StratifiedSets.h 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_STRATIFIEDSETS_H
#define LLVM_ADT_STRATIFIEDSETS_H

#include "AliasAnalysisSummary.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include <bitset>
#include <cassert>
#include <cmath>
#include <type_traits>
#include <utility>
#include <vector>

namespace llvm {
namespace cflaa {
/// An index into Stratified Sets.
typedef unsigned StratifiedIndex;
/// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
/// ~1M sets exist.

// Container of information related to a value in a StratifiedSet.
struct StratifiedInfo {
  StratifiedIndex Index;
  /// For field sensitivity, etc. we can tack fields on here.
};

/// A "link" between two StratifiedSets.
struct StratifiedLink {
  /// This is a value used to signify "does not exist" where the
  /// StratifiedIndex type is used.
  ///
  /// This is used instead of Optional<StratifiedIndex> because
  /// Optional<StratifiedIndex> would eat up a considerable amount of extra
  /// memory, after struct padding/alignment is taken into account.
  static const StratifiedIndex SetSentinel;

  /// The index for the set "above" current
  StratifiedIndex Above;

  /// The link for the set "below" current
  StratifiedIndex Below;

  /// Attributes for these StratifiedSets.
  AliasAttrs Attrs;

  StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}

  bool hasBelow() const { return Below != SetSentinel; }
  bool hasAbove() const { return Above != SetSentinel; }

  void clearBelow() { Below = SetSentinel; }
  void clearAbove() { Above = SetSentinel; }
};

/// These are stratified sets, as described in "Fast algorithms for
/// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
/// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
/// of Value*s. If two Value*s are in the same set, or if both sets have
/// overlapping attributes, then the Value*s are said to alias.
///
/// Sets may be related by position, meaning that one set may be considered as
/// above or below another. In CFL Alias Analysis, this gives us an indication
/// of how two variables are related; if the set of variable A is below a set
/// containing variable B, then at some point, a variable that has interacted
/// with B (or B itself) was either used in order to extract the variable A, or
/// was used as storage of variable A.
///
/// Sets may also have attributes (as noted above). These attributes are
/// generally used for noting whether a variable in the set has interacted with
/// a variable whose origins we don't quite know (i.e. globals/arguments), or if
/// the variable may have had operations performed on it (modified in a function
/// call). All attributes that exist in a set A must exist in all sets marked as
/// below set A.
template <typename T> class StratifiedSets {
public:
  StratifiedSets() = default;
  StratifiedSets(StratifiedSets &&) = default;
  StratifiedSets &operator=(StratifiedSets &&) = default;

  StratifiedSets(DenseMap<T, StratifiedInfo> Map,
                 std::vector<StratifiedLink> Links)
      : Values(std::move(Map)), Links(std::move(Links)) {}

  Optional<StratifiedInfo> find(const T &Elem) const {
    auto Iter = Values.find(Elem);
    if (Iter == Values.end())
      return None;
    return Iter->second;
  }

  const StratifiedLink &getLink(StratifiedIndex Index) const {
    assert(inbounds(Index));
    return Links[Index];
  }

private:
  DenseMap<T, StratifiedInfo> Values;
  std::vector<StratifiedLink> Links;

  bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
};

/// Generic Builder class that produces StratifiedSets instances.
///
/// The goal of this builder is to efficiently produce correct StratifiedSets
/// instances. To this end, we use a few tricks:
///   > Set chains (A method for linking sets together)
///   > Set remaps (A method for marking a set as an alias [irony?] of another)
///
/// ==== Set chains ====
/// This builder has a notion of some value A being above, below, or with some
/// other value B:
///   > The `A above B` relationship implies that there is a reference edge
///   going from A to B. Namely, it notes that A can store anything in B's set.
///   > The `A below B` relationship is the opposite of `A above B`. It implies
///   that there's a dereference edge going from A to B.
///   > The `A with B` relationship states that there's an assignment edge going
///   from A to B, and that A and B should be treated as equals.
///
/// As an example, take the following code snippet:
///
/// %a = alloca i32, align 4
/// %ap = alloca i32*, align 8
/// %app = alloca i32**, align 8
/// store %a, %ap
/// store %ap, %app
/// %aw = getelementptr %ap, i32 0
///
/// Given this, the following relations exist:
///   - %a below %ap & %ap above %a
///   - %ap below %app & %app above %ap
///   - %aw with %ap & %ap with %aw
///
/// These relations produce the following sets:
///   [{%a}, {%ap, %aw}, {%app}]
///
/// ...Which state that the only MayAlias relationship in the above program is
/// between %ap and %aw.
///
/// Because LLVM allows arbitrary casts, code like the following needs to be
/// supported:
///   %ip = alloca i64, align 8
///   %ipp = alloca i64*, align 8
///   %i = bitcast i64** ipp to i64
///   store i64* %ip, i64** %ipp
///   store i64 %i, i64* %ip
///
/// Which, because %ipp ends up *both* above and below %ip, is fun.
///
/// This is solved by merging %i and %ipp into a single set (...which is the
/// only way to solve this, since their bit patterns are equivalent). Any sets
/// that ended up in between %i and %ipp at the time of merging (in this case,
/// the set containing %ip) also get conservatively merged into the set of %i
/// and %ipp. In short, the resulting StratifiedSet from the above code would be
/// {%ip, %ipp, %i}.
///
/// ==== Set remaps ====
/// More of an implementation detail than anything -- when merging sets, we need
/// to update the numbers of all of the elements mapped to those sets. Rather
/// than doing this at each merge, we note in the BuilderLink structure that a
/// remap has occurred, and use this information so we can defer renumbering set
/// elements until build time.
template <typename T> class StratifiedSetsBuilder {
  /// Represents a Stratified Set, with information about the Stratified
  /// Set above it, the set below it, and whether the current set has been
  /// remapped to another.
  struct BuilderLink {
    const StratifiedIndex Number;

    BuilderLink(StratifiedIndex N) : Number(N) {
      Remap = StratifiedLink::SetSentinel;
    }

    bool hasAbove() const {
      assert(!isRemapped());
      return Link.hasAbove();
    }

    bool hasBelow() const {
      assert(!isRemapped());
      return Link.hasBelow();
    }

    void setBelow(StratifiedIndex I) {
      assert(!isRemapped());
      Link.Below = I;
    }

    void setAbove(StratifiedIndex I) {
      assert(!isRemapped());
      Link.Above = I;
    }

    void clearBelow() {
      assert(!isRemapped());
      Link.clearBelow();
    }

    void clearAbove() {
      assert(!isRemapped());
      Link.clearAbove();
    }

    StratifiedIndex getBelow() const {
      assert(!isRemapped());
      assert(hasBelow());
      return Link.Below;
    }

    StratifiedIndex getAbove() const {
      assert(!isRemapped());
      assert(hasAbove());
      return Link.Above;
    }

    AliasAttrs getAttrs() {
      assert(!isRemapped());
      return Link.Attrs;
    }

    void setAttrs(AliasAttrs Other) {
      assert(!isRemapped());
      Link.Attrs |= Other;
    }

    bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }

    /// For initial remapping to another set
    void remapTo(StratifiedIndex Other) {
      assert(!isRemapped());
      Remap = Other;
    }

    StratifiedIndex getRemapIndex() const {
      assert(isRemapped());
      return Remap;
    }

    /// Should only be called when we're already remapped.
    void updateRemap(StratifiedIndex Other) {
      assert(isRemapped());
      Remap = Other;
    }

    /// Prefer the above functions to calling things directly on what's returned
    /// from this -- they guard against unexpected calls when the current
    /// BuilderLink is remapped.
    const StratifiedLink &getLink() const { return Link; }

  private:
    StratifiedLink Link;
    StratifiedIndex Remap;
  };

  /// This function performs all of the set unioning/value renumbering
  /// that we've been putting off, and generates a vector<StratifiedLink> that
  /// may be placed in a StratifiedSets instance.
  void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
    DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
    for (auto &Link : Links) {
      if (Link.isRemapped())
        continue;

      StratifiedIndex Number = StratLinks.size();
      Remaps.insert(std::make_pair(Link.Number, Number));
      StratLinks.push_back(Link.getLink());
    }

    for (auto &Link : StratLinks) {
      if (Link.hasAbove()) {
        auto &Above = linksAt(Link.Above);
        auto Iter = Remaps.find(Above.Number);
        assert(Iter != Remaps.end());
        Link.Above = Iter->second;
      }

      if (Link.hasBelow()) {
        auto &Below = linksAt(Link.Below);
        auto Iter = Remaps.find(Below.Number);
        assert(Iter != Remaps.end());
        Link.Below = Iter->second;
      }
    }

    for (auto &Pair : Values) {
      auto &Info = Pair.second;
      auto &Link = linksAt(Info.Index);
      auto Iter = Remaps.find(Link.Number);
      assert(Iter != Remaps.end());
      Info.Index = Iter->second;
    }
  }

  /// There's a guarantee in StratifiedLink where all bits set in a
  /// Link.externals will be set in all Link.externals "below" it.
  static void propagateAttrs(std::vector<StratifiedLink> &Links) {
    const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
      const auto *Link = &Links[Idx];
      while (Link->hasAbove()) {
        Idx = Link->Above;
        Link = &Links[Idx];
      }
      return Idx;
    };

    SmallSet<StratifiedIndex, 16> Visited;
    for (unsigned I = 0, E = Links.size(); I < E; ++I) {
      auto CurrentIndex = getHighestParentAbove(I);
      if (!Visited.insert(CurrentIndex).second)
        continue;

      while (Links[CurrentIndex].hasBelow()) {
        auto &CurrentBits = Links[CurrentIndex].Attrs;
        auto NextIndex = Links[CurrentIndex].Below;
        auto &NextBits = Links[NextIndex].Attrs;
        NextBits |= CurrentBits;
        CurrentIndex = NextIndex;
      }
    }
  }

public:
  /// Builds a StratifiedSet from the information we've been given since either
  /// construction or the prior build() call.
  StratifiedSets<T> build() {
    std::vector<StratifiedLink> StratLinks;
    finalizeSets(StratLinks);
    propagateAttrs(StratLinks);
    Links.clear();
    return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
  }

  bool has(const T &Elem) const { return get(Elem).hasValue(); }

  bool add(const T &Main) {
    if (get(Main).hasValue())
      return false;

    auto NewIndex = getNewUnlinkedIndex();
    return addAtMerging(Main, NewIndex);
  }

  /// Restructures the stratified sets as necessary to make "ToAdd" in a
  /// set above "Main". There are some cases where this is not possible (see
  /// above), so we merge them such that ToAdd and Main are in the same set.
  bool addAbove(const T &Main, const T &ToAdd) {
    assert(has(Main));
    auto Index = *indexOf(Main);
    if (!linksAt(Index).hasAbove())
      addLinkAbove(Index);

    auto Above = linksAt(Index).getAbove();
    return addAtMerging(ToAdd, Above);
  }

  /// Restructures the stratified sets as necessary to make "ToAdd" in a
  /// set below "Main". There are some cases where this is not possible (see
  /// above), so we merge them such that ToAdd and Main are in the same set.
  bool addBelow(const T &Main, const T &ToAdd) {
    assert(has(Main));
    auto Index = *indexOf(Main);
    if (!linksAt(Index).hasBelow())
      addLinkBelow(Index);

    auto Below = linksAt(Index).getBelow();
    return addAtMerging(ToAdd, Below);
  }

  bool addWith(const T &Main, const T &ToAdd) {
    assert(has(Main));
    auto MainIndex = *indexOf(Main);
    return addAtMerging(ToAdd, MainIndex);
  }

  void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
    assert(has(Main));
    auto *Info = *get(Main);
    auto &Link = linksAt(Info->Index);
    Link.setAttrs(NewAttrs);
  }

private:
  DenseMap<T, StratifiedInfo> Values;
  std::vector<BuilderLink> Links;

  /// Adds the given element at the given index, merging sets if necessary.
  bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
    StratifiedInfo Info = {Index};
    auto Pair = Values.insert(std::make_pair(ToAdd, Info));
    if (Pair.second)
      return true;

    auto &Iter = Pair.first;
    auto &IterSet = linksAt(Iter->second.Index);
    auto &ReqSet = linksAt(Index);

    // Failed to add where we wanted to. Merge the sets.
    if (&IterSet != &ReqSet)
      merge(IterSet.Number, ReqSet.Number);

    return false;
  }

  /// Gets the BuilderLink at the given index, taking set remapping into
  /// account.
  BuilderLink &linksAt(StratifiedIndex Index) {
    auto *Start = &Links[Index];
    if (!Start->isRemapped())
      return *Start;

    auto *Current = Start;
    while (Current->isRemapped())
      Current = &Links[Current->getRemapIndex()];

    auto NewRemap = Current->Number;

    // Run through everything that has yet to be updated, and update them to
    // remap to NewRemap
    Current = Start;
    while (Current->isRemapped()) {
      auto *Next = &Links[Current->getRemapIndex()];
      Current->updateRemap(NewRemap);
      Current = Next;
    }

    return *Current;
  }

  /// Merges two sets into one another. Assumes that these sets are not
  /// already one in the same.
  void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    assert(inbounds(Idx1) && inbounds(Idx2));
    assert(&linksAt(Idx1) != &linksAt(Idx2) &&
           "Merging a set into itself is not allowed");

    // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
    // both the
    // given sets, and all sets between them, into one.
    if (tryMergeUpwards(Idx1, Idx2))
      return;

    if (tryMergeUpwards(Idx2, Idx1))
      return;

    // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
    // We therefore need to merge the two chains together.
    mergeDirect(Idx1, Idx2);
  }

  /// Merges two sets assuming that the set at `Idx1` is unreachable from
  /// traversing above or below the set at `Idx2`.
  void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    assert(inbounds(Idx1) && inbounds(Idx2));

    auto *LinksInto = &linksAt(Idx1);
    auto *LinksFrom = &linksAt(Idx2);
    // Merging everything above LinksInto then proceeding to merge everything
    // below LinksInto becomes problematic, so we go as far "up" as possible!
    while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
      LinksInto = &linksAt(LinksInto->getAbove());
      LinksFrom = &linksAt(LinksFrom->getAbove());
    }

    if (LinksFrom->hasAbove()) {
      LinksInto->setAbove(LinksFrom->getAbove());
      auto &NewAbove = linksAt(LinksInto->getAbove());
      NewAbove.setBelow(LinksInto->Number);
    }

    // Merging strategy:
    //  > If neither has links below, stop.
    //  > If only `LinksInto` has links below, stop.
    //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to
    //  match `LinksFrom.Below`
    //  > If both have links above, deal with those next.
    while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
      auto FromAttrs = LinksFrom->getAttrs();
      LinksInto->setAttrs(FromAttrs);

      // Remap needs to happen after getBelow(), but before
      // assignment of LinksFrom
      auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
      LinksFrom->remapTo(LinksInto->Number);
      LinksFrom = NewLinksFrom;
      LinksInto = &linksAt(LinksInto->getBelow());
    }

    if (LinksFrom->hasBelow()) {
      LinksInto->setBelow(LinksFrom->getBelow());
      auto &NewBelow = linksAt(LinksInto->getBelow());
      NewBelow.setAbove(LinksInto->Number);
    }

    LinksInto->setAttrs(LinksFrom->getAttrs());
    LinksFrom->remapTo(LinksInto->Number);
  }

  /// Checks to see if lowerIndex is at a level lower than upperIndex. If so, it
  /// will merge lowerIndex with upperIndex (and all of the sets between) and
  /// return true. Otherwise, it will return false.
  bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
    assert(inbounds(LowerIndex) && inbounds(UpperIndex));
    auto *Lower = &linksAt(LowerIndex);
    auto *Upper = &linksAt(UpperIndex);
    if (Lower == Upper)
      return true;

    SmallVector<BuilderLink *, 8> Found;
    auto *Current = Lower;
    auto Attrs = Current->getAttrs();
    while (Current->hasAbove() && Current != Upper) {
      Found.push_back(Current);
      Attrs |= Current->getAttrs();
      Current = &linksAt(Current->getAbove());
    }

    if (Current != Upper)
      return false;

    Upper->setAttrs(Attrs);

    if (Lower->hasBelow()) {
      auto NewBelowIndex = Lower->getBelow();
      Upper->setBelow(NewBelowIndex);
      auto &NewBelow = linksAt(NewBelowIndex);
      NewBelow.setAbove(UpperIndex);
    } else {
      Upper->clearBelow();
    }

    for (const auto &Ptr : Found)
      Ptr->remapTo(Upper->Number);

    return true;
  }

  Optional<const StratifiedInfo *> get(const T &Val) const {
    auto Result = Values.find(Val);
    if (Result == Values.end())
      return None;
    return &Result->second;
  }

  Optional<StratifiedInfo *> get(const T &Val) {
    auto Result = Values.find(Val);
    if (Result == Values.end())
      return None;
    return &Result->second;
  }

  Optional<StratifiedIndex> indexOf(const T &Val) {
    auto MaybeVal = get(Val);
    if (!MaybeVal.hasValue())
      return None;
    auto *Info = *MaybeVal;
    auto &Link = linksAt(Info->Index);
    return Link.Number;
  }

  StratifiedIndex addLinkBelow(StratifiedIndex Set) {
    auto At = addLinks();
    Links[Set].setBelow(At);
    Links[At].setAbove(Set);
    return At;
  }

  StratifiedIndex addLinkAbove(StratifiedIndex Set) {
    auto At = addLinks();
    Links[At].setBelow(Set);
    Links[Set].setAbove(At);
    return At;
  }

  StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }

  StratifiedIndex addLinks() {
    auto Link = Links.size();
    Links.push_back(BuilderLink(Link));
    return Link;
  }

  bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
};
}
}
#endif // LLVM_ADT_STRATIFIEDSETS_H