfiling());
  Record.push_back((unsigned)N->getNameTableKind());
  Record.push_back(N->getRangesBaseAddress());
  Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));

  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
                                            SmallVectorImpl<uint64_t> &Record,
                                            unsigned Abbrev) {
  const uint64_t HasUnitFlag = 1 << 1;
  const uint64_t HasSPFlagsFlag = 1 << 2;
  Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getType()));
  Record.push_back(N->getScopeLine());
  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
  Record.push_back(N->getSPFlags());
  Record.push_back(N->getVirtualIndex());
  Record.push_back(N->getFlags());
  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
  Record.push_back(N->getThisAdjustment());
  Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));

  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
                                              SmallVectorImpl<uint64_t> &Record,
                                              unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());
  Record.push_back(N->getColumn());

  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDILexicalBlockFile(
    const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getDiscriminator());

  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
                                             SmallVectorImpl<uint64_t> &Record,
                                             unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLineNo());

  Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
                                           SmallVectorImpl<uint64_t> &Record,
                                           unsigned Abbrev) {
  Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));

  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
                                       SmallVectorImpl<uint64_t> &Record,
                                       unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(N->getMacinfoType());
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));

  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
                                           SmallVectorImpl<uint64_t> &Record,
                                           unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(N->getMacinfoType());
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));

  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
                                        SmallVectorImpl<uint64_t> &Record,
                                        unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  for (auto &I : N->operands())
    Record.push_back(VE.getMetadataOrNullID(I));
  Record.push_back(N->getLineNo());

  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDITemplateTypeParameter(
    const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getType()));
  Record.push_back(N->isDefault());

  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDITemplateValueParameter(
    const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(N->getTag());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getType()));
  Record.push_back(N->isDefault());
  Record.push_back(VE.getMetadataOrNullID(N->getValue()));

  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIGlobalVariable(
    const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  const uint64_t Version = 2 << 1;
  Record.push_back((uint64_t)N->isDistinct() | Version);
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getType()));
  Record.push_back(N->isLocalToUnit());
  Record.push_back(N->isDefinition());
  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
  Record.push_back(N->getAlignInBits());

  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDILocalVariable(
    const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  // In order to support all possible bitcode formats in BitcodeReader we need
  // to distinguish the following cases:
  // 1) Record has no artificial tag (Record[1]),
  //   has no obsolete inlinedAt field (Record[9]).
  //   In this case Record size will be 8, HasAlignment flag is false.
  // 2) Record has artificial tag (Record[1]),
  //   has no obsolete inlignedAt field (Record[9]).
  //   In this case Record size will be 9, HasAlignment flag is false.
  // 3) Record has both artificial tag (Record[1]) and
  //   obsolete inlignedAt field (Record[9]).
  //   In this case Record size will be 10, HasAlignment flag is false.
  // 4) Record has neither artificial tag, nor inlignedAt field, but
  //   HasAlignment flag is true and Record[8] contains alignment value.
  const uint64_t HasAlignmentFlag = 1 << 1;
  Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getType()));
  Record.push_back(N->getArg());
  Record.push_back(N->getFlags());
  Record.push_back(N->getAlignInBits());

  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDILabel(
    const DILabel *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  Record.push_back((uint64_t)N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());

  Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
                                            SmallVectorImpl<uint64_t> &Record,
                                            unsigned Abbrev) {
  Record.reserve(N->getElements().size() + 1);
  const uint64_t Version = 3 << 1;
  Record.push_back((uint64_t)N->isDistinct() | Version);
  Record.append(N->elements_begin(), N->elements_end());

  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
    const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
  Record.push_back(VE.getMetadataOrNullID(N->getExpression()));

  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
                                              SmallVectorImpl<uint64_t> &Record,
                                              unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
  Record.push_back(N->getAttributes());
  Record.push_back(VE.getMetadataOrNullID(N->getType()));

  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
  Record.clear();
}

void ModuleBitcodeWriter::writeDIImportedEntity(
    const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
    unsigned Abbrev) {
  Record.push_back(N->isDistinct());
  Record.push_back(N->getTag());
  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
  Record.push_back(N->getLine());
  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));

  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
  Record.clear();
}

unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  return Stream.EmitAbbrev(std::move(Abbv));
}

void ModuleBitcodeWriter::writeNamedMetadata(
    SmallVectorImpl<uint64_t> &Record) {
  if (M.named_metadata_empty())
    return;

  unsigned Abbrev = createNamedMetadataAbbrev();
  for (const NamedMDNode &NMD : M.named_metadata()) {
    // Write name.
    StringRef Str = NMD.getName();
    Record.append(Str.bytes_begin(), Str.bytes_end());
    Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
    Record.clear();

    // Write named metadata operands.
    for (const MDNode *N : NMD.operands())
      Record.push_back(VE.getMetadataID(N));
    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
    Record.clear();
  }
}

unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
  return Stream.EmitAbbrev(std::move(Abbv));
}

/// Write out a record for MDString.
///
/// All the metadata strings in a metadata block are emitted in a single
/// record.  The sizes and strings themselves are shoved into a blob.
void ModuleBitcodeWriter::writeMetadataStrings(
    ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
  if (Strings.empty())
    return;

  // Start the record with the number of strings.
  Record.push_back(bitc::METADATA_STRINGS);
  Record.push_back(Strings.size());

  // Emit the sizes of the strings in the blob.
  SmallString<256> Blob;
  {
    BitstreamWriter W(Blob);
    for (const Metadata *MD : Strings)
      W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
    W.FlushToWord();
  }

  // Add the offset to the strings to the record.
  Record.push_back(Blob.size());

  // Add the strings to the blob.
  for (const Metadata *MD : Strings)
    Blob.append(cast<MDString>(MD)->getString());

  // Emit the final record.
  Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
  Record.clear();
}

// Generates an enum to use as an index in the Abbrev array of Metadata record.
enum MetadataAbbrev : unsigned {
#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
#include "llvm/IR/Metadata.def"
  LastPlusOne
};

void ModuleBitcodeWriter::writeMetadataRecords(
    ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
    std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
  if (MDs.empty())
    return;

  // Initialize MDNode abbreviations.
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
#include "llvm/IR/Metadata.def"

  for (const Metadata *MD : MDs) {
    if (IndexPos)
      IndexPos->push_back(Stream.GetCurrentBitNo());
    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
      assert(N->isResolved() && "Expected forward references to be resolved");

      switch (N->getMetadataID()) {
      default:
        llvm_unreachable("Invalid MDNode subclass");
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case Metadata::CLASS##Kind:                                                  \
    if (MDAbbrevs)                                                             \
      write##CLASS(cast<CLASS>(N), Record,                                     \
                   (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
    else                                                                       \
      write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
    continue;
#include "llvm/IR/Metadata.def"
      }
    }
    writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
  }
}

void ModuleBitcodeWriter::writeModuleMetadata() {
  if (!VE.hasMDs() && M.named_metadata_empty())
    return;

  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
  SmallVector<uint64_t, 64> Record;

  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
  // block and load any metadata.
  std::vector<unsigned> MDAbbrevs;

  MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
      createGenericDINodeAbbrev();

  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Emit MDStrings together upfront.
  writeMetadataStrings(VE.getMDStrings(), Record);

  // We only emit an index for the metadata record if we have more than a given
  // (naive) threshold of metadatas, otherwise it is not worth it.
  if (VE.getNonMDStrings().size() > IndexThreshold) {
    // Write a placeholder value in for the offset of the metadata index,
    // which is written after the records, so that it can include
    // the offset of each entry. The placeholder offset will be
    // updated after all records are emitted.
    uint64_t Vals[] = {0, 0};
    Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
  }

  // Compute and save the bit offset to the current position, which will be
  // patched when we emit the index later. We can simply subtract the 64-bit
  // fixed size from the current bit number to get the location to backpatch.
  uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();

  // This index will contain the bitpos for each individual record.
  std::vector<uint64_t> IndexPos;
  IndexPos.reserve(VE.getNonMDStrings().size());

  // Write all the records
  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);

  if (VE.getNonMDStrings().size() > IndexThreshold) {
    // Now that we have emitted all the records we will emit the index. But
    // first
    // backpatch the forward reference so that the reader can skip the records
    // efficiently.
    Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
                           Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);

    // Delta encode the index.
    uint64_t PreviousValue = IndexOffsetRecordBitPos;
    for (auto &Elt : IndexPos) {
      auto EltDelta = Elt - PreviousValue;
      PreviousValue = Elt;
      Elt = EltDelta;
    }
    // Emit the index record.
    Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
    IndexPos.clear();
  }

  // Write the named metadata now.
  writeNamedMetadata(Record);

  auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
    SmallVector<uint64_t, 4> Record;
    Record.push_back(VE.getValueID(&GO));
    pushGlobalMetadataAttachment(Record, GO);
    Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
  };
  for (const Function &F : M)
    if (F.isDeclaration() && F.hasMetadata())
      AddDeclAttachedMetadata(F);
  // FIXME: Only store metadata for declarations here, and move data for global
  // variable definitions to a separate block (PR28134).
  for (const GlobalVariable &GV : M.globals())
    if (GV.hasMetadata())
      AddDeclAttachedMetadata(GV);

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
  if (!VE.hasMDs())
    return;

  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  SmallVector<uint64_t, 64> Record;
  writeMetadataStrings(VE.getMDStrings(), Record);
  writeMetadataRecords(VE.getNonMDStrings(), Record);
  Stream.ExitBlock();
}

void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
    SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
  // [n x [id, mdnode]]
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  GO.getAllMetadata(MDs);
  for (const auto &I : MDs) {
    Record.push_back(I.first);
    Record.push_back(VE.getMetadataID(I.second));
  }
}

void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);

  SmallVector<uint64_t, 64> Record;

  if (F.hasMetadata()) {
    pushGlobalMetadataAttachment(Record, F);
    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
    Record.clear();
  }

  // Write metadata attachments
  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  for (const BasicBlock &BB : F)
    for (const Instruction &I : BB) {
      MDs.clear();
      I.getAllMetadataOtherThanDebugLoc(MDs);

      // If no metadata, ignore instruction.
      if (MDs.empty()) continue;

      Record.push_back(VE.getInstructionID(&I));

      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
        Record.push_back(MDs[i].first);
        Record.push_back(VE.getMetadataID(MDs[i].second));
      }
      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
      Record.clear();
    }

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeModuleMetadataKinds() {
  SmallVector<uint64_t, 64> Record;

  // Write metadata kinds
  // METADATA_KIND - [n x [id, name]]
  SmallVector<StringRef, 8> Names;
  M.getMDKindNames(Names);

  if (Names.empty()) return;

  Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);

  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    Record.push_back(MDKindID);
    StringRef KName = Names[MDKindID];
    Record.append(KName.begin(), KName.end());

    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    Record.clear();
  }

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeOperandBundleTags() {
  // Write metadata kinds
  //
  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
  //
  // OPERAND_BUNDLE_TAG - [strchr x N]

  SmallVector<StringRef, 8> Tags;
  M.getOperandBundleTags(Tags);

  if (Tags.empty())
    return;

  Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);

  SmallVector<uint64_t, 64> Record;

  for (auto Tag : Tags) {
    Record.append(Tag.begin(), Tag.end());

    Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
    Record.clear();
  }

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeSyncScopeNames() {
  SmallVector<StringRef, 8> SSNs;
  M.getContext().getSyncScopeNames(SSNs);
  if (SSNs.empty())
    return;

  Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);

  SmallVector<uint64_t, 64> Record;
  for (auto SSN : SSNs) {
    Record.append(SSN.begin(), SSN.end());
    Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
    Record.clear();
  }

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
                                         bool isGlobal) {
  if (FirstVal == LastVal) return;

  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);

  unsigned AggregateAbbrev = 0;
  unsigned String8Abbrev = 0;
  unsigned CString7Abbrev = 0;
  unsigned CString6Abbrev = 0;
  // If this is a constant pool for the module, emit module-specific abbrevs.
  if (isGlobal) {
    // Abbrev for CST_CODE_AGGREGATE.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));

    // Abbrev for CST_CODE_STRING.
    Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
    // Abbrev for CST_CODE_CSTRING.
    Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
    // Abbrev for CST_CODE_CSTRING.
    Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
  }

  SmallVector<uint64_t, 64> Record;

  const ValueEnumerator::ValueList &Vals = VE.getValues();
  Type *LastTy = nullptr;
  for (unsigned i = FirstVal; i != LastVal; ++i) {
    const Value *V = Vals[i].first;
    // If we need to switch types, do so now.
    if (V->getType() != LastTy) {
      LastTy = V->getType();
      Record.push_back(VE.getTypeID(LastTy));
      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
                        CONSTANTS_SETTYPE_ABBREV);
      Record.clear();
    }

    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
      Record.push_back(unsigned(IA->hasSideEffects()) |
                       unsigned(IA->isAlignStack()) << 1 |
                       unsigned(IA->getDialect()&1) << 2);

      // Add the asm string.
      const std::string &AsmStr = IA->getAsmString();
      Record.push_back(AsmStr.size());
      Record.append(AsmStr.begin(), AsmStr.end());

      // Add the constraint string.
      const std::string &ConstraintStr = IA->getConstraintString();
      Record.push_back(ConstraintStr.size());
      Record.append(ConstraintStr.begin(), ConstraintStr.end());
      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
      Record.clear();
      continue;
    }
    const Constant *C = cast<Constant>(V);
    unsigned Code = -1U;
    unsigned AbbrevToUse = 0;
    if (C->isNullValue()) {
      Code = bitc::CST_CODE_NULL;
    } else if (isa<UndefValue>(C)) {
      Code = bitc::CST_CODE_UNDEF;
    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
      if (IV->getBitWidth() <= 64) {
        uint64_t V = IV->getSExtValue();
        emitSignedInt64(Record, V);
        Code = bitc::CST_CODE_INTEGER;
        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
      } else {                             // Wide integers, > 64 bits in size.
        emitWideAPInt(Record, IV->getValue());
        Code = bitc::CST_CODE_WIDE_INTEGER;
      }
    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
      Code = bitc::CST_CODE_FLOAT;
      Type *Ty = CFP->getType();
      if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
          Ty->isDoubleTy()) {
        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
      } else if (Ty->isX86_FP80Ty()) {
        // api needed to prevent premature destruction
        // bits are not in the same order as a normal i80 APInt, compensate.
        APInt api = CFP->getValueAPF().bitcastToAPInt();
        const uint64_t *p = api.getRawData();
        Record.push_back((p[1] << 48) | (p[0] >> 16));
        Record.push_back(p[0] & 0xffffLL);
      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
        APInt api = CFP->getValueAPF().bitcastToAPInt();
        const uint64_t *p = api.getRawData();
        Record.push_back(p[0]);
        Record.push_back(p[1]);
      } else {
        assert(0 && "Unknown FP type!");
      }
    } else if (isa<ConstantDataSequential>(C) &&
               cast<ConstantDataSequential>(C)->isString()) {
      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
      // Emit constant strings specially.
      unsigned NumElts = Str->getNumElements();
      // If this is a null-terminated string, use the denser CSTRING encoding.
      if (Str->isCString()) {
        Code = bitc::CST_CODE_CSTRING;
        --NumElts;  // Don't encode the null, which isn't allowed by char6.
      } else {
        Code = bitc::CST_CODE_STRING;
        AbbrevToUse = String8Abbrev;
      }
      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
      for (unsigned i = 0; i != NumElts; ++i) {
        unsigned char V = Str->getElementAsInteger(i);
        Record.push_back(V);
        isCStr7 &= (V & 128) == 0;
        if (isCStrChar6)
          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
      }

      if (isCStrChar6)
        AbbrevToUse = CString6Abbrev;
      else if (isCStr7)
        AbbrevToUse = CString7Abbrev;
    } else if (const ConstantDataSequential *CDS =
                  dyn_cast<ConstantDataSequential>(C)) {
      Code = bitc::CST_CODE_DATA;
      Type *EltTy = CDS->getElementType();
      if (isa<IntegerType>(EltTy)) {
        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
          Record.push_back(CDS->getElementAsInteger(i));
      } else {
        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
          Record.push_back(
              CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
      }
    } else if (isa<ConstantAggregate>(C)) {
      Code = bitc::CST_CODE_AGGREGATE;
      for (const Value *Op : C->operands())
        Record.push_back(VE.getValueID(Op));
      AbbrevToUse = AggregateAbbrev;
    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
      switch (CE->getOpcode()) {
      default:
        if (Instruction::isCast(CE->getOpcode())) {
          Code = bitc::CST_CODE_CE_CAST;
          Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
          Record.push_back(VE.getValueID(C->getOperand(0)));
          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
        } else {
          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
          Code = bitc::CST_CODE_CE_BINOP;
          Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
          Record.push_back(VE.getValueID(C->getOperand(0)));
          Record.push_back(VE.getValueID(C->getOperand(1)));
          uint64_t Flags = getOptimizationFlags(CE);
          if (Flags != 0)
            Record.push_back(Flags);
        }
        break;
      case Instruction::FNeg: {
        assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
        Code = bitc::CST_CODE_CE_UNOP;
        Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
        Record.push_back(VE.getValueID(C->getOperand(0)));
        uint64_t Flags = getOptimizationFlags(CE);
        if (Flags != 0)
          Record.push_back(Flags);
        break;
      }
      case Instruction::GetElementPtr: {
        Code = bitc::CST_CODE_CE_GEP;
        const auto *GO = cast<GEPOperator>(C);
        Record.push_back(VE.getTypeID(GO->getSourceElementType()));
        if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
          Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
          Record.push_back((*Idx << 1) | GO->isInBounds());
        } else if (GO->isInBounds())
          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
          Record.push_back(VE.getValueID(C->getOperand(i)));
        }
        break;
      }
      case Instruction::Select:
        Code = bitc::CST_CODE_CE_SELECT;
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(VE.getValueID(C->getOperand(2)));
        break;
      case Instruction::ExtractElement:
        Code = bitc::CST_CODE_CE_EXTRACTELT;
        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        break;
      case Instruction::InsertElement:
        Code = bitc::CST_CODE_CE_INSERTELT;
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
        Record.push_back(VE.getValueID(C->getOperand(2)));
        break;
      case Instruction::ShuffleVector:
        // If the return type and argument types are the same, this is a
        // standard shufflevector instruction.  If the types are different,
        // then the shuffle is widening or truncating the input vectors, and
        // the argument type must also be encoded.
        if (C->getType() == C->getOperand(0)->getType()) {
          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
        } else {
          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
        }
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
        break;
      case Instruction::ICmp:
      case Instruction::FCmp:
        Code = bitc::CST_CODE_CE_CMP;
        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
        Record.push_back(VE.getValueID(C->getOperand(0)));
        Record.push_back(VE.getValueID(C->getOperand(1)));
        Record.push_back(CE->getPredicate());
        break;
      }
    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
      Code = bitc::CST_CODE_BLOCKADDRESS;
      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
      Record.push_back(VE.getValueID(BA->getFunction()));
      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
    } else {
#ifndef NDEBUG
      C->dump();
#endif
      llvm_unreachable("Unknown constant!");
    }
    Stream.EmitRecord(Code, Record, AbbrevToUse);
    Record.clear();
  }

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeModuleConstants() {
  const ValueEnumerator::ValueList &Vals = VE.getValues();

  // Find the first constant to emit, which is the first non-globalvalue value.
  // We know globalvalues have been emitted by WriteModuleInfo.
  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    if (!isa<GlobalValue>(Vals[i].first)) {
      writeConstants(i, Vals.size(), true);
      return;
    }
  }
}

/// pushValueAndType - The file has to encode both the value and type id for
/// many values, because we need to know what type to create for forward
/// references.  However, most operands are not forward references, so this type
/// field is not needed.
///
/// This function adds V's value ID to Vals.  If the value ID is higher than the
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID.  The value ID that is written is encoded relative to the InstID.
bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
                                           SmallVectorImpl<unsigned> &Vals) {
  unsigned ValID = VE.getValueID(V);
  // Make encoding relative to the InstID.
  Vals.push_back(InstID - ValID);
  if (ValID >= InstID) {
    Vals.push_back(VE.getTypeID(V->getType()));
    return true;
  }
  return false;
}

void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
                                              unsigned InstID) {
  SmallVector<unsigned, 64> Record;
  LLVMContext &C = CS.getContext();

  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
    const auto &Bundle = CS.getOperandBundleAt(i);
    Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));

    for (auto &Input : Bundle.Inputs)
      pushValueAndType(Input, InstID, Record);

    Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
    Record.clear();
  }
}

/// pushValue - Like pushValueAndType, but where the type of the value is
/// omitted (perhaps it was already encoded in an earlier operand).
void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
                                    SmallVectorImpl<unsigned> &Vals) {
  unsigned ValID = VE.getValueID(V);
  Vals.push_back(InstID - ValID);
}

void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
                                          SmallVectorImpl<uint64_t> &Vals) {
  unsigned ValID = VE.getValueID(V);
  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  emitSignedInt64(Vals, diff);
}

/// WriteInstruction - Emit an instruction to the specified stream.
void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
                                           unsigned InstID,
                                           SmallVectorImpl<unsigned> &Vals) {
  unsigned Code = 0;
  unsigned AbbrevToUse = 0;
  VE.setInstructionID(&I);
  switch (I.getOpcode()) {
  default:
    if (Instruction::isCast(I.getOpcode())) {
      Code = bitc::FUNC_CODE_INST_CAST;
      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
      Vals.push_back(VE.getTypeID(I.getType()));
      Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
    } else {
      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
      Code = bitc::FUNC_CODE_INST_BINOP;
      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
      pushValue(I.getOperand(1), InstID, Vals);
      Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
      uint64_t Flags = getOptimizationFlags(&I);
      if (Flags != 0) {
        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
        Vals.push_back(Flags);
      }
    }
    break;
  case Instruction::FNeg: {
    Code = bitc::FUNC_CODE_INST_UNOP;
    if (!pushValueAndType(I.getOperand(0), InstID, Vals))
      AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
    Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
    uint64_t Flags = getOptimizationFlags(&I);
    if (Flags != 0) {
      if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
        AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
      Vals.push_back(Flags);
    }
    break;
  }
  case Instruction::GetElementPtr: {
    Code = bitc::FUNC_CODE_INST_GEP;
    AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
    auto &GEPInst = cast<GetElementPtrInst>(I);
    Vals.push_back(GEPInst.isInBounds());
    Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
      pushValueAndType(I.getOperand(i), InstID, Vals);
    break;
  }
  case Instruction::ExtractValue: {
    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
    Vals.append(EVI->idx_begin(), EVI->idx_end());
    break;
  }
  case Instruction::InsertValue: {
    Code = bitc::FUNC_CODE_INST_INSERTVAL;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    pushValueAndType(I.getOperand(1), InstID, Vals);
    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
    Vals.append(IVI->idx_begin(), IVI->idx_end());
    break;
  }
  case Instruction::Select: {
    Code = bitc::FUNC_CODE_INST_VSELECT;
    pushValueAndType(I.getOperand(1), InstID, Vals);
    pushValue(I.getOperand(2), InstID, Vals);
    pushValueAndType(I.getOperand(0), InstID, Vals);
    uint64_t Flags = getOptimizationFlags(&I);
    if (Flags != 0)
      Vals.push_back(Flags);
    break;
  }
  case Instruction::ExtractElement:
    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    pushValueAndType(I.getOperand(1), InstID, Vals);
    break;
  case Instruction::InsertElement:
    Code = bitc::FUNC_CODE_INST_INSERTELT;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    pushValue(I.getOperand(1), InstID, Vals);
    pushValueAndType(I.getOperand(2), InstID, Vals);
    break;
  case Instruction::ShuffleVector:
    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    pushValue(I.getOperand(1), InstID, Vals);
    pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
              Vals);
    break;
  case Instruction::ICmp:
  case Instruction::FCmp: {
    // compare returning Int1Ty or vector of Int1Ty
    Code = bitc::FUNC_CODE_INST_CMP2;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    pushValue(I.getOperand(1), InstID, Vals);
    Vals.push_back(cast<CmpInst>(I).getPredicate());
    uint64_t Flags = getOptimizationFlags(&I);
    if (Flags != 0)
      Vals.push_back(Flags);
    break;
  }

  case Instruction::Ret:
    {
      Code = bitc::FUNC_CODE_INST_RET;
      unsigned NumOperands = I.getNumOperands();
      if (NumOperands == 0)
        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
      else if (NumOperands == 1) {
        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
      } else {
        for (unsigned i = 0, e = NumOperands; i != e; ++i)
          pushValueAndType(I.getOperand(i), InstID, Vals);
      }
    }
    break;
  case Instruction::Br:
    {
      Code = bitc::FUNC_CODE_INST_BR;
      const BranchInst &II = cast<BranchInst>(I);
      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
      if (II.isConditional()) {
        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
        pushValue(II.getCondition(), InstID, Vals);
      }
    }
    break;
  case Instruction::Switch:
    {
      Code = bitc::FUNC_CODE_INST_SWITCH;
      const SwitchInst &SI = cast<SwitchInst>(I);
      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
      pushValue(SI.getCondition(), InstID, Vals);
      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
      for (auto Case : SI.cases()) {
        Vals.push_back(VE.getValueID(Case.getCaseValue()));
        Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
      }
    }
    break;
  case Instruction::IndirectBr:
    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    // Encode the address operand as relative, but not the basic blocks.
    pushValue(I.getOperand(0), InstID, Vals);
    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
      Vals.push_back(VE.getValueID(I.getOperand(i)));
    break;

  case Instruction::Invoke: {
    const InvokeInst *II = cast<InvokeInst>(&I);
    const Value *Callee = II->getCalledOperand();
    FunctionType *FTy = II->getFunctionType();

    if (II->hasOperandBundles())
      writeOperandBundles(*II, InstID);

    Code = bitc::FUNC_CODE_INST_INVOKE;

    Vals.push_back(VE.getAttributeListID(II->getAttributes()));
    Vals.push_back(II->getCallingConv() | 1 << 13);
    Vals.push_back(VE.getValueID(II->getNormalDest()));
    Vals.push_back(VE.getValueID(II->getUnwindDest()));
    Vals.push_back(VE.getTypeID(FTy));
    pushValueAndType(Callee, InstID, Vals);

    // Emit value #'s for the fixed parameters.
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
      pushValue(I.getOperand(i), InstID, Vals); // fixed param.

    // Emit type/value pairs for varargs params.
    if (FTy->isVarArg()) {
      for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
           i != e; ++i)
        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
    }
    break;
  }
  case Instruction::Resume:
    Code = bitc::FUNC_CODE_INST_RESUME;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    break;
  case Instruction::CleanupRet: {
    Code = bitc::FUNC_CODE_INST_CLEANUPRET;
    const auto &CRI = cast<CleanupReturnInst>(I);
    pushValue(CRI.getCleanupPad(), InstID, Vals);
    if (CRI.hasUnwindDest())
      Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
    break;
  }
  case Instruction::CatchRet: {
    Code = bitc::FUNC_CODE_INST_CATCHRET;
    const auto &CRI = cast<CatchReturnInst>(I);
    pushValue(CRI.getCatchPad(), InstID, Vals);
    Vals.push_back(VE.getValueID(CRI.getSuccessor()));
    break;
  }
  case Instruction::CleanupPad:
  case Instruction::CatchPad: {
    const auto &FuncletPad = cast<FuncletPadInst>(I);
    Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
                                         : bitc::FUNC_CODE_INST_CLEANUPPAD;
    pushValue(FuncletPad.getParentPad(), InstID, Vals);

    unsigned NumArgOperands = FuncletPad.getNumArgOperands();
    Vals.push_back(NumArgOperands);
    for (unsigned Op = 0; Op != NumArgOperands; ++Op)
      pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
    break;
  }
  case Instruction::CatchSwitch: {
    Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
    const auto &CatchSwitch = cast<CatchSwitchInst>(I);

    pushValue(CatchSwitch.getParentPad(), InstID, Vals);

    unsigned NumHandlers = CatchSwitch.getNumHandlers();
    Vals.push_back(NumHandlers);
    for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
      Vals.push_back(VE.getValueID(CatchPadBB));

    if (CatchSwitch.hasUnwindDest())
      Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
    break;
  }
  case Instruction::CallBr: {
    const CallBrInst *CBI = cast<CallBrInst>(&I);
    const Value *Callee = CBI->getCalledOperand();
    FunctionType *FTy = CBI->getFunctionType();

    if (CBI->hasOperandBundles())
      writeOperandBundles(*CBI, InstID);

    Code = bitc::FUNC_CODE_INST_CALLBR;

    Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));

    Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
                   1 << bitc::CALL_EXPLICIT_TYPE);

    Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
    Vals.push_back(CBI->getNumIndirectDests());
    for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
      Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));

    Vals.push_back(VE.getTypeID(FTy));
    pushValueAndType(Callee, InstID, Vals);

    // Emit value #'s for the fixed parameters.
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
      pushValue(I.getOperand(i), InstID, Vals); // fixed param.

    // Emit type/value pairs for varargs params.
    if (FTy->isVarArg()) {
      for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
           i != e; ++i)
        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
    }
    break;
  }
  case Instruction::Unreachable:
    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
    break;

  case Instruction::PHI: {
    const PHINode &PN = cast<PHINode>(I);
    Code = bitc::FUNC_CODE_INST_PHI;
    // With the newer instruction encoding, forward references could give
    // negative valued IDs.  This is most common for PHIs, so we use
    // signed VBRs.
    SmallVector<uint64_t, 128> Vals64;
    Vals64.push_back(VE.getTypeID(PN.getType()));
    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
    }

    uint64_t Flags = getOptimizationFlags(&I);
    if (Flags != 0)
      Vals64.push_back(Flags);

    // Emit a Vals64 vector and exit.
    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
    Vals64.clear();
    return;
  }

  case Instruction::LandingPad: {
    const LandingPadInst &LP = cast<LandingPadInst>(I);
    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
    Vals.push_back(VE.getTypeID(LP.getType()));
    Vals.push_back(LP.isCleanup());
    Vals.push_back(LP.getNumClauses());
    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
      if (LP.isCatch(I))
        Vals.push_back(LandingPadInst::Catch);
      else
        Vals.push_back(LandingPadInst::Filter);
      pushValueAndType(LP.getClause(I), InstID, Vals);
    }
    break;
  }

  case Instruction::Alloca: {
    Code = bitc::FUNC_CODE_INST_ALLOCA;
    const AllocaInst &AI = cast<AllocaInst>(I);
    Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
    unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
    assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
           "not enough bits for maximum alignment");
    assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
    AlignRecord |= AI.isUsedWithInAlloca() << 5;
    AlignRecord |= 1 << 6;
    AlignRecord |= AI.isSwiftError() << 7;
    Vals.push_back(AlignRecord);
    break;
  }

  case Instruction::Load:
    if (cast<LoadInst>(I).isAtomic()) {
      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
      pushValueAndType(I.getOperand(0), InstID, Vals);
    } else {
      Code = bitc::FUNC_CODE_INST_LOAD;
      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
    }
    Vals.push_back(VE.getTypeID(I.getType()));
    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
    Vals.push_back(cast<LoadInst>(I).isVolatile());
    if (cast<LoadInst>(I).isAtomic()) {
      Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
      Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
    }
    break;
  case Instruction::Store:
    if (cast<StoreInst>(I).isAtomic())
      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
    else
      Code = bitc::FUNC_CODE_INST_STORE;
    pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
    pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
    Vals.push_back(cast<StoreInst>(I).isVolatile());
    if (cast<StoreInst>(I).isAtomic()) {
      Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
      Vals.push_back(
          getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
    }
    break;
  case Instruction::AtomicCmpXchg:
    Code = bitc::FUNC_CODE_INST_CMPXCHG;
    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
    pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
    pushValue(I.getOperand(2), InstID, Vals);        // newval.
    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
    Vals.push_back(
        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
    Vals.push_back(
        getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
    Vals.push_back(
        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
    break;
  case Instruction::AtomicRMW:
    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
    pushValue(I.getOperand(1), InstID, Vals);        // val.
    Vals.push_back(
        getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
    Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
    Vals.push_back(
        getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
    break;
  case Instruction::Fence:
    Code = bitc::FUNC_CODE_INST_FENCE;
    Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
    Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
    break;
  case Instruction::Call: {
    const CallInst &CI = cast<CallInst>(I);
    FunctionType *FTy = CI.getFunctionType();

    if (CI.hasOperandBundles())
      writeOperandBundles(CI, InstID);

    Code = bitc::FUNC_CODE_INST_CALL;

    Vals.push_back(VE.getAttributeListID(CI.getAttributes()));

    unsigned Flags = getOptimizationFlags(&I);
    Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
                   unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
                   unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
                   1 << bitc::CALL_EXPLICIT_TYPE |
                   unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
                   unsigned(Flags != 0) << bitc::CALL_FMF);
    if (Flags != 0)
      Vals.push_back(Flags);

    Vals.push_back(VE.getTypeID(FTy));
    pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee

    // Emit value #'s for the fixed parameters.
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
      // Check for labels (can happen with asm labels).
      if (FTy->getParamType(i)->isLabelTy())
        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
      else
        pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
    }

    // Emit type/value pairs for varargs params.
    if (FTy->isVarArg()) {
      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
           i != e; ++i)
        pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
    }
    break;
  }
  case Instruction::VAArg:
    Code = bitc::FUNC_CODE_INST_VAARG;
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
    pushValue(I.getOperand(0), InstID, Vals);                   // valist.
    Vals.push_back(VE.getTypeID(I.getType())); // restype.
    break;
  case Instruction::Freeze:
    Code = bitc::FUNC_CODE_INST_FREEZE;
    pushValueAndType(I.getOperand(0), InstID, Vals);
    break;
  }

  Stream.EmitRecord(Code, Vals, AbbrevToUse);
  Vals.clear();
}

/// Write a GlobalValue VST to the module. The purpose of this data structure is
/// to allow clients to efficiently find the function body.
void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
  // Get the offset of the VST we are writing, and backpatch it into
  // the VST forward declaration record.
  uint64_t VSTOffset = Stream.GetCurrentBitNo();
  // The BitcodeStartBit was the stream offset of the identification block.
  VSTOffset -= bitcodeStartBit();
  assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
  // Note that we add 1 here because the offset is relative to one word
  // before the start of the identification block, which was historically
  // always the start of the regular bitcode header.
  Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);

  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);

  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
  unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  for (const Function &F : M) {
    uint64_t Record[2];

    if (F.isDeclaration())
      continue;

    Record[0] = VE.getValueID(&F);

    // Save the word offset of the function (from the start of the
    // actual bitcode written to the stream).
    uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
    assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
    // Note that we add 1 here because the offset is relative to one word
    // before the start of the identification block, which was historically
    // always the start of the regular bitcode header.
    Record[1] = BitcodeIndex / 32 + 1;

    Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
  }

  Stream.ExitBlock();
}

/// Emit names for arguments, instructions and basic blocks in a function.
void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
    const ValueSymbolTable &VST) {
  if (VST.empty())
    return;

  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);

  // FIXME: Set up the abbrev, we know how many values there are!
  // FIXME: We know if the type names can use 7-bit ascii.
  SmallVector<uint64_t, 64> NameVals;

  for (const ValueName &Name : VST) {
    // Figure out the encoding to use for the name.
    StringEncoding Bits = getStringEncoding(Name.getKey());

    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
    NameVals.push_back(VE.getValueID(Name.getValue()));

    // VST_CODE_ENTRY:   [valueid, namechar x N]
    // VST_CODE_BBENTRY: [bbid, namechar x N]
    unsigned Code;
    if (isa<BasicBlock>(Name.getValue())) {
      Code = bitc::VST_CODE_BBENTRY;
      if (Bits == SE_Char6)
        AbbrevToUse = VST_BBENTRY_6_ABBREV;
    } else {
      Code = bitc::VST_CODE_ENTRY;
      if (Bits == SE_Char6)
        AbbrevToUse = VST_ENTRY_6_ABBREV;
      else if (Bits == SE_Fixed7)
        AbbrevToUse = VST_ENTRY_7_ABBREV;
    }

    for (const auto P : Name.getKey())
      NameVals.push_back((unsigned char)P);

    // Emit the finished record.
    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
    NameVals.clear();
  }

  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
  unsigned Code;
  if (isa<BasicBlock>(Order.V))
    Code = bitc::USELIST_CODE_BB;
  else
    Code = bitc::USELIST_CODE_DEFAULT;

  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
  Record.push_back(VE.getValueID(Order.V));
  Stream.EmitRecord(Code, Record);
}

void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
  assert(VE.shouldPreserveUseListOrder() &&
         "Expected to be preserving use-list order");

  auto hasMore = [&]() {
    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
  };
  if (!hasMore())
    // Nothing to do.
    return;

  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  while (hasMore()) {
    writeUseList(std::move(VE.UseListOrders.back()));
    VE.UseListOrders.pop_back();
  }
  Stream.ExitBlock();
}

/// Emit a function body to the module stream.
void ModuleBitcodeWriter::writeFunction(
    const Function &F,
    DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
  // Save the bitcode index of the start of this function block for recording
  // in the VST.
  FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();

  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  VE.incorporateFunction(F);

  SmallVector<unsigned, 64> Vals;

  // Emit the number of basic blocks, so the reader can create them ahead of
  // time.
  Vals.push_back(VE.getBasicBlocks().size());
  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  Vals.clear();

  // If there are function-local constants, emit them now.
  unsigned CstStart, CstEnd;
  VE.getFunctionConstantRange(CstStart, CstEnd);
  writeConstants(CstStart, CstEnd, false);

  // If there is function-local metadata, emit it now.
  writeFunctionMetadata(F);

  // Keep a running idea of what the instruction ID is.
  unsigned InstID = CstEnd;

  bool NeedsMetadataAttachment = F.hasMetadata();

  DILocation *LastDL = nullptr;
  // Finally, emit all the instructions, in order.
  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
         I != E; ++I) {
      writeInstruction(*I, InstID, Vals);

      if (!I->getType()->isVoidTy())
        ++InstID;

      // If the instruction has metadata, write a metadata attachment later.
      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();

      // If the instruction has a debug location, emit it.
      DILocation *DL = I->getDebugLoc();
      if (!DL)
        continue;

      if (DL == LastDL) {
        // Just repeat the same debug loc as last time.
        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
        continue;
      }

      Vals.push_back(DL->getLine());
      Vals.push_back(DL->getColumn());
      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
      Vals.push_back(DL->isImplicitCode());
      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
      Vals.clear();

      LastDL = DL;
    }

  // Emit names for all the instructions etc.
  if (auto *Symtab = F.getValueSymbolTable())
    writeFunctionLevelValueSymbolTable(*Symtab);

  if (NeedsMetadataAttachment)
    writeFunctionMetadataAttachment(F);
  if (VE.shouldPreserveUseListOrder())
    writeUseListBlock(&F);
  VE.purgeFunction();
  Stream.ExitBlock();
}

// Emit blockinfo, which defines the standard abbreviations etc.
void ModuleBitcodeWriter::writeBlockInfo() {
  // We only want to emit block info records for blocks that have multiple
  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  // Other blocks can define their abbrevs inline.
  Stream.EnterBlockInfoBlock();

  { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
        VST_ENTRY_8_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }

  { // 7-bit fixed width VST_CODE_ENTRY strings.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
        VST_ENTRY_7_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // 6-bit char6 VST_CODE_ENTRY strings.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
        VST_ENTRY_6_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // 6-bit char6 VST_CODE_BBENTRY strings.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
        VST_BBENTRY_6_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }

  { // SETTYPE abbrev for CONSTANTS_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
                              VE.computeBitsRequiredForTypeIndicies()));
    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
        CONSTANTS_SETTYPE_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }

  { // INTEGER abbrev for CONSTANTS_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
        CONSTANTS_INTEGER_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }

  { // CE_CAST abbrev for CONSTANTS_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
                              VE.computeBitsRequiredForTypeIndicies()));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id

    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
        CONSTANTS_CE_CAST_Abbrev)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // NULL abbrev for CONSTANTS_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
        CONSTANTS_NULL_Abbrev)
      llvm_unreachable("Unexpected abbrev ordering!");
  }

  // FIXME: This should only use space for first class types!

  { // INST_LOAD abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
                              VE.computeBitsRequiredForTypeIndicies()));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_LOAD_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // INST_UNOP abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_UNOP_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_UNOP_FLAGS_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // INST_BINOP abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_BINOP_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_BINOP_FLAGS_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // INST_CAST abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
                              VE.computeBitsRequiredForTypeIndicies()));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_CAST_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }

  { // INST_RET abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_RET_VOID_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // INST_RET abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_RET_VAL_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_UNREACHABLE_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }
  {
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
                              Log2_32_Ceil(VE.getTypes().size() + 1)));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
        FUNCTION_INST_GEP_ABBREV)
      llvm_unreachable("Unexpected abbrev ordering!");
  }

  Stream.ExitBlock();
}

/// Write the module path strings, currently only used when generating
/// a combined index file.
void IndexBitcodeWriter::writeModStrings() {
  Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);

  // TODO: See which abbrev sizes we actually need to emit

  // 8-bit fixed-width MST_ENTRY strings.
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));

  // 7-bit fixed width MST_ENTRY strings.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));

  // 6-bit char6 MST_ENTRY strings.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));

  // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));

  SmallVector<unsigned, 64> Vals;
  forEachModule(
      [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
        StringRef Key = MPSE.getKey();
        const auto &Value = MPSE.getValue();
        StringEncoding Bits = getStringEncoding(Key);
        unsigned AbbrevToUse = Abbrev8Bit;
        if (Bits == SE_Char6)
          AbbrevToUse = Abbrev6Bit;
        else if (Bits == SE_Fixed7)
          AbbrevToUse = Abbrev7Bit;

        Vals.push_back(Value.first);
        Vals.append(Key.begin(), Key.end());

        // Emit the finished record.
        Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);

        // Emit an optional hash for the module now
        const auto &Hash = Value.second;
        if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
          Vals.assign(Hash.begin(), Hash.end());
          // Emit the hash record.
          Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
        }

        Vals.clear();
      });
  Stream.ExitBlock();
}

/// Write the function type metadata related records that need to appear before
/// a function summary entry (whether per-module or combined).
static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
                                             FunctionSummary *FS) {
  if (!FS->type_tests().empty())
    Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());

  SmallVector<uint64_t, 64> Record;

  auto WriteVFuncIdVec = [&](uint64_t Ty,
                             ArrayRef<FunctionSummary::VFuncId> VFs) {
    if (VFs.empty())
      return;
    Record.clear();
    for (auto &VF : VFs) {
      Record.push_back(VF.GUID);
      Record.push_back(VF.Offset);
    }
    Stream.EmitRecord(Ty, Record);
  };

  WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
                  FS->type_test_assume_vcalls());
  WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
                  FS->type_checked_load_vcalls());

  auto WriteConstVCallVec = [&](uint64_t Ty,
                                ArrayRef<FunctionSummary::ConstVCall> VCs) {
    for (auto &VC : VCs) {
      Record.clear();
      Record.push_back(VC.VFunc.GUID);
      Record.push_back(VC.VFunc.Offset);
      Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
      Stream.EmitRecord(Ty, Record);
    }
  };

  WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
                     FS->type_test_assume_const_vcalls());
  WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
                     FS->type_checked_load_const_vcalls());

  auto WriteRange = [&](ConstantRange Range) {
    Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
    assert(Range.getLower().getNumWords() == 1);
    assert(Range.getUpper().getNumWords() == 1);
    emitSignedInt64(Record, *Range.getLower().getRawData());
    emitSignedInt64(Record, *Range.getUpper().getRawData());
  };

  if (!FS->paramAccesses().empty()) {
    Record.clear();
    for (auto &Arg : FS->paramAccesses()) {
      Record.push_back(Arg.ParamNo);
      WriteRange(Arg.Use);
      Record.push_back(Arg.Calls.size());
      for (auto &Call : Arg.Calls) {
        Record.push_back(Call.ParamNo);
        Record.push_back(Call.Callee);
        WriteRange(Call.Offsets);
      }
    }
    Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
  }
}

/// Collect type IDs from type tests used by function.
static void
getReferencedTypeIds(FunctionSummary *FS,
                     std::set<GlobalValue::GUID> &ReferencedTypeIds) {
  if (!FS->type_tests().empty())
    for (auto &TT : FS->type_tests())
      ReferencedTypeIds.insert(TT);

  auto GetReferencedTypesFromVFuncIdVec =
      [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
        for (auto &VF : VFs)
          ReferencedTypeIds.insert(VF.GUID);
      };

  GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
  GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());

  auto GetReferencedTypesFromConstVCallVec =
      [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
        for (auto &VC : VCs)
          ReferencedTypeIds.insert(VC.VFunc.GUID);
      };

  GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
  GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
}

static void writeWholeProgramDevirtResolutionByArg(
    SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
    const WholeProgramDevirtResolution::ByArg &ByArg) {
  NameVals.push_back(args.size());
  NameVals.insert(NameVals.end(), args.begin(), args.end());

  NameVals.push_back(ByArg.TheKind);
  NameVals.push_back(ByArg.Info);
  NameVals.push_back(ByArg.Byte);
  NameVals.push_back(ByArg.Bit);
}

static void writeWholeProgramDevirtResolution(
    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
    uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
  NameVals.push_back(Id);

  NameVals.push_back(Wpd.TheKind);
  NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
  NameVals.push_back(Wpd.SingleImplName.size());

  NameVals.push_back(Wpd.ResByArg.size());
  for (auto &A : Wpd.ResByArg)
    writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
}

static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
                                     StringTableBuilder &StrtabBuilder,
                                     const std::string &Id,
                                     const TypeIdSummary &Summary) {
  NameVals.push_back(StrtabBuilder.add(Id));
  NameVals.push_back(Id.size());

  NameVals.push_back(Summary.TTRes.TheKind);
  NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
  NameVals.push_back(Summary.TTRes.AlignLog2);
  NameVals.push_back(Summary.TTRes.SizeM1);
  NameVals.push_back(Summary.TTRes.BitMask);
  NameVals.push_back(Summary.TTRes.InlineBits);

  for (auto &W : Summary.WPDRes)
    writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
                                      W.second);
}

static void writeTypeIdCompatibleVtableSummaryRecord(
    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
    const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
    ValueEnumerator &VE) {
  NameVals.push_back(StrtabBuilder.add(Id));
  NameVals.push_back(Id.size());

  for (auto &P : Summary) {
    NameVals.push_back(P.AddressPointOffset);
    NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
  }
}

// Helper to emit a single function summary record.
void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
    SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
    unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
    const Function &F) {
  NameVals.push_back(ValueID);

  FunctionSummary *FS = cast<FunctionSummary>(Summary);
  writeFunctionTypeMetadataRecords(Stream, FS);

  auto SpecialRefCnts = FS->specialRefCounts();
  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
  NameVals.push_back(FS->instCount());
  NameVals.push_back(getEncodedFFlags(FS->fflags()));
  NameVals.push_back(FS->refs().size());
  NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
  NameVals.push_back(SpecialRefCnts.second); // worefcnt

  for (auto &RI : FS->refs())
    NameVals.push_back(VE.getValueID(RI.getValue()));

  bool HasProfileData =
      F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
  for (auto &ECI : FS->calls()) {
    NameVals.push_back(getValueId(ECI.first));
    if (HasProfileData)
      NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
    else if (WriteRelBFToSummary)
      NameVals.push_back(ECI.second.RelBlockFreq);
  }

  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
  unsigned Code =
      (HasProfileData ? bitc::FS_PERMODULE_PROFILE
                      : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
                                             : bitc::FS_PERMODULE));

  // Emit the finished record.
  Stream.EmitRecord(Code, NameVals, FSAbbrev);
  NameVals.clear();
}

// Collect the global value references in the given variable's initializer,
// and emit them in a summary record.
void ModuleBitcodeWriterBase::writeModuleLevelReferences(
    const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
    unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
  auto VI = Index->getValueInfo(V.getGUID());
  if (!VI || VI.getSummaryList().empty()) {
    // Only declarations should not have a summary (a declaration might however
    // have a summary if the def was in module level asm).
    assert(V.isDeclaration());
    return;
  }
  auto *Summary = VI.getSummaryList()[0].get();
  NameVals.push_back(VE.getValueID(&V));
  GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));

  auto VTableFuncs = VS->vTableFuncs();
  if (!VTableFuncs.empty())
    NameVals.push_back(VS->refs().size());

  unsigned SizeBeforeRefs = NameVals.size();
  for (auto &RI : VS->refs())
    NameVals.push_back(VE.getValueID(RI.getValue()));
  // Sort the refs for determinism output, the vector returned by FS->refs() has
  // been initialized from a DenseSet.
  llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());

  if (VTableFuncs.empty())
    Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
                      FSModRefsAbbrev);
  else {
    // VTableFuncs pairs should already be sorted by offset.
    for (auto &P : VTableFuncs) {
      NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
      NameVals.push_back(P.VTableOffset);
    }

    Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
                      FSModVTableRefsAbbrev);
  }
  NameVals.clear();
}

/// Emit the per-module summary section alongside the rest of
/// the module's bitcode.
void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
  // By default we compile with ThinLTO if the module has a summary, but the
  // client can request full LTO with a module flag.
  bool IsThinLTO = true;
  if (auto *MD =
          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
    IsThinLTO = MD->getZExtValue();
  Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
                                 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
                       4);

  Stream.EmitRecord(
      bitc::FS_VERSION,
      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});

  // Write the index flags.
  uint64_t Flags = 0;
  // Bits 1-3 are set only in the combined index, skip them.
  if (Index->enableSplitLTOUnit())
    Flags |= 0x8;
  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});

  if (Index->begin() == Index->end()) {
    Stream.ExitBlock();
    return;
  }

  for (const auto &GVI : valueIds()) {
    Stream.EmitRecord(bitc::FS_VALUE_GUID,
                      ArrayRef<uint64_t>{GVI.second, GVI.first});
  }

  // Abbrev for FS_PERMODULE_PROFILE.
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
  // numrefs x valueid, n x (valueid, hotness)
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
  Abbv = std::make_shared<BitCodeAbbrev>();
  if (WriteRelBFToSummary)
    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
  else
    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
  // numrefs x valueid, n x (valueid [, rel_block_freq])
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
  // numrefs x valueid, n x (valueid , offset)
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_ALIAS.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_TYPE_ID_METADATA
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
  // n x (valueid , offset)
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  SmallVector<uint64_t, 64> NameVals;
  // Iterate over the list of functions instead of the Index to
  // ensure the ordering is stable.
  for (const Function &F : M) {
    // Summary emission does not support anonymous functions, they have to
    // renamed using the anonymous function renaming pass.
    if (!F.hasName())
      report_fatal_error("Unexpected anonymous function when writing summary");

    ValueInfo VI = Index->getValueInfo(F.getGUID());
    if (!VI || VI.getSummaryList().empty()) {
      // Only declarations should not have a summary (a declaration might
      // however have a summary if the def was in module level asm).
      assert(F.isDeclaration());
      continue;
    }
    auto *Summary = VI.getSummaryList()[0].get();
    writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
                                        FSCallsAbbrev, FSCallsProfileAbbrev, F);
  }

  // Capture references from GlobalVariable initializers, which are outside
  // of a function scope.
  for (const GlobalVariable &G : M.globals())
    writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
                               FSModVTableRefsAbbrev);

  for (const GlobalAlias &A : M.aliases()) {
    auto *Aliasee = A.getBaseObject();
    if (!Aliasee->hasName())
      // Nameless function don't have an entry in the summary, skip it.
      continue;
    auto AliasId = VE.getValueID(&A);
    auto AliaseeId = VE.getValueID(Aliasee);
    NameVals.push_back(AliasId);
    auto *Summary = Index->getGlobalValueSummary(A);
    AliasSummary *AS = cast<AliasSummary>(Summary);
    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
    NameVals.push_back(AliaseeId);
    Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
    NameVals.clear();
  }

  for (auto &S : Index->typeIdCompatibleVtableMap()) {
    writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
                                             S.second, VE);
    Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
                      TypeIdCompatibleVtableAbbrev);
    NameVals.clear();
  }

  Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
                    ArrayRef<uint64_t>{Index->getBlockCount()});

  Stream.ExitBlock();
}

/// Emit the combined summary section into the combined index file.
void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
  Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
  Stream.EmitRecord(
      bitc::FS_VERSION,
      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});

  // Write the index flags.
  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});

  for (const auto &GVI : valueIds()) {
    Stream.EmitRecord(bitc::FS_VALUE_GUID,
                      ArrayRef<uint64_t>{GVI.second, GVI.first});
  }

  // Abbrev for FS_COMBINED.
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
  // numrefs x valueid, n x (valueid)
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_COMBINED_PROFILE.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
  // numrefs x valueid, n x (valueid, hotness)
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // Abbrev for FS_COMBINED_ALIAS.
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));

  // The aliases are emitted as a post-pass, and will point to the value
  // id of the aliasee. Save them in a vector for post-processing.
  SmallVector<AliasSummary *, 64> Aliases;

  // Save the value id for each summary for alias emission.
  DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;

  SmallVector<uint64_t, 64> NameVals;

  // Set that will be populated during call to writeFunctionTypeMetadataRecords
  // with the type ids referenced by this index file.
  std::set<GlobalValue::GUID> ReferencedTypeIds;

  // For local linkage, we also emit the original name separately
  // immediately after the record.
  auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
    if (!GlobalValue::isLocalLinkage(S.linkage()))
      return;
    NameVals.push_back(S.getOriginalName());
    Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
    NameVals.clear();
  };

  std::set<GlobalValue::GUID> DefOrUseGUIDs;
  forEachSummary([&](GVInfo I, bool IsAliasee) {
    GlobalValueSummary *S = I.second;
    assert(S);
    DefOrUseGUIDs.insert(I.first);
    for (const ValueInfo &VI : S->refs())
      DefOrUseGUIDs.insert(VI.getGUID());

    auto ValueId = getValueId(I.first);
    assert(ValueId);
    SummaryToValueIdMap[S] = *ValueId;

    // If this is invoked for an aliasee, we want to record the above
    // mapping, but then not emit a summary entry (if the aliasee is
    // to be imported, we will invoke this separately with IsAliasee=false).
    if (IsAliasee)
      return;

    if (auto *AS = dyn_cast<AliasSummary>(S)) {
      // Will process aliases as a post-pass because the reader wants all
      // global to be loaded first.
      Aliases.push_back(AS);
      return;
    }

    if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
      NameVals.push_back(*ValueId);
      NameVals.push_back(Index.getModuleId(VS->modulePath()));
      NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
      NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
      for (auto &RI : VS->refs()) {
        auto RefValueId = getValueId(RI.getGUID());
        if (!RefValueId)
          continue;
        NameVals.push_back(*RefValueId);
      }

      // Emit the finished record.
      Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
                        FSModRefsAbbrev);
      NameVals.clear();
      MaybeEmitOriginalName(*S);
      return;
    }

    auto *FS = cast<FunctionSummary>(S);
    writeFunctionTypeMetadataRecords(Stream, FS);
    getReferencedTypeIds(FS, ReferencedTypeIds);

    NameVals.push_back(*ValueId);
    NameVals.push_back(Index.getModuleId(FS->modulePath()));
    NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
    NameVals.push_back(FS->instCount());
    NameVals.push_back(getEncodedFFlags(FS->fflags()));
    NameVals.push_back(FS->entryCount());

    // Fill in below
    NameVals.push_back(0); // numrefs
    NameVals.push_back(0); // rorefcnt
    NameVals.push_back(0); // worefcnt

    unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
    for (auto &RI : FS->refs()) {
      auto RefValueId = getValueId(RI.getGUID());
      if (!RefValueId)
        continue;
      NameVals.push_back(*RefValueId);
      if (RI.isReadOnly())
        RORefCnt++;
      else if (RI.isWriteOnly())
        WORefCnt++;
      Count++;
    }
    NameVals[6] = Count;
    NameVals[7] = RORefCnt;
    NameVals[8] = WORefCnt;

    bool HasProfileData = false;
    for (auto &EI : FS->calls()) {
      HasProfileData |=
          EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
      if (HasProfileData)
        break;
    }

    for (auto &EI : FS->calls()) {
      // If this GUID doesn't have a value id, it doesn't have a function
      // summary and we don't need to record any calls to it.
      GlobalValue::GUID GUID = EI.first.getGUID();
      auto CallValueId = getValueId(GUID);
      if (!CallValueId) {
        // For SamplePGO, the indirect call targets for local functions will
        // have its original name annotated in profile. We try to find the
        // corresponding PGOFuncName as the GUID.
        GUID = Index.getGUIDFromOriginalID(GUID);
        if (GUID == 0)
          continue;
        CallValueId = getValueId(GUID);
        if (!CallValueId)
          continue;
        // The mapping from OriginalId to GUID may return a GUID
        // that corresponds to a static variable. Filter it out here.
        // This can happen when
        // 1) There is a call to a library function which does not have
        // a CallValidId;
        // 2) There is a static variable with the  OriginalGUID identical
        // to the GUID of the library function in 1);
        // When this happens, the logic for SamplePGO kicks in and
        // the static variable in 2) will be found, which needs to be
        // filtered out.
        auto *GVSum = Index.getGlobalValueSummary(GUID, false);
        if (GVSum &&
            GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
          continue;
      }
      NameVals.push_back(*CallValueId);
      if (HasProfileData)
        NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
    }

    unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
    unsigned Code =
        (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);

    // Emit the finished record.
    Stream.EmitRecord(Code, NameVals, FSAbbrev);
    NameVals.clear();
    MaybeEmitOriginalName(*S);
  });

  for (auto *AS : Aliases) {
    auto AliasValueId = SummaryToValueIdMap[AS];
    assert(AliasValueId);
    NameVals.push_back(AliasValueId);
    NameVals.push_back(Index.getModuleId(AS->modulePath()));
    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
    auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
    assert(AliaseeValueId);
    NameVals.push_back(AliaseeValueId);

    // Emit the finished record.
    Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
    NameVals.clear();
    MaybeEmitOriginalName(*AS);

    if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
      getReferencedTypeIds(FS, ReferencedTypeIds);
  }

  if (!Index.cfiFunctionDefs().empty()) {
    for (auto &S : Index.cfiFunctionDefs()) {
      if (DefOrUseGUIDs.count(
              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
        NameVals.push_back(StrtabBuilder.add(S));
        NameVals.push_back(S.size());
      }
    }
    if (!NameVals.empty()) {
      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
      NameVals.clear();
    }
  }

  if (!Index.cfiFunctionDecls().empty()) {
    for (auto &S : Index.cfiFunctionDecls()) {
      if (DefOrUseGUIDs.count(
              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
        NameVals.push_back(StrtabBuilder.add(S));
        NameVals.push_back(S.size());
      }
    }
    if (!NameVals.empty()) {
      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
      NameVals.clear();
    }
  }

  // Walk the GUIDs that were referenced, and write the
  // corresponding type id records.
  for (auto &T : ReferencedTypeIds) {
    auto TidIter = Index.typeIds().equal_range(T);
    for (auto It = TidIter.first; It != TidIter.second; ++It) {
      writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
                               It->second.second);
      Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
      NameVals.clear();
    }
  }

  Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
                    ArrayRef<uint64_t>{Index.getBlockCount()});

  Stream.ExitBlock();
}

/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
/// current llvm version, and a record for the epoch number.
static void writeIdentificationBlock(BitstreamWriter &Stream) {
  Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);

  // Write the "user readable" string identifying the bitcode producer
  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
                    "LLVM" LLVM_VERSION_STRING, StringAbbrev);

  // Write the epoch version
  Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
  Stream.ExitBlock();
}

void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
  // Emit the module's hash.
  // MODULE_CODE_HASH: [5*i32]
  if (GenerateHash) {
    uint32_t Vals[5];
    Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
                                    Buffer.size() - BlockStartPos));
    StringRef Hash = Hasher.result();
    for (int Pos = 0; Pos < 20; Pos += 4) {
      Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
    }

    // Emit the finished record.
    Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);

    if (ModHash)
      // Save the written hash value.
      llvm::copy(Vals, std::begin(*ModHash));
  }
}

void ModuleBitcodeWriter::write() {
  writeIdentificationBlock(Stream);

  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  size_t BlockStartPos = Buffer.size();

  writeModuleVersion();

  // Emit blockinfo, which defines the standard abbreviations etc.
  writeBlockInfo();

  // Emit information describing all of the types in the module.
  writeTypeTable();

  // Emit information about attribute groups.
  writeAttributeGroupTable();

  // Emit information about parameter attributes.
  writeAttributeTable();

  writeComdats();

  // Emit top-level description of module, including target triple, inline asm,
  // descriptors for global variables, and function prototype info.
  writeModuleInfo();

  // Emit constants.
  writeModuleConstants();

  // Emit metadata kind names.
  writeModuleMetadataKinds();

  // Emit metadata.
  writeModuleMetadata();

  // Emit module-level use-lists.
  if (VE.shouldPreserveUseListOrder())
    writeUseListBlock(nullptr);

  writeOperandBundleTags();
  writeSyncScopeNames();

  // Emit function bodies.
  DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
  for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
    if (!F->isDeclaration())
      writeFunction(*F, FunctionToBitcodeIndex);

  // Need to write after the above call to WriteFunction which populates
  // the summary information in the index.
  if (Index)
    writePerModuleGlobalValueSummary();

  writeGlobalValueSymbolTable(FunctionToBitcodeIndex);

  writeModuleHash(BlockStartPos);

  Stream.ExitBlock();
}

static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
                               uint32_t &Position) {
  support::endian::write32le(&Buffer[Position], Value);
  Position += 4;
}

/// If generating a bc file on darwin, we have to emit a
/// header and trailer to make it compatible with the system archiver.  To do
/// this we emit the following header, and then emit a trailer that pads the
/// file out to be a multiple of 16 bytes.
///
/// struct bc_header {
///   uint32_t Magic;         // 0x0B17C0DE
///   uint32_t Version;       // Version, currently always 0.
///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
///   uint32_t CPUType;       // CPU specifier.
///   ... potentially more later ...
/// };
static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
                                         const Triple &TT) {
  unsigned CPUType = ~0U;

  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
  // specific constants here because they are implicitly part of the Darwin ABI.
  enum {
    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
    DARWIN_CPU_TYPE_X86        = 7,
    DARWIN_CPU_TYPE_ARM        = 12,
    DARWIN_CPU_TYPE_POWERPC    = 18
  };

  Triple::ArchType Arch = TT.getArch();
  if (Arch == Triple::x86_64)
    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  else if (Arch == Triple::x86)
    CPUType = DARWIN_CPU_TYPE_X86;
  else if (Arch == Triple::ppc)
    CPUType = DARWIN_CPU_TYPE_POWERPC;
  else if (Arch == Triple::ppc64)
    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  else if (Arch == Triple::arm || Arch == Triple::thumb)
    CPUType = DARWIN_CPU_TYPE_ARM;

  // Traditional Bitcode starts after header.
  assert(Buffer.size() >= BWH_HeaderSize &&
         "Expected header size to be reserved");
  unsigned BCOffset = BWH_HeaderSize;
  unsigned BCSize = Buffer.size() - BWH_HeaderSize;

  // Write the magic and version.
  unsigned Position = 0;
  writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
  writeInt32ToBuffer(0, Buffer, Position); // Version.
  writeInt32ToBuffer(BCOffset, Buffer, Position);
  writeInt32ToBuffer(BCSize, Buffer, Position);
  writeInt32ToBuffer(CPUType, Buffer, Position);

  // If the file is not a multiple of 16 bytes, insert dummy padding.
  while (Buffer.size() & 15)
    Buffer.push_back(0);
}

/// Helper to write the header common to all bitcode files.
static void writeBitcodeHeader(BitstreamWriter &Stream) {
  // Emit the file header.
  Stream.Emit((unsigned)'B', 8);
  Stream.Emit((unsigned)'C', 8);
  Stream.Emit(0x0, 4);
  Stream.Emit(0xC, 4);
  Stream.Emit(0xE, 4);
  Stream.Emit(0xD, 4);
}

BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
    : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
  writeBitcodeHeader(*Stream);
}

BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }

void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
  Stream->EnterSubblock(Block, 3);

  auto Abbv = std::make_shared<BitCodeAbbrev>();
  Abbv->Add(BitCodeAbbrevOp(Record));
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));

  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);

  Stream->ExitBlock();
}

void BitcodeWriter::writeSymtab() {
  assert(!WroteStrtab && !WroteSymtab);

  // If any module has module-level inline asm, we will require a registered asm
  // parser for the target so that we can create an accurate symbol table for
  // the module.
  for (Module *M : Mods) {
    if (M->getModuleInlineAsm().empty())
      continue;

    std::string Err;
    const Triple TT(M->getTargetTriple());
    const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
    if (!T || !T->hasMCAsmParser())
      return;
  }

  WroteSymtab = true;
  SmallVector<char, 0> Symtab;
  // The irsymtab::build function may be unable to create a symbol table if the
  // module is malformed (e.g. it contains an invalid alias). Writing a symbol
  // table is not required for correctness, but we still want to be able to
  // write malformed modules to bitcode files, so swallow the error.
  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
    consumeError(std::move(E));
    return;
  }

  writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
            {Symtab.data(), Symtab.size()});
}

void BitcodeWriter::writeStrtab() {
  assert(!WroteStrtab);

  std::vector<char> Strtab;
  StrtabBuilder.finalizeInOrder();
  Strtab.resize(StrtabBuilder.getSize());
  StrtabBuilder.write((uint8_t *)Strtab.data());

  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
            {Strtab.data(), Strtab.size()});

  WroteStrtab = true;
}

void BitcodeWriter::copyStrtab(StringRef Strtab) {
  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
  WroteStrtab = true;
}

void BitcodeWriter::writeModule(const Module &M,
                                bool ShouldPreserveUseListOrder,
                                const ModuleSummaryIndex *Index,
                                bool GenerateHash, ModuleHash *ModHash) {
  assert(!WroteStrtab);

  // The Mods vector is used by irsymtab::build, which requires non-const
  // Modules in case it needs to materialize metadata. But the bitcode writer
  // requires that the module is materialized, so we can cast to non-const here,
  // after checking that it is in fact materialized.
  assert(M.isMaterialized());
  Mods.push_back(const_cast<Module *>(&M));

  ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
                                   ShouldPreserveUseListOrder, Index,
                                   GenerateHash, ModHash);
  ModuleWriter.write();
}

void BitcodeWriter::writeIndex(
    const ModuleSummaryIndex *Index,
    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
  IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
                                 ModuleToSummariesForIndex);
  IndexWriter.write();
}

/// Write the specified module to the specified output stream.
void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
                              bool ShouldPreserveUseListOrder,
                              const ModuleSummaryIndex *Index,
                              bool GenerateHash, ModuleHash *ModHash) {
  SmallVector<char, 0> Buffer;
  Buffer.reserve(256*1024);

  // If this is darwin or another generic macho target, reserve space for the
  // header.
  Triple TT(M.getTargetTriple());
  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
    Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);

  BitcodeWriter Writer(Buffer);
  Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
                     ModHash);
  Writer.writeSymtab();
  Writer.writeStrtab();

  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
    emitDarwinBCHeaderAndTrailer(Buffer, TT);

  // Write the generated bitstream to "Out".
  Out.write((char*)&Buffer.front(), Buffer.size());
}

void IndexBitcodeWriter::write() {
  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);

  writeModuleVersion();

  // Write the module paths in the combined index.
  writeModStrings();

  // Write the summary combined index records.
  writeCombinedGlobalValueSummary();

  Stream.ExitBlock();
}

// Write the specified module summary index to the given raw output stream,
// where it will be written in a new bitcode block. This is used when
// writing the combined index file for ThinLTO. When writing a subset of the
// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
void llvm::WriteIndexToFile(
    const ModuleSummaryIndex &Index, raw_ostream &Out,
    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
  SmallVector<char, 0> Buffer;
  Buffer.reserve(256 * 1024);

  BitcodeWriter Writer(Buffer);
  Writer.writeIndex(&Index, ModuleToSummariesForIndex);
  Writer.writeStrtab();

  Out.write((char *)&Buffer.front(), Buffer.size());
}

namespace {

/// Class to manage the bitcode writing for a thin link bitcode file.
class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
  /// ModHash is for use in ThinLTO incremental build, generated while writing
  /// the module bitcode file.
  const ModuleHash *ModHash;

public:
  ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
                        BitstreamWriter &Stream,
                        const ModuleSummaryIndex &Index,
                        const ModuleHash &ModHash)
      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
                                /*ShouldPreserveUseListOrder=*/false, &Index),
        ModHash(&ModHash) {}

  void write();

private:
  void writeSimplifiedModuleInfo();
};

} // end anonymous namespace

// This function writes a simpilified module info for thin link bitcode file.
// It only contains the source file name along with the name(the offset and
// size in strtab) and linkage for global values. For the global value info
// entry, in order to keep linkage at offset 5, there are three zeros used
// as padding.
void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
  SmallVector<unsigned, 64> Vals;
  // Emit the module's source file name.
  {
    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
    if (Bits == SE_Char6)
      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
    else if (Bits == SE_Fixed7)
      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);

    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
    auto Abbv = std::make_shared<BitCodeAbbrev>();
    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    Abbv->Add(AbbrevOpToUse);
    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));

    for (const auto P : M.getSourceFileName())
      Vals.push_back((unsigned char)P);

    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
    Vals.clear();
  }

  // Emit the global variable information.
  for (const GlobalVariable &GV : M.globals()) {
    // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
    Vals.push_back(StrtabBuilder.add(GV.getName()));
    Vals.push_back(GV.getName().size());
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(getEncodedLinkage(GV));

    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
    Vals.clear();
  }

  // Emit the function proto information.
  for (const Function &F : M) {
    // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
    Vals.push_back(StrtabBuilder.add(F.getName()));
    Vals.push_back(F.getName().size());
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(getEncodedLinkage(F));

    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
    Vals.clear();
  }

  // Emit the alias information.
  for (const GlobalAlias &A : M.aliases()) {
    // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
    Vals.push_back(StrtabBuilder.add(A.getName()));
    Vals.push_back(A.getName().size());
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(getEncodedLinkage(A));

    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
    Vals.clear();
  }

  // Emit the ifunc information.
  for (const GlobalIFunc &I : M.ifuncs()) {
    // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
    Vals.push_back(StrtabBuilder.add(I.getName()));
    Vals.push_back(I.getName().size());
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(0);
    Vals.push_back(getEncodedLinkage(I));

    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
    Vals.clear();
  }
}

void ThinLinkBitcodeWriter::write() {
  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);

  writeModuleVersion();

  writeSimplifiedModuleInfo();

  writePerModuleGlobalValueSummary();

  // Write module hash.
  Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));

  Stream.ExitBlock();
}

void BitcodeWriter::writeThinLinkBitcode(const Module &M,
                                         const ModuleSummaryIndex &Index,
                                         const ModuleHash &ModHash) {
  assert(!WroteStrtab);

  // The Mods vector is used by irsymtab::build, which requires non-const
  // Modules in case it needs to materialize metadata. But the bitcode writer
  // requires that the module is materialized, so we can cast to non-const here,
  // after checking that it is in fact materialized.
  assert(M.isMaterialized());
  Mods.push_back(const_cast<Module *>(&M));

  ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
                                       ModHash);
  ThinLinkWriter.write();
}

// Write the specified thin link bitcode file to the given raw output stream,
// where it will be written in a new bitcode block. This is used when
// writing the per-module index file for ThinLTO.
void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
                                      const ModuleSummaryIndex &Index,
                                      const ModuleHash &ModHash) {
  SmallVector<char, 0> Buffer;
  Buffer.reserve(256 * 1024);

  BitcodeWriter Writer(Buffer);
  Writer.writeThinLinkBitcode(M, Index, ModHash);
  Writer.writeSymtab();
  Writer.writeStrtab();

  Out.write((char *)&Buffer.front(), Buffer.size());
}

static const char *getSectionNameForBitcode(const Triple &T) {
  switch (T.getObjectFormat()) {
  case Triple::MachO:
    return "__LLVM,__bitcode";
  case Triple::COFF:
  case Triple::ELF:
  case Triple::Wasm:
  case Triple::UnknownObjectFormat:
    return ".llvmbc";
  case Triple::XCOFF:
    llvm_unreachable("XCOFF is not yet implemented");
    break;
  }
  llvm_unreachable("Unimplemented ObjectFormatType");
}

static const char *getSectionNameForCommandline(const Triple &T) {
  switch (T.getObjectFormat()) {
  case Triple::MachO:
    return "__LLVM,__cmdline";
  case Triple::COFF:
  case Triple::ELF:
  case Triple::Wasm:
  case Triple::UnknownObjectFormat:
    return ".llvmcmd";
  case Triple::XCOFF:
    llvm_unreachable("XCOFF is not yet implemented");
    break;
  }
  llvm_unreachable("Unimplemented ObjectFormatType");
}

void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
                                bool EmbedBitcode, bool EmbedMarker,
                                const std::vector<uint8_t> *CmdArgs) {
  // Save llvm.compiler.used and remove it.
  SmallVector<Constant *, 2> UsedArray;
  SmallPtrSet<GlobalValue *, 4> UsedGlobals;
  Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
  GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
  for (auto *GV : UsedGlobals) {
    if (GV->getName() != "llvm.embedded.module" &&
        GV->getName() != "llvm.cmdline")
      UsedArray.push_back(
          ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
  }
  if (Used)
    Used->eraseFromParent();

  // Embed the bitcode for the llvm module.
  std::string Data;
  ArrayRef<uint8_t> ModuleData;
  Triple T(M.getTargetTriple());
  // Create a constant that contains the bitcode.
  // In case of embedding a marker, ignore the input Buf and use the empty
  // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
  if (EmbedBitcode) {
    if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
                   (const unsigned char *)Buf.getBufferEnd())) {
      // If the input is LLVM Assembly, bitcode is produced by serializing
      // the module. Use-lists order need to be preserved in this case.
      llvm::raw_string_ostream OS(Data);
      llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
      ModuleData =
          ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
    } else
      // If the input is LLVM bitcode, write the input byte stream directly.
      ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
                                     Buf.getBufferSize());
  }
  llvm::Constant *ModuleConstant =
      llvm::ConstantDataArray::get(M.getContext(), ModuleData);
  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
      M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
      ModuleConstant);
  GV->setSection(getSectionNameForBitcode(T));
  UsedArray.push_back(
      ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
  if (llvm::GlobalVariable *Old =
          M.getGlobalVariable("llvm.embedded.module", true)) {
    assert(Old->hasOneUse() &&
           "llvm.embedded.module can only be used once in llvm.compiler.used");
    GV->takeName(Old);
    Old->eraseFromParent();
  } else {
    GV->setName("llvm.embedded.module");
  }

  // Skip if only bitcode needs to be embedded.
  if (EmbedMarker) {
    // Embed command-line options.
    ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()),
                              CmdArgs->size());
    llvm::Constant *CmdConstant =
        llvm::ConstantDataArray::get(M.getContext(), CmdData);
    GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
                                  llvm::GlobalValue::PrivateLinkage,
                                  CmdConstant);
    GV->setSection(getSectionNameForCommandline(T));
    UsedArray.push_back(
        ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
    if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
      assert(Old->hasOneUse() &&
             "llvm.cmdline can only be used once in llvm.compiler.used");
      GV->takeName(Old);
      Old->eraseFromParent();
    } else {
      GV->setName("llvm.cmdline");
    }
  }

  if (UsedArray.empty())
    return;

  // Recreate llvm.compiler.used.
  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
  auto *NewUsed = new GlobalVariable(
      M, ATy, false, llvm::GlobalValue::AppendingLinkage,
      llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
  NewUsed->setSection("llvm.metadata");
}