TargetTransformInfo.cpp 48.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "tti"

static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
                                     cl::Hidden,
                                     cl::desc("Recognize reduction patterns."));

namespace {
/// No-op implementation of the TTI interface using the utility base
/// classes.
///
/// This is used when no target specific information is available.
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
  explicit NoTTIImpl(const DataLayout &DL)
      : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
};
} // namespace

bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
  // If the loop has irreducible control flow, it can not be converted to
  // Hardware loop.
  LoopBlocksRPO RPOT(L);
  RPOT.perform(&LI);
  if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
    return false;
  return true;
}

IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) :
    II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) {

 FunctionType *FTy = I.getCalledFunction()->getFunctionType();
 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end());
 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
   FMF = FPMO->getFastMathFlags();
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
                                                 const CallBase &CI) :
  II(dyn_cast<IntrinsicInst>(&CI)),  RetTy(CI.getType()), IID(Id) {

  if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
    FMF = FPMO->getFastMathFlags();

  FunctionType *FTy =
    CI.getCalledFunction()->getFunctionType();
  ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
                                                 const CallBase &CI,
                                                 unsigned Factor) :
    RetTy(CI.getType()), IID(Id), VF(Factor) {

  if (auto *FPMO = dyn_cast<FPMathOperator>(&CI))
    FMF = FPMO->getFastMathFlags();

  Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
  FunctionType *FTy =
    CI.getCalledFunction()->getFunctionType();
  ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
                                                 const CallBase &CI,
                                                 unsigned Factor,
                                                 unsigned ScalarCost) :
    RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) {

  if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
    FMF = FPMO->getFastMathFlags();

  Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
  FunctionType *FTy =
    CI.getCalledFunction()->getFunctionType();
  ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
                                                 ArrayRef<Type *> Tys,
                                                 FastMathFlags Flags) :
    RetTy(RTy), IID(Id), FMF(Flags) {
  ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
                                                 ArrayRef<Type *> Tys,
                                                 FastMathFlags Flags,
                                                 unsigned ScalarCost) :
    RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
  ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
                                                 ArrayRef<Type *> Tys,
                                                 FastMathFlags Flags,
                                                 unsigned ScalarCost,
                                                 const IntrinsicInst *I) :
    II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
  ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
                                                 ArrayRef<Type *> Tys) :
    RetTy(RTy), IID(Id) {
  ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}

IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
                                                 ArrayRef<const Value *> Args)
    : RetTy(Ty), IID(Id) {

  Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
  ParamTys.reserve(Arguments.size());
  for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
    ParamTys.push_back(Arguments[Idx]->getType());
}

bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
                                               LoopInfo &LI, DominatorTree &DT,
                                               bool ForceNestedLoop,
                                               bool ForceHardwareLoopPHI) {
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  for (BasicBlock *BB : ExitingBlocks) {
    // If we pass the updated counter back through a phi, we need to know
    // which latch the updated value will be coming from.
    if (!L->isLoopLatch(BB)) {
      if (ForceHardwareLoopPHI || CounterInReg)
        continue;
    }

    const SCEV *EC = SE.getExitCount(L, BB);
    if (isa<SCEVCouldNotCompute>(EC))
      continue;
    if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
      if (ConstEC->getValue()->isZero())
        continue;
    } else if (!SE.isLoopInvariant(EC, L))
      continue;

    if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
      continue;

    // If this exiting block is contained in a nested loop, it is not eligible
    // for insertion of the branch-and-decrement since the inner loop would
    // end up messing up the value in the CTR.
    if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
      continue;

    // We now have a loop-invariant count of loop iterations (which is not the
    // constant zero) for which we know that this loop will not exit via this
    // existing block.

    // We need to make sure that this block will run on every loop iteration.
    // For this to be true, we must dominate all blocks with backedges. Such
    // blocks are in-loop predecessors to the header block.
    bool NotAlways = false;
    for (BasicBlock *Pred : predecessors(L->getHeader())) {
      if (!L->contains(Pred))
        continue;

      if (!DT.dominates(BB, Pred)) {
        NotAlways = true;
        break;
      }
    }

    if (NotAlways)
      continue;

    // Make sure this blocks ends with a conditional branch.
    Instruction *TI = BB->getTerminator();
    if (!TI)
      continue;

    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (!BI->isConditional())
        continue;

      ExitBranch = BI;
    } else
      continue;

    // Note that this block may not be the loop latch block, even if the loop
    // has a latch block.
    ExitBlock = BB;
    ExitCount = EC;
    break;
  }

  if (!ExitBlock)
    return false;
  return true;
}

TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
    : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}

TargetTransformInfo::~TargetTransformInfo() {}

TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
    : TTIImpl(std::move(Arg.TTIImpl)) {}

TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
  TTIImpl = std::move(RHS.TTIImpl);
  return *this;
}

unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
  return TTIImpl->getInliningThresholdMultiplier();
}

int TargetTransformInfo::getInlinerVectorBonusPercent() const {
  return TTIImpl->getInlinerVectorBonusPercent();
}

int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
                                    ArrayRef<const Value *> Operands,
                                    TTI::TargetCostKind CostKind) const {
  return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
}

unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
    const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
    BlockFrequencyInfo *BFI) const {
  return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
}

int TargetTransformInfo::getUserCost(const User *U,
                                     ArrayRef<const Value *> Operands,
                                     enum TargetCostKind CostKind) const {
  int Cost = TTIImpl->getUserCost(U, Operands, CostKind);
  assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
         "TTI should not produce negative costs!");
  return Cost;
}

bool TargetTransformInfo::hasBranchDivergence() const {
  return TTIImpl->hasBranchDivergence();
}

bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
  return TTIImpl->useGPUDivergenceAnalysis();
}

bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
  return TTIImpl->isSourceOfDivergence(V);
}

bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
  return TTIImpl->isAlwaysUniform(V);
}

unsigned TargetTransformInfo::getFlatAddressSpace() const {
  return TTIImpl->getFlatAddressSpace();
}

bool TargetTransformInfo::collectFlatAddressOperands(
    SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
  return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
}

bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
                                              unsigned ToAS) const {
  return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
}

Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
    IntrinsicInst *II, Value *OldV, Value *NewV) const {
  return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
}

bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
  return TTIImpl->isLoweredToCall(F);
}

bool TargetTransformInfo::isHardwareLoopProfitable(
    Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
    TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
  return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
}

bool TargetTransformInfo::preferPredicateOverEpilogue(
    Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
    TargetLibraryInfo *TLI, DominatorTree *DT,
    const LoopAccessInfo *LAI) const {
  return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
}

bool TargetTransformInfo::emitGetActiveLaneMask() const {
  return TTIImpl->emitGetActiveLaneMask();
}

void TargetTransformInfo::getUnrollingPreferences(
    Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
  return TTIImpl->getUnrollingPreferences(L, SE, UP);
}

void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                                PeelingPreferences &PP) const {
  return TTIImpl->getPeelingPreferences(L, SE, PP);
}

bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
  return TTIImpl->isLegalAddImmediate(Imm);
}

bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
  return TTIImpl->isLegalICmpImmediate(Imm);
}

bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
                                                int64_t BaseOffset,
                                                bool HasBaseReg, int64_t Scale,
                                                unsigned AddrSpace,
                                                Instruction *I) const {
  return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
                                        Scale, AddrSpace, I);
}

bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
  return TTIImpl->isLSRCostLess(C1, C2);
}

bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
  return TTIImpl->isProfitableLSRChainElement(I);
}

bool TargetTransformInfo::canMacroFuseCmp() const {
  return TTIImpl->canMacroFuseCmp();
}

bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
                                     ScalarEvolution *SE, LoopInfo *LI,
                                     DominatorTree *DT, AssumptionCache *AC,
                                     TargetLibraryInfo *LibInfo) const {
  return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
}

bool TargetTransformInfo::shouldFavorPostInc() const {
  return TTIImpl->shouldFavorPostInc();
}

bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
  return TTIImpl->shouldFavorBackedgeIndex(L);
}

bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
                                             Align Alignment) const {
  return TTIImpl->isLegalMaskedStore(DataType, Alignment);
}

bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
                                            Align Alignment) const {
  return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
}

bool TargetTransformInfo::isLegalNTStore(Type *DataType,
                                         Align Alignment) const {
  return TTIImpl->isLegalNTStore(DataType, Alignment);
}

bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
  return TTIImpl->isLegalNTLoad(DataType, Alignment);
}

bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
                                              Align Alignment) const {
  return TTIImpl->isLegalMaskedGather(DataType, Alignment);
}

bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
                                               Align Alignment) const {
  return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
}

bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
  return TTIImpl->isLegalMaskedCompressStore(DataType);
}

bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
  return TTIImpl->isLegalMaskedExpandLoad(DataType);
}

bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
  return TTIImpl->hasDivRemOp(DataType, IsSigned);
}

bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
                                             unsigned AddrSpace) const {
  return TTIImpl->hasVolatileVariant(I, AddrSpace);
}

bool TargetTransformInfo::prefersVectorizedAddressing() const {
  return TTIImpl->prefersVectorizedAddressing();
}

int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
                                              int64_t BaseOffset,
                                              bool HasBaseReg, int64_t Scale,
                                              unsigned AddrSpace) const {
  int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
                                           Scale, AddrSpace);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

bool TargetTransformInfo::LSRWithInstrQueries() const {
  return TTIImpl->LSRWithInstrQueries();
}

bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
  return TTIImpl->isTruncateFree(Ty1, Ty2);
}

bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
  return TTIImpl->isProfitableToHoist(I);
}

bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }

bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
  return TTIImpl->isTypeLegal(Ty);
}

bool TargetTransformInfo::shouldBuildLookupTables() const {
  return TTIImpl->shouldBuildLookupTables();
}
bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
    Constant *C) const {
  return TTIImpl->shouldBuildLookupTablesForConstant(C);
}

bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
  return TTIImpl->useColdCCForColdCall(F);
}

unsigned
TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
                                              const APInt &DemandedElts,
                                              bool Insert, bool Extract) const {
  return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
}

unsigned TargetTransformInfo::getOperandsScalarizationOverhead(
    ArrayRef<const Value *> Args, unsigned VF) const {
  return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
}

bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
  return TTIImpl->supportsEfficientVectorElementLoadStore();
}

bool TargetTransformInfo::enableAggressiveInterleaving(
    bool LoopHasReductions) const {
  return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
}

TargetTransformInfo::MemCmpExpansionOptions
TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
  return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
}

bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
  return TTIImpl->enableInterleavedAccessVectorization();
}

bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
  return TTIImpl->enableMaskedInterleavedAccessVectorization();
}

bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
  return TTIImpl->isFPVectorizationPotentiallyUnsafe();
}

bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                                         unsigned BitWidth,
                                                         unsigned AddressSpace,
                                                         unsigned Alignment,
                                                         bool *Fast) const {
  return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
                                                 AddressSpace, Alignment, Fast);
}

TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
  return TTIImpl->getPopcntSupport(IntTyWidthInBit);
}

bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
  return TTIImpl->haveFastSqrt(Ty);
}

bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
  return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
}

int TargetTransformInfo::getFPOpCost(Type *Ty) const {
  int Cost = TTIImpl->getFPOpCost(Ty);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
                                               const APInt &Imm,
                                               Type *Ty) const {
  int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
                                       TTI::TargetCostKind CostKind) const {
  int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int
TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                       const APInt &Imm, Type *Ty,
                                       TTI::TargetCostKind CostKind) const {
  int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int
TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                         const APInt &Imm, Type *Ty,
                                         TTI::TargetCostKind CostKind) const {
  int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
  return TTIImpl->getNumberOfRegisters(ClassID);
}

unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
                                                      Type *Ty) const {
  return TTIImpl->getRegisterClassForType(Vector, Ty);
}

const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
  return TTIImpl->getRegisterClassName(ClassID);
}

unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
  return TTIImpl->getRegisterBitWidth(Vector);
}

unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
  return TTIImpl->getMinVectorRegisterBitWidth();
}

bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
  return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
}

unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
  return TTIImpl->getMinimumVF(ElemWidth);
}

bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
    const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
  return TTIImpl->shouldConsiderAddressTypePromotion(
      I, AllowPromotionWithoutCommonHeader);
}

unsigned TargetTransformInfo::getCacheLineSize() const {
  return TTIImpl->getCacheLineSize();
}

llvm::Optional<unsigned>
TargetTransformInfo::getCacheSize(CacheLevel Level) const {
  return TTIImpl->getCacheSize(Level);
}

llvm::Optional<unsigned>
TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
  return TTIImpl->getCacheAssociativity(Level);
}

unsigned TargetTransformInfo::getPrefetchDistance() const {
  return TTIImpl->getPrefetchDistance();
}

unsigned TargetTransformInfo::getMinPrefetchStride(
    unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
    unsigned NumPrefetches, bool HasCall) const {
  return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
                                       NumPrefetches, HasCall);
}

unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
  return TTIImpl->getMaxPrefetchIterationsAhead();
}

bool TargetTransformInfo::enableWritePrefetching() const {
  return TTIImpl->enableWritePrefetching();
}

unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
  return TTIImpl->getMaxInterleaveFactor(VF);
}

TargetTransformInfo::OperandValueKind
TargetTransformInfo::getOperandInfo(const Value *V,
                                    OperandValueProperties &OpProps) {
  OperandValueKind OpInfo = OK_AnyValue;
  OpProps = OP_None;

  if (const auto *CI = dyn_cast<ConstantInt>(V)) {
    if (CI->getValue().isPowerOf2())
      OpProps = OP_PowerOf2;
    return OK_UniformConstantValue;
  }

  // A broadcast shuffle creates a uniform value.
  // TODO: Add support for non-zero index broadcasts.
  // TODO: Add support for different source vector width.
  if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
    if (ShuffleInst->isZeroEltSplat())
      OpInfo = OK_UniformValue;

  const Value *Splat = getSplatValue(V);

  // Check for a splat of a constant or for a non uniform vector of constants
  // and check if the constant(s) are all powers of two.
  if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
    OpInfo = OK_NonUniformConstantValue;
    if (Splat) {
      OpInfo = OK_UniformConstantValue;
      if (auto *CI = dyn_cast<ConstantInt>(Splat))
        if (CI->getValue().isPowerOf2())
          OpProps = OP_PowerOf2;
    } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
      OpProps = OP_PowerOf2;
      for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
        if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
          if (CI->getValue().isPowerOf2())
            continue;
        OpProps = OP_None;
        break;
      }
    }
  }

  // Check for a splat of a uniform value. This is not loop aware, so return
  // true only for the obviously uniform cases (argument, globalvalue)
  if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
    OpInfo = OK_UniformValue;

  return OpInfo;
}

int TargetTransformInfo::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
    OperandValueKind Opd1Info,
    OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
    OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
    const Instruction *CxtI) const {
  int Cost = TTIImpl->getArithmeticInstrCost(
      Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo,
      Args, CxtI);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty,
                                        int Index, VectorType *SubTp) const {
  int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                          TTI::TargetCostKind CostKind,
                                          const Instruction *I) const {
  assert((I == nullptr || I->getOpcode() == Opcode) &&
         "Opcode should reflect passed instruction.");
  int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                                  VectorType *VecTy,
                                                  unsigned Index) const {
  int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getCFInstrCost(unsigned Opcode,
                                        TTI::TargetCostKind CostKind) const {
  int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                            Type *CondTy,
                                            TTI::TargetCostKind CostKind,
                                            const Instruction *I) const {
  assert((I == nullptr || I->getOpcode() == Opcode) &&
         "Opcode should reflect passed instruction.");
  int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
                                            unsigned Index) const {
  int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
                                         Align Alignment, unsigned AddressSpace,
                                         TTI::TargetCostKind CostKind,
                                         const Instruction *I) const {
  assert((I == nullptr || I->getOpcode() == Opcode) &&
         "Opcode should reflect passed instruction.");
  int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                      CostKind, I);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getMaskedMemoryOpCost(
    unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
    TTI::TargetCostKind CostKind) const {
  int Cost =
      TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                     CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getGatherScatterOpCost(
    unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
    Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
  int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                             Alignment, CostKind, I);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) const {
  int Cost = TTIImpl->getInterleavedMemoryOpCost(
      Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
      UseMaskForCond, UseMaskForGaps);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int
TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                           TTI::TargetCostKind CostKind) const {
  int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
                                          ArrayRef<Type *> Tys,
                                          TTI::TargetCostKind CostKind) const {
  int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
  return TTIImpl->getNumberOfParts(Tp);
}

int TargetTransformInfo::getAddressComputationCost(Type *Tp,
                                                   ScalarEvolution *SE,
                                                   const SCEV *Ptr) const {
  int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
  int Cost = TTIImpl->getMemcpyCost(I);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode,
                                                    VectorType *Ty,
                                                    bool IsPairwiseForm,
                                                    TTI::TargetCostKind CostKind) const {
  int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
                                                 CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

int TargetTransformInfo::getMinMaxReductionCost(
    VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
    TTI::TargetCostKind CostKind) const {
  int Cost =
      TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
                                      CostKind);
  assert(Cost >= 0 && "TTI should not produce negative costs!");
  return Cost;
}

unsigned
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
  return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
}

bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                             MemIntrinsicInfo &Info) const {
  return TTIImpl->getTgtMemIntrinsic(Inst, Info);
}

unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
  return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
}

Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
    IntrinsicInst *Inst, Type *ExpectedType) const {
  return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
}

Type *TargetTransformInfo::getMemcpyLoopLoweringType(
    LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
    unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
  return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
                                            DestAddrSpace, SrcAlign, DestAlign);
}

void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
    SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
    unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
    unsigned SrcAlign, unsigned DestAlign) const {
  TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
                                             SrcAddrSpace, DestAddrSpace,
                                             SrcAlign, DestAlign);
}

bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
                                              const Function *Callee) const {
  return TTIImpl->areInlineCompatible(Caller, Callee);
}

bool TargetTransformInfo::areFunctionArgsABICompatible(
    const Function *Caller, const Function *Callee,
    SmallPtrSetImpl<Argument *> &Args) const {
  return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
}

bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
                                             Type *Ty) const {
  return TTIImpl->isIndexedLoadLegal(Mode, Ty);
}

bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
                                              Type *Ty) const {
  return TTIImpl->isIndexedStoreLegal(Mode, Ty);
}

unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
  return TTIImpl->getLoadStoreVecRegBitWidth(AS);
}

bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
  return TTIImpl->isLegalToVectorizeLoad(LI);
}

bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
  return TTIImpl->isLegalToVectorizeStore(SI);
}

bool TargetTransformInfo::isLegalToVectorizeLoadChain(
    unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
  return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
                                              AddrSpace);
}

bool TargetTransformInfo::isLegalToVectorizeStoreChain(
    unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
  return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
                                               AddrSpace);
}

unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
                                                  unsigned LoadSize,
                                                  unsigned ChainSizeInBytes,
                                                  VectorType *VecTy) const {
  return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
}

unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
                                                   unsigned StoreSize,
                                                   unsigned ChainSizeInBytes,
                                                   VectorType *VecTy) const {
  return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
}

bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                                ReductionFlags Flags) const {
  return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
}

bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
  return TTIImpl->shouldExpandReduction(II);
}

unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
  return TTIImpl->getGISelRematGlobalCost();
}

int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
  return TTIImpl->getInstructionLatency(I);
}

static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
                                     unsigned Level) {
  // We don't need a shuffle if we just want to have element 0 in position 0 of
  // the vector.
  if (!SI && Level == 0 && IsLeft)
    return true;
  else if (!SI)
    return false;

  SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1);

  // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
  // we look at the left or right side.
  for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
    Mask[i] = val;

  ArrayRef<int> ActualMask = SI->getShuffleMask();
  return Mask == ActualMask;
}

static Optional<TTI::ReductionData> getReductionData(Instruction *I) {
  Value *L, *R;
  if (m_BinOp(m_Value(L), m_Value(R)).match(I))
    return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R);
  if (auto *SI = dyn_cast<SelectInst>(I)) {
    if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
        m_SMax(m_Value(L), m_Value(R)).match(SI) ||
        m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
        m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
        m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
        m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
      auto *CI = cast<CmpInst>(SI->getCondition());
      return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R);
    }
    if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
        m_UMax(m_Value(L), m_Value(R)).match(SI)) {
      auto *CI = cast<CmpInst>(SI->getCondition());
      return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R);
    }
  }
  return llvm::None;
}

static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
                                                        unsigned Level,
                                                        unsigned NumLevels) {
  // Match one level of pairwise operations.
  // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
  // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
  // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
  if (!I)
    return TTI::RK_None;

  assert(I->getType()->isVectorTy() && "Expecting a vector type");

  Optional<TTI::ReductionData> RD = getReductionData(I);
  if (!RD)
    return TTI::RK_None;

  ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
  if (!LS && Level)
    return TTI::RK_None;
  ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
  if (!RS && Level)
    return TTI::RK_None;

  // On level 0 we can omit one shufflevector instruction.
  if (!Level && !RS && !LS)
    return TTI::RK_None;

  // Shuffle inputs must match.
  Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
  Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
  Value *NextLevelOp = nullptr;
  if (NextLevelOpR && NextLevelOpL) {
    // If we have two shuffles their operands must match.
    if (NextLevelOpL != NextLevelOpR)
      return TTI::RK_None;

    NextLevelOp = NextLevelOpL;
  } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
    // On the first level we can omit the shufflevector <0, undef,...>. So the
    // input to the other shufflevector <1, undef> must match with one of the
    // inputs to the current binary operation.
    // Example:
    //  %NextLevelOpL = shufflevector %R, <1, undef ...>
    //  %BinOp        = fadd          %NextLevelOpL, %R
    if (NextLevelOpL && NextLevelOpL != RD->RHS)
      return TTI::RK_None;
    else if (NextLevelOpR && NextLevelOpR != RD->LHS)
      return TTI::RK_None;

    NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
  } else
    return TTI::RK_None;

  // Check that the next levels binary operation exists and matches with the
  // current one.
  if (Level + 1 != NumLevels) {
    if (!isa<Instruction>(NextLevelOp))
      return TTI::RK_None;
    Optional<TTI::ReductionData> NextLevelRD =
        getReductionData(cast<Instruction>(NextLevelOp));
    if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
      return TTI::RK_None;
  }

  // Shuffle mask for pairwise operation must match.
  if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
    if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
      return TTI::RK_None;
  } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
    if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
      return TTI::RK_None;
  } else {
    return TTI::RK_None;
  }

  if (++Level == NumLevels)
    return RD->Kind;

  // Match next level.
  return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level,
                                       NumLevels);
}

TTI::ReductionKind TTI::matchPairwiseReduction(
  const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
  if (!EnableReduxCost)
    return TTI::RK_None;

  // Need to extract the first element.
  ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
  unsigned Idx = ~0u;
  if (CI)
    Idx = CI->getZExtValue();
  if (Idx != 0)
    return TTI::RK_None;

  auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
  if (!RdxStart)
    return TTI::RK_None;
  Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
  if (!RD)
    return TTI::RK_None;

  auto *VecTy = cast<VectorType>(RdxStart->getType());
  unsigned NumVecElems = VecTy->getNumElements();
  if (!isPowerOf2_32(NumVecElems))
    return TTI::RK_None;

  // We look for a sequence of shuffle,shuffle,add triples like the following
  // that builds a pairwise reduction tree.
  //
  //  (X0, X1, X2, X3)
  //   (X0 + X1, X2 + X3, undef, undef)
  //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
  //
  // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
  // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
  // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
  // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
  //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
  // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
  //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
  // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
  // %r = extractelement <4 x float> %bin.rdx8, i32 0
  if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
      TTI::RK_None)
    return TTI::RK_None;

  Opcode = RD->Opcode;
  Ty = VecTy;

  return RD->Kind;
}

static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(Value *L, Value *R) {
  ShuffleVectorInst *S = nullptr;

  if ((S = dyn_cast<ShuffleVectorInst>(L)))
    return std::make_pair(R, S);

  S = dyn_cast<ShuffleVectorInst>(R);
  return std::make_pair(L, S);
}

TTI::ReductionKind TTI::matchVectorSplittingReduction(
  const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {

  if (!EnableReduxCost)
    return TTI::RK_None;

  // Need to extract the first element.
  ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
  unsigned Idx = ~0u;
  if (CI)
    Idx = CI->getZExtValue();
  if (Idx != 0)
    return TTI::RK_None;

  auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
  if (!RdxStart)
    return TTI::RK_None;
  Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
  if (!RD)
    return TTI::RK_None;

  auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType());
  unsigned NumVecElems = VecTy->getNumElements();
  if (!isPowerOf2_32(NumVecElems))
    return TTI::RK_None;

  // We look for a sequence of shuffles and adds like the following matching one
  // fadd, shuffle vector pair at a time.
  //
  // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
  //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
  // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
  // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
  //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
  // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
  // %r = extractelement <4 x float> %bin.rdx8, i32 0

  unsigned MaskStart = 1;
  Instruction *RdxOp = RdxStart;
  SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
  unsigned NumVecElemsRemain = NumVecElems;
  while (NumVecElemsRemain - 1) {
    // Check for the right reduction operation.
    if (!RdxOp)
      return TTI::RK_None;
    Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp);
    if (!RDLevel || !RDLevel->hasSameData(*RD))
      return TTI::RK_None;

    Value *NextRdxOp;
    ShuffleVectorInst *Shuffle;
    std::tie(NextRdxOp, Shuffle) =
        getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);

    // Check the current reduction operation and the shuffle use the same value.
    if (Shuffle == nullptr)
      return TTI::RK_None;
    if (Shuffle->getOperand(0) != NextRdxOp)
      return TTI::RK_None;

    // Check that shuffle masks matches.
    for (unsigned j = 0; j != MaskStart; ++j)
      ShuffleMask[j] = MaskStart + j;
    // Fill the rest of the mask with -1 for undef.
    std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);

    ArrayRef<int> Mask = Shuffle->getShuffleMask();
    if (ShuffleMask != Mask)
      return TTI::RK_None;

    RdxOp = dyn_cast<Instruction>(NextRdxOp);
    NumVecElemsRemain /= 2;
    MaskStart *= 2;
  }

  Opcode = RD->Opcode;
  Ty = VecTy;
  return RD->Kind;
}

int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  switch (I->getOpcode()) {
  case Instruction::GetElementPtr:
  case Instruction::Ret:
  case Instruction::PHI:
  case Instruction::Br:
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::FNeg:
  case Instruction::Select:
  case Instruction::ICmp:
  case Instruction::FCmp:
  case Instruction::Store:
  case Instruction::Load:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast:
  case Instruction::ExtractElement:
  case Instruction::InsertElement:
  case Instruction::ExtractValue:
  case Instruction::ShuffleVector:
  case Instruction::Call:
    return getUserCost(I, CostKind);
  default:
    // We don't have any information on this instruction.
    return -1;
  }
}

TargetTransformInfo::Concept::~Concept() {}

TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}

TargetIRAnalysis::TargetIRAnalysis(
    std::function<Result(const Function &)> TTICallback)
    : TTICallback(std::move(TTICallback)) {}

TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
                                               FunctionAnalysisManager &) {
  return TTICallback(F);
}

AnalysisKey TargetIRAnalysis::Key;

TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
  return Result(F.getParent()->getDataLayout());
}

// Register the basic pass.
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
                "Target Transform Information", false, true)
char TargetTransformInfoWrapperPass::ID = 0;

void TargetTransformInfoWrapperPass::anchor() {}

TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
    : ImmutablePass(ID) {
  initializeTargetTransformInfoWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
    TargetIRAnalysis TIRA)
    : ImmutablePass(ID), TIRA(std::move(TIRA)) {
  initializeTargetTransformInfoWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
  FunctionAnalysisManager DummyFAM;
  TTI = TIRA.run(F, DummyFAM);
  return *TTI;
}

ImmutablePass *
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
  return new TargetTransformInfoWrapperPass(std::move(TIRA));
}