MemorySSAUpdater.cpp 57.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------===//
//
// This file implements the MemorySSAUpdater class.
//
//===----------------------------------------------------------------===//
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include <algorithm>

#define DEBUG_TYPE "memoryssa"
using namespace llvm;

// This is the marker algorithm from "Simple and Efficient Construction of
// Static Single Assignment Form"
// The simple, non-marker algorithm places phi nodes at any join
// Here, we place markers, and only place phi nodes if they end up necessary.
// They are only necessary if they break a cycle (IE we recursively visit
// ourselves again), or we discover, while getting the value of the operands,
// that there are two or more definitions needing to be merged.
// This still will leave non-minimal form in the case of irreducible control
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
    BasicBlock *BB,
    DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
  // First, do a cache lookup. Without this cache, certain CFG structures
  // (like a series of if statements) take exponential time to visit.
  auto Cached = CachedPreviousDef.find(BB);
  if (Cached != CachedPreviousDef.end())
    return Cached->second;

  // If this method is called from an unreachable block, return LoE.
  if (!MSSA->DT->isReachableFromEntry(BB))
    return MSSA->getLiveOnEntryDef();

  if (BasicBlock *Pred = BB->getUniquePredecessor()) {
    VisitedBlocks.insert(BB);
    // Single predecessor case, just recurse, we can only have one definition.
    MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }

  if (VisitedBlocks.count(BB)) {
    // We hit our node again, meaning we had a cycle, we must insert a phi
    // node to break it so we have an operand. The only case this will
    // insert useless phis is if we have irreducible control flow.
    MemoryAccess *Result = MSSA->createMemoryPhi(BB);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }

  if (VisitedBlocks.insert(BB).second) {
    // Mark us visited so we can detect a cycle
    SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;

    // Recurse to get the values in our predecessors for placement of a
    // potential phi node. This will insert phi nodes if we cycle in order to
    // break the cycle and have an operand.
    bool UniqueIncomingAccess = true;
    MemoryAccess *SingleAccess = nullptr;
    for (auto *Pred : predecessors(BB)) {
      if (MSSA->DT->isReachableFromEntry(Pred)) {
        auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
        if (!SingleAccess)
          SingleAccess = IncomingAccess;
        else if (IncomingAccess != SingleAccess)
          UniqueIncomingAccess = false;
        PhiOps.push_back(IncomingAccess);
      } else
        PhiOps.push_back(MSSA->getLiveOnEntryDef());
    }

    // Now try to simplify the ops to avoid placing a phi.
    // This may return null if we never created a phi yet, that's okay
    MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));

    // See if we can avoid the phi by simplifying it.
    auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
    // If we couldn't simplify, we may have to create a phi
    if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
      // A concrete Phi only exists if we created an empty one to break a cycle.
      if (Phi) {
        assert(Phi->operands().empty() && "Expected empty Phi");
        Phi->replaceAllUsesWith(SingleAccess);
        removeMemoryAccess(Phi);
      }
      Result = SingleAccess;
    } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
      if (!Phi)
        Phi = MSSA->createMemoryPhi(BB);

      // See if the existing phi operands match what we need.
      // Unlike normal SSA, we only allow one phi node per block, so we can't just
      // create a new one.
      if (Phi->getNumOperands() != 0) {
        // FIXME: Figure out whether this is dead code and if so remove it.
        if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
          // These will have been filled in by the recursive read we did above.
          llvm::copy(PhiOps, Phi->op_begin());
          std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
        }
      } else {
        unsigned i = 0;
        for (auto *Pred : predecessors(BB))
          Phi->addIncoming(&*PhiOps[i++], Pred);
        InsertedPHIs.push_back(Phi);
      }
      Result = Phi;
    }

    // Set ourselves up for the next variable by resetting visited state.
    VisitedBlocks.erase(BB);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }
  llvm_unreachable("Should have hit one of the three cases above");
}

// This starts at the memory access, and goes backwards in the block to find the
// previous definition. If a definition is not found the block of the access,
// it continues globally, creating phi nodes to ensure we have a single
// definition.
MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
  if (auto *LocalResult = getPreviousDefInBlock(MA))
    return LocalResult;
  DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
  return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
}

// This starts at the memory access, and goes backwards in the block to the find
// the previous definition. If the definition is not found in the block of the
// access, it returns nullptr.
MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
  auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());

  // It's possible there are no defs, or we got handed the first def to start.
  if (Defs) {
    // If this is a def, we can just use the def iterators.
    if (!isa<MemoryUse>(MA)) {
      auto Iter = MA->getReverseDefsIterator();
      ++Iter;
      if (Iter != Defs->rend())
        return &*Iter;
    } else {
      // Otherwise, have to walk the all access iterator.
      auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
      for (auto &U : make_range(++MA->getReverseIterator(), End))
        if (!isa<MemoryUse>(U))
          return cast<MemoryAccess>(&U);
      // Note that if MA comes before Defs->begin(), we won't hit a def.
      return nullptr;
    }
  }
  return nullptr;
}

// This starts at the end of block
MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
    BasicBlock *BB,
    DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
  auto *Defs = MSSA->getWritableBlockDefs(BB);

  if (Defs) {
    CachedPreviousDef.insert({BB, &*Defs->rbegin()});
    return &*Defs->rbegin();
  }

  return getPreviousDefRecursive(BB, CachedPreviousDef);
}
// Recurse over a set of phi uses to eliminate the trivial ones
MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
  if (!Phi)
    return nullptr;
  TrackingVH<MemoryAccess> Res(Phi);
  SmallVector<TrackingVH<Value>, 8> Uses;
  std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
  for (auto &U : Uses)
    if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
      tryRemoveTrivialPhi(UsePhi);
  return Res;
}

// Eliminate trivial phis
// Phis are trivial if they are defined either by themselves, or all the same
// argument.
// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
// We recursively try to remove them.
MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
  assert(Phi && "Can only remove concrete Phi.");
  auto OperRange = Phi->operands();
  return tryRemoveTrivialPhi(Phi, OperRange);
}
template <class RangeType>
MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
                                                    RangeType &Operands) {
  // Bail out on non-opt Phis.
  if (NonOptPhis.count(Phi))
    return Phi;

  // Detect equal or self arguments
  MemoryAccess *Same = nullptr;
  for (auto &Op : Operands) {
    // If the same or self, good so far
    if (Op == Phi || Op == Same)
      continue;
    // not the same, return the phi since it's not eliminatable by us
    if (Same)
      return Phi;
    Same = cast<MemoryAccess>(&*Op);
  }
  // Never found a non-self reference, the phi is undef
  if (Same == nullptr)
    return MSSA->getLiveOnEntryDef();
  if (Phi) {
    Phi->replaceAllUsesWith(Same);
    removeMemoryAccess(Phi);
  }

  // We should only end up recursing in case we replaced something, in which
  // case, we may have made other Phis trivial.
  return recursePhi(Same);
}

void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
  InsertedPHIs.clear();
  MU->setDefiningAccess(getPreviousDef(MU));

  // In cases without unreachable blocks, because uses do not create new
  // may-defs, there are only two cases:
  // 1. There was a def already below us, and therefore, we should not have
  // created a phi node because it was already needed for the def.
  //
  // 2. There is no def below us, and therefore, there is no extra renaming work
  // to do.

  // In cases with unreachable blocks, where the unnecessary Phis were
  // optimized out, adding the Use may re-insert those Phis. Hence, when
  // inserting Uses outside of the MSSA creation process, and new Phis were
  // added, rename all uses if we are asked.

  if (!RenameUses && !InsertedPHIs.empty()) {
    auto *Defs = MSSA->getBlockDefs(MU->getBlock());
    (void)Defs;
    assert((!Defs || (++Defs->begin() == Defs->end())) &&
           "Block may have only a Phi or no defs");
  }

  if (RenameUses && InsertedPHIs.size()) {
    SmallPtrSet<BasicBlock *, 16> Visited;
    BasicBlock *StartBlock = MU->getBlock();

    if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
      MemoryAccess *FirstDef = &*Defs->begin();
      // Convert to incoming value if it's a memorydef. A phi *is* already an
      // incoming value.
      if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
        FirstDef = MD->getDefiningAccess();

      MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
    }
    // We just inserted a phi into this block, so the incoming value will
    // become the phi anyway, so it does not matter what we pass.
    for (auto &MP : InsertedPHIs)
      if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
        MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
  }
}

// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
                                      MemoryAccess *NewDef) {
  // Replace any operand with us an incoming block with the new defining
  // access.
  int i = MP->getBasicBlockIndex(BB);
  assert(i != -1 && "Should have found the basic block in the phi");
  // We can't just compare i against getNumOperands since one is signed and the
  // other not. So use it to index into the block iterator.
  for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
       ++BBIter) {
    if (*BBIter != BB)
      break;
    MP->setIncomingValue(i, NewDef);
    ++i;
  }
}

// A brief description of the algorithm:
// First, we compute what should define the new def, using the SSA
// construction algorithm.
// Then, we update the defs below us (and any new phi nodes) in the graph to
// point to the correct new defs, to ensure we only have one variable, and no
// disconnected stores.
void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
  InsertedPHIs.clear();

  // See if we had a local def, and if not, go hunting.
  MemoryAccess *DefBefore = getPreviousDef(MD);
  bool DefBeforeSameBlock = false;
  if (DefBefore->getBlock() == MD->getBlock() &&
      !(isa<MemoryPhi>(DefBefore) &&
        std::find(InsertedPHIs.begin(), InsertedPHIs.end(), DefBefore) !=
            InsertedPHIs.end()))
    DefBeforeSameBlock = true;

  // There is a def before us, which means we can replace any store/phi uses
  // of that thing with us, since we are in the way of whatever was there
  // before.
  // We now define that def's memorydefs and memoryphis
  if (DefBeforeSameBlock) {
    DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
      // Leave the MemoryUses alone.
      // Also make sure we skip ourselves to avoid self references.
      User *Usr = U.getUser();
      return !isa<MemoryUse>(Usr) && Usr != MD;
      // Defs are automatically unoptimized when the user is set to MD below,
      // because the isOptimized() call will fail to find the same ID.
    });
  }

  // and that def is now our defining access.
  MD->setDefiningAccess(DefBefore);

  SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());

  // Remember the index where we may insert new phis.
  unsigned NewPhiIndex = InsertedPHIs.size();
  if (!DefBeforeSameBlock) {
    // If there was a local def before us, we must have the same effect it
    // did. Because every may-def is the same, any phis/etc we would create, it
    // would also have created.  If there was no local def before us, we
    // performed a global update, and have to search all successors and make
    // sure we update the first def in each of them (following all paths until
    // we hit the first def along each path). This may also insert phi nodes.
    // TODO: There are other cases we can skip this work, such as when we have a
    // single successor, and only used a straight line of single pred blocks
    // backwards to find the def.  To make that work, we'd have to track whether
    // getDefRecursive only ever used the single predecessor case.  These types
    // of paths also only exist in between CFG simplifications.

    // If this is the first def in the block and this insert is in an arbitrary
    // place, compute IDF and place phis.
    SmallPtrSet<BasicBlock *, 2> DefiningBlocks;

    // If this is the last Def in the block, also compute IDF based on MD, since
    // this may a new Def added, and we may need additional Phis.
    auto Iter = MD->getDefsIterator();
    ++Iter;
    auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
    if (Iter == IterEnd)
      DefiningBlocks.insert(MD->getBlock());

    for (const auto &VH : InsertedPHIs)
      if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
        DefiningBlocks.insert(RealPHI->getBlock());
    ForwardIDFCalculator IDFs(*MSSA->DT);
    SmallVector<BasicBlock *, 32> IDFBlocks;
    IDFs.setDefiningBlocks(DefiningBlocks);
    IDFs.calculate(IDFBlocks);
    SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
    for (auto *BBIDF : IDFBlocks) {
      auto *MPhi = MSSA->getMemoryAccess(BBIDF);
      if (!MPhi) {
        MPhi = MSSA->createMemoryPhi(BBIDF);
        NewInsertedPHIs.push_back(MPhi);
      }
      // Add the phis created into the IDF blocks to NonOptPhis, so they are not
      // optimized out as trivial by the call to getPreviousDefFromEnd below.
      // Once they are complete, all these Phis are added to the FixupList, and
      // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
      // need fixing as well, and potentially be trivial before this insertion,
      // hence add all IDF Phis. See PR43044.
      NonOptPhis.insert(MPhi);
    }
    for (auto &MPhi : NewInsertedPHIs) {
      auto *BBIDF = MPhi->getBlock();
      for (auto *Pred : predecessors(BBIDF)) {
        DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
        MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
      }
    }

    // Re-take the index where we're adding the new phis, because the above call
    // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
    NewPhiIndex = InsertedPHIs.size();
    for (auto &MPhi : NewInsertedPHIs) {
      InsertedPHIs.push_back(&*MPhi);
      FixupList.push_back(&*MPhi);
    }

    FixupList.push_back(MD);
  }

  // Remember the index where we stopped inserting new phis above, since the
  // fixupDefs call in the loop below may insert more, that are already minimal.
  unsigned NewPhiIndexEnd = InsertedPHIs.size();

  while (!FixupList.empty()) {
    unsigned StartingPHISize = InsertedPHIs.size();
    fixupDefs(FixupList);
    FixupList.clear();
    // Put any new phis on the fixup list, and process them
    FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
  }

  // Optimize potentially non-minimal phis added in this method.
  unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
  if (NewPhiSize)
    tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));

  // Now that all fixups are done, rename all uses if we are asked.
  if (RenameUses) {
    SmallPtrSet<BasicBlock *, 16> Visited;
    BasicBlock *StartBlock = MD->getBlock();
    // We are guaranteed there is a def in the block, because we just got it
    // handed to us in this function.
    MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
    // Convert to incoming value if it's a memorydef. A phi *is* already an
    // incoming value.
    if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
      FirstDef = MD->getDefiningAccess();

    MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
    // We just inserted a phi into this block, so the incoming value will become
    // the phi anyway, so it does not matter what we pass.
    for (auto &MP : InsertedPHIs) {
      MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
      if (Phi)
        MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
    }
  }
}

void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
  SmallPtrSet<const BasicBlock *, 8> Seen;
  SmallVector<const BasicBlock *, 16> Worklist;
  for (auto &Var : Vars) {
    MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
    if (!NewDef)
      continue;
    // First, see if there is a local def after the operand.
    auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
    auto DefIter = NewDef->getDefsIterator();

    // The temporary Phi is being fixed, unmark it for not to optimize.
    if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
      NonOptPhis.erase(Phi);

    // If there is a local def after us, we only have to rename that.
    if (++DefIter != Defs->end()) {
      cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
      continue;
    }

    // Otherwise, we need to search down through the CFG.
    // For each of our successors, handle it directly if their is a phi, or
    // place on the fixup worklist.
    for (const auto *S : successors(NewDef->getBlock())) {
      if (auto *MP = MSSA->getMemoryAccess(S))
        setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
      else
        Worklist.push_back(S);
    }

    while (!Worklist.empty()) {
      const BasicBlock *FixupBlock = Worklist.back();
      Worklist.pop_back();

      // Get the first def in the block that isn't a phi node.
      if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
        auto *FirstDef = &*Defs->begin();
        // The loop above and below should have taken care of phi nodes
        assert(!isa<MemoryPhi>(FirstDef) &&
               "Should have already handled phi nodes!");
        // We are now this def's defining access, make sure we actually dominate
        // it
        assert(MSSA->dominates(NewDef, FirstDef) &&
               "Should have dominated the new access");

        // This may insert new phi nodes, because we are not guaranteed the
        // block we are processing has a single pred, and depending where the
        // store was inserted, it may require phi nodes below it.
        cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
        return;
      }
      // We didn't find a def, so we must continue.
      for (const auto *S : successors(FixupBlock)) {
        // If there is a phi node, handle it.
        // Otherwise, put the block on the worklist
        if (auto *MP = MSSA->getMemoryAccess(S))
          setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
        else {
          // If we cycle, we should have ended up at a phi node that we already
          // processed.  FIXME: Double check this
          if (!Seen.insert(S).second)
            continue;
          Worklist.push_back(S);
        }
      }
    }
  }
}

void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
  if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
    MPhi->unorderedDeleteIncomingBlock(From);
    tryRemoveTrivialPhi(MPhi);
  }
}

void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
                                                      const BasicBlock *To) {
  if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
    bool Found = false;
    MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
      if (From != B)
        return false;
      if (Found)
        return true;
      Found = true;
      return false;
    });
    tryRemoveTrivialPhi(MPhi);
  }
}

static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
                                                  const ValueToValueMapTy &VMap,
                                                  PhiToDefMap &MPhiMap,
                                                  bool CloneWasSimplified,
                                                  MemorySSA *MSSA) {
  MemoryAccess *InsnDefining = MA;
  if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
    if (!MSSA->isLiveOnEntryDef(DefMUD)) {
      Instruction *DefMUDI = DefMUD->getMemoryInst();
      assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
      if (Instruction *NewDefMUDI =
              cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
        InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
        if (!CloneWasSimplified)
          assert(InsnDefining && "Defining instruction cannot be nullptr.");
        else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
          // The clone was simplified, it's no longer a MemoryDef, look up.
          auto DefIt = DefMUD->getDefsIterator();
          // Since simplified clones only occur in single block cloning, a
          // previous definition must exist, otherwise NewDefMUDI would not
          // have been found in VMap.
          assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
                 "Previous def must exist");
          InsnDefining = getNewDefiningAccessForClone(
              &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
        }
      }
    }
  } else {
    MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
    if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
      InsnDefining = NewDefPhi;
  }
  assert(InsnDefining && "Defining instruction cannot be nullptr.");
  return InsnDefining;
}

void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
                                        const ValueToValueMapTy &VMap,
                                        PhiToDefMap &MPhiMap,
                                        bool CloneWasSimplified) {
  const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
  if (!Acc)
    return;
  for (const MemoryAccess &MA : *Acc) {
    if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
      Instruction *Insn = MUD->getMemoryInst();
      // Entry does not exist if the clone of the block did not clone all
      // instructions. This occurs in LoopRotate when cloning instructions
      // from the old header to the old preheader. The cloned instruction may
      // also be a simplified Value, not an Instruction (see LoopRotate).
      // Also in LoopRotate, even when it's an instruction, due to it being
      // simplified, it may be a Use rather than a Def, so we cannot use MUD as
      // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
      if (Instruction *NewInsn =
              dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
        MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
            NewInsn,
            getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
                                         MPhiMap, CloneWasSimplified, MSSA),
            /*Template=*/CloneWasSimplified ? nullptr : MUD,
            /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
        if (NewUseOrDef)
          MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
      }
    }
  }
}

void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
    BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
  auto *MPhi = MSSA->getMemoryAccess(Header);
  if (!MPhi)
    return;

  // Create phi node in the backedge block and populate it with the same
  // incoming values as MPhi. Skip incoming values coming from Preheader.
  auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
  bool HasUniqueIncomingValue = true;
  MemoryAccess *UniqueValue = nullptr;
  for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
    BasicBlock *IBB = MPhi->getIncomingBlock(I);
    MemoryAccess *IV = MPhi->getIncomingValue(I);
    if (IBB != Preheader) {
      NewMPhi->addIncoming(IV, IBB);
      if (HasUniqueIncomingValue) {
        if (!UniqueValue)
          UniqueValue = IV;
        else if (UniqueValue != IV)
          HasUniqueIncomingValue = false;
      }
    }
  }

  // Update incoming edges into MPhi. Remove all but the incoming edge from
  // Preheader. Add an edge from NewMPhi
  auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
  MPhi->setIncomingValue(0, AccFromPreheader);
  MPhi->setIncomingBlock(0, Preheader);
  for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
    MPhi->unorderedDeleteIncoming(I);
  MPhi->addIncoming(NewMPhi, BEBlock);

  // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
  // replaced with the unique value.
  tryRemoveTrivialPhi(NewMPhi);
}

void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
                                           ArrayRef<BasicBlock *> ExitBlocks,
                                           const ValueToValueMapTy &VMap,
                                           bool IgnoreIncomingWithNoClones) {
  PhiToDefMap MPhiMap;

  auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
    assert(Phi && NewPhi && "Invalid Phi nodes.");
    BasicBlock *NewPhiBB = NewPhi->getBlock();
    SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
                                               pred_end(NewPhiBB));
    for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
      MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
      BasicBlock *IncBB = Phi->getIncomingBlock(It);

      if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
        IncBB = NewIncBB;
      else if (IgnoreIncomingWithNoClones)
        continue;

      // Now we have IncBB, and will need to add incoming from it to NewPhi.

      // If IncBB is not a predecessor of NewPhiBB, then do not add it.
      // NewPhiBB was cloned without that edge.
      if (!NewPhiBBPreds.count(IncBB))
        continue;

      // Determine incoming value and add it as incoming from IncBB.
      if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
        if (!MSSA->isLiveOnEntryDef(IncMUD)) {
          Instruction *IncI = IncMUD->getMemoryInst();
          assert(IncI && "Found MemoryUseOrDef with no Instruction.");
          if (Instruction *NewIncI =
                  cast_or_null<Instruction>(VMap.lookup(IncI))) {
            IncMUD = MSSA->getMemoryAccess(NewIncI);
            assert(IncMUD &&
                   "MemoryUseOrDef cannot be null, all preds processed.");
          }
        }
        NewPhi->addIncoming(IncMUD, IncBB);
      } else {
        MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
        if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
          NewPhi->addIncoming(NewDefPhi, IncBB);
        else
          NewPhi->addIncoming(IncPhi, IncBB);
      }
    }
  };

  auto ProcessBlock = [&](BasicBlock *BB) {
    BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
    if (!NewBlock)
      return;

    assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
           "Cloned block should have no accesses");

    // Add MemoryPhi.
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
      MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
      MPhiMap[MPhi] = NewPhi;
    }
    // Update Uses and Defs.
    cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
  };

  for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
    ProcessBlock(BB);

  for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
      if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
        FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
}

void MemorySSAUpdater::updateForClonedBlockIntoPred(
    BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
  // All defs/phis from outside BB that are used in BB, are valid uses in P1.
  // Since those defs/phis must have dominated BB, and also dominate P1.
  // Defs from BB being used in BB will be replaced with the cloned defs from
  // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
  // incoming def into the Phi from P1.
  // Instructions cloned into the predecessor are in practice sometimes
  // simplified, so disable the use of the template, and create an access from
  // scratch.
  PhiToDefMap MPhiMap;
  if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
    MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
  cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
}

template <typename Iter>
void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
    ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
    DominatorTree &DT) {
  SmallVector<CFGUpdate, 4> Updates;
  // Update/insert phis in all successors of exit blocks.
  for (auto *Exit : ExitBlocks)
    for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
      if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
        BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
        Updates.push_back({DT.Insert, NewExit, ExitSucc});
      }
  applyInsertUpdates(Updates, DT);
}

void MemorySSAUpdater::updateExitBlocksForClonedLoop(
    ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
    DominatorTree &DT) {
  const ValueToValueMapTy *const Arr[] = {&VMap};
  privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
                                       std::end(Arr), DT);
}

void MemorySSAUpdater::updateExitBlocksForClonedLoop(
    ArrayRef<BasicBlock *> ExitBlocks,
    ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
  auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
    return I.get();
  };
  using MappedIteratorType =
      mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
                      decltype(GetPtr)>;
  auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
  auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
  privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
}

void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
                                    DominatorTree &DT) {
  SmallVector<CFGUpdate, 4> DeleteUpdates;
  SmallVector<CFGUpdate, 4> InsertUpdates;
  for (auto &Update : Updates) {
    if (Update.getKind() == DT.Insert)
      InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
    else
      DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
  }

  if (!DeleteUpdates.empty()) {
    // Update for inserted edges: use newDT and snapshot CFG as if deletes had
    // not occurred.
    // FIXME: This creates a new DT, so it's more expensive to do mix
    // delete/inserts vs just inserts. We can do an incremental update on the DT
    // to revert deletes, than re-delete the edges. Teaching DT to do this, is
    // part of a pending cleanup.
    DominatorTree NewDT(DT, DeleteUpdates);
    GraphDiff<BasicBlock *> GD(DeleteUpdates, /*ReverseApplyUpdates=*/true);
    applyInsertUpdates(InsertUpdates, NewDT, &GD);
  } else {
    GraphDiff<BasicBlock *> GD;
    applyInsertUpdates(InsertUpdates, DT, &GD);
  }

  // Update for deleted edges
  for (auto &Update : DeleteUpdates)
    removeEdge(Update.getFrom(), Update.getTo());
}

void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
                                          DominatorTree &DT) {
  GraphDiff<BasicBlock *> GD;
  applyInsertUpdates(Updates, DT, &GD);
}

void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
                                          DominatorTree &DT,
                                          const GraphDiff<BasicBlock *> *GD) {
  // Get recursive last Def, assuming well formed MSSA and updated DT.
  auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
    while (true) {
      MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
      // Return last Def or Phi in BB, if it exists.
      if (Defs)
        return &*(--Defs->end());

      // Check number of predecessors, we only care if there's more than one.
      unsigned Count = 0;
      BasicBlock *Pred = nullptr;
      for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
        Pred = Pair.second;
        Count++;
        if (Count == 2)
          break;
      }

      // If BB has multiple predecessors, get last definition from IDom.
      if (Count != 1) {
        // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
        // DT is invalidated. Return LoE as its last def. This will be added to
        // MemoryPhi node, and later deleted when the block is deleted.
        if (!DT.getNode(BB))
          return MSSA->getLiveOnEntryDef();
        if (auto *IDom = DT.getNode(BB)->getIDom())
          if (IDom->getBlock() != BB) {
            BB = IDom->getBlock();
            continue;
          }
        return MSSA->getLiveOnEntryDef();
      } else {
        // Single predecessor, BB cannot be dead. GetLastDef of Pred.
        assert(Count == 1 && Pred && "Single predecessor expected.");
        // BB can be unreachable though, return LoE if that is the case.
        if (!DT.getNode(BB))
          return MSSA->getLiveOnEntryDef();
        BB = Pred;
      }
    };
    llvm_unreachable("Unable to get last definition.");
  };

  // Get nearest IDom given a set of blocks.
  // TODO: this can be optimized by starting the search at the node with the
  // lowest level (highest in the tree).
  auto FindNearestCommonDominator =
      [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
    BasicBlock *PrevIDom = *BBSet.begin();
    for (auto *BB : BBSet)
      PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
    return PrevIDom;
  };

  // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
  // include CurrIDom.
  auto GetNoLongerDomBlocks =
      [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
          SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
        if (PrevIDom == CurrIDom)
          return;
        BlocksPrevDom.push_back(PrevIDom);
        BasicBlock *NextIDom = PrevIDom;
        while (BasicBlock *UpIDom =
                   DT.getNode(NextIDom)->getIDom()->getBlock()) {
          if (UpIDom == CurrIDom)
            break;
          BlocksPrevDom.push_back(UpIDom);
          NextIDom = UpIDom;
        }
      };

  // Map a BB to its predecessors: added + previously existing. To get a
  // deterministic order, store predecessors as SetVectors. The order in each
  // will be defined by the order in Updates (fixed) and the order given by
  // children<> (also fixed). Since we further iterate over these ordered sets,
  // we lose the information of multiple edges possibly existing between two
  // blocks, so we'll keep and EdgeCount map for that.
  // An alternate implementation could keep unordered set for the predecessors,
  // traverse either Updates or children<> each time to get  the deterministic
  // order, and drop the usage of EdgeCount. This alternate approach would still
  // require querying the maps for each predecessor, and children<> call has
  // additional computation inside for creating the snapshot-graph predecessors.
  // As such, we favor using a little additional storage and less compute time.
  // This decision can be revisited if we find the alternative more favorable.

  struct PredInfo {
    SmallSetVector<BasicBlock *, 2> Added;
    SmallSetVector<BasicBlock *, 2> Prev;
  };
  SmallDenseMap<BasicBlock *, PredInfo> PredMap;

  for (auto &Edge : Updates) {
    BasicBlock *BB = Edge.getTo();
    auto &AddedBlockSet = PredMap[BB].Added;
    AddedBlockSet.insert(Edge.getFrom());
  }

  // Store all existing predecessor for each BB, at least one must exist.
  SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
  SmallPtrSet<BasicBlock *, 2> NewBlocks;
  for (auto &BBPredPair : PredMap) {
    auto *BB = BBPredPair.first;
    const auto &AddedBlockSet = BBPredPair.second.Added;
    auto &PrevBlockSet = BBPredPair.second.Prev;
    for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
      BasicBlock *Pi = Pair.second;
      if (!AddedBlockSet.count(Pi))
        PrevBlockSet.insert(Pi);
      EdgeCountMap[{Pi, BB}]++;
    }

    if (PrevBlockSet.empty()) {
      assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
      LLVM_DEBUG(
          dbgs()
          << "Adding a predecessor to a block with no predecessors. "
             "This must be an edge added to a new, likely cloned, block. "
             "Its memory accesses must be already correct, assuming completed "
             "via the updateExitBlocksForClonedLoop API. "
             "Assert a single such edge is added so no phi addition or "
             "additional processing is required.\n");
      assert(AddedBlockSet.size() == 1 &&
             "Can only handle adding one predecessor to a new block.");
      // Need to remove new blocks from PredMap. Remove below to not invalidate
      // iterator here.
      NewBlocks.insert(BB);
    }
  }
  // Nothing to process for new/cloned blocks.
  for (auto *BB : NewBlocks)
    PredMap.erase(BB);

  SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
  SmallVector<WeakVH, 8> InsertedPhis;

  // First create MemoryPhis in all blocks that don't have one. Create in the
  // order found in Updates, not in PredMap, to get deterministic numbering.
  for (auto &Edge : Updates) {
    BasicBlock *BB = Edge.getTo();
    if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
      InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
  }

  // Now we'll fill in the MemoryPhis with the right incoming values.
  for (auto &BBPredPair : PredMap) {
    auto *BB = BBPredPair.first;
    const auto &PrevBlockSet = BBPredPair.second.Prev;
    const auto &AddedBlockSet = BBPredPair.second.Added;
    assert(!PrevBlockSet.empty() &&
           "At least one previous predecessor must exist.");

    // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
    // keeping this map before the loop. We can reuse already populated entries
    // if an edge is added from the same predecessor to two different blocks,
    // and this does happen in rotate. Note that the map needs to be updated
    // when deleting non-necessary phis below, if the phi is in the map by
    // replacing the value with DefP1.
    SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
    for (auto *AddedPred : AddedBlockSet) {
      auto *DefPn = GetLastDef(AddedPred);
      assert(DefPn != nullptr && "Unable to find last definition.");
      LastDefAddedPred[AddedPred] = DefPn;
    }

    MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
    // If Phi is not empty, add an incoming edge from each added pred. Must
    // still compute blocks with defs to replace for this block below.
    if (NewPhi->getNumOperands()) {
      for (auto *Pred : AddedBlockSet) {
        auto *LastDefForPred = LastDefAddedPred[Pred];
        for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
          NewPhi->addIncoming(LastDefForPred, Pred);
      }
    } else {
      // Pick any existing predecessor and get its definition. All other
      // existing predecessors should have the same one, since no phi existed.
      auto *P1 = *PrevBlockSet.begin();
      MemoryAccess *DefP1 = GetLastDef(P1);

      // Check DefP1 against all Defs in LastDefPredPair. If all the same,
      // nothing to add.
      bool InsertPhi = false;
      for (auto LastDefPredPair : LastDefAddedPred)
        if (DefP1 != LastDefPredPair.second) {
          InsertPhi = true;
          break;
        }
      if (!InsertPhi) {
        // Since NewPhi may be used in other newly added Phis, replace all uses
        // of NewPhi with the definition coming from all predecessors (DefP1),
        // before deleting it.
        NewPhi->replaceAllUsesWith(DefP1);
        removeMemoryAccess(NewPhi);
        continue;
      }

      // Update Phi with new values for new predecessors and old value for all
      // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
      // sets, the order of entries in NewPhi is deterministic.
      for (auto *Pred : AddedBlockSet) {
        auto *LastDefForPred = LastDefAddedPred[Pred];
        for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
          NewPhi->addIncoming(LastDefForPred, Pred);
      }
      for (auto *Pred : PrevBlockSet)
        for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
          NewPhi->addIncoming(DefP1, Pred);
    }

    // Get all blocks that used to dominate BB and no longer do after adding
    // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
    assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
    BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
    assert(PrevIDom && "Previous IDom should exists");
    BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
    assert(NewIDom && "BB should have a new valid idom");
    assert(DT.dominates(NewIDom, PrevIDom) &&
           "New idom should dominate old idom");
    GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
  }

  tryRemoveTrivialPhis(InsertedPhis);
  // Create the set of blocks that now have a definition. We'll use this to
  // compute IDF and add Phis there next.
  SmallVector<BasicBlock *, 8> BlocksToProcess;
  for (auto &VH : InsertedPhis)
    if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
      BlocksToProcess.push_back(MPhi->getBlock());

  // Compute IDF and add Phis in all IDF blocks that do not have one.
  SmallVector<BasicBlock *, 32> IDFBlocks;
  if (!BlocksToProcess.empty()) {
    ForwardIDFCalculator IDFs(DT, GD);
    SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
                                                 BlocksToProcess.end());
    IDFs.setDefiningBlocks(DefiningBlocks);
    IDFs.calculate(IDFBlocks);

    SmallSetVector<MemoryPhi *, 4> PhisToFill;
    // First create all needed Phis.
    for (auto *BBIDF : IDFBlocks)
      if (!MSSA->getMemoryAccess(BBIDF)) {
        auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
        InsertedPhis.push_back(IDFPhi);
        PhisToFill.insert(IDFPhi);
      }
    // Then update or insert their correct incoming values.
    for (auto *BBIDF : IDFBlocks) {
      auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
      assert(IDFPhi && "Phi must exist");
      if (!PhisToFill.count(IDFPhi)) {
        // Update existing Phi.
        // FIXME: some updates may be redundant, try to optimize and skip some.
        for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
          IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
      } else {
        for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
          BasicBlock *Pi = Pair.second;
          IDFPhi->addIncoming(GetLastDef(Pi), Pi);
        }
      }
    }
  }

  // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
  // longer dominate, replace those with the closest dominating def.
  // This will also update optimized accesses, as they're also uses.
  for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
    if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
      for (auto &DefToReplaceUses : *DefsList) {
        BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
        Value::use_iterator UI = DefToReplaceUses.use_begin(),
                            E = DefToReplaceUses.use_end();
        for (; UI != E;) {
          Use &U = *UI;
          ++UI;
          MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
          if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
            BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
            if (!DT.dominates(DominatingBlock, DominatedBlock))
              U.set(GetLastDef(DominatedBlock));
          } else {
            BasicBlock *DominatedBlock = Usr->getBlock();
            if (!DT.dominates(DominatingBlock, DominatedBlock)) {
              if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
                U.set(DomBlPhi);
              else {
                auto *IDom = DT.getNode(DominatedBlock)->getIDom();
                assert(IDom && "Block must have a valid IDom.");
                U.set(GetLastDef(IDom->getBlock()));
              }
              cast<MemoryUseOrDef>(Usr)->resetOptimized();
            }
          }
        }
      }
    }
  }
  tryRemoveTrivialPhis(InsertedPhis);
}

// Move What before Where in the MemorySSA IR.
template <class WhereType>
void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
                              WhereType Where) {
  // Mark MemoryPhi users of What not to be optimized.
  for (auto *U : What->users())
    if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
      NonOptPhis.insert(PhiUser);

  // Replace all our users with our defining access.
  What->replaceAllUsesWith(What->getDefiningAccess());

  // Let MemorySSA take care of moving it around in the lists.
  MSSA->moveTo(What, BB, Where);

  // Now reinsert it into the IR and do whatever fixups needed.
  if (auto *MD = dyn_cast<MemoryDef>(What))
    insertDef(MD, /*RenameUses=*/true);
  else
    insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);

  // Clear dangling pointers. We added all MemoryPhi users, but not all
  // of them are removed by fixupDefs().
  NonOptPhis.clear();
}

// Move What before Where in the MemorySSA IR.
void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
  moveTo(What, Where->getBlock(), Where->getIterator());
}

// Move What after Where in the MemorySSA IR.
void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
  moveTo(What, Where->getBlock(), ++Where->getIterator());
}

void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
                                   MemorySSA::InsertionPlace Where) {
  if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
    return moveTo(What, BB, Where);

  if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
    return moveBefore(What, Where);
  else
    return moveTo(What, BB, MemorySSA::InsertionPlace::End);
}

// All accesses in To used to be in From. Move to end and update access lists.
void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
                                       Instruction *Start) {

  MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
  if (!Accs)
    return;

  assert(Start->getParent() == To && "Incorrect Start instruction");
  MemoryAccess *FirstInNew = nullptr;
  for (Instruction &I : make_range(Start->getIterator(), To->end()))
    if ((FirstInNew = MSSA->getMemoryAccess(&I)))
      break;
  if (FirstInNew) {
    auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
    do {
      auto NextIt = ++MUD->getIterator();
      MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
                                    ? nullptr
                                    : cast<MemoryUseOrDef>(&*NextIt);
      MSSA->moveTo(MUD, To, MemorySSA::End);
      // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
      // to retrieve it again.
      Accs = MSSA->getWritableBlockAccesses(From);
      MUD = NextMUD;
    } while (MUD);
  }

  // If all accesses were moved and only a trivial Phi remains, we try to remove
  // that Phi. This is needed when From is going to be deleted.
  auto *Defs = MSSA->getWritableBlockDefs(From);
  if (Defs && !Defs->empty())
    if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
      tryRemoveTrivialPhi(Phi);
}

void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
                                                BasicBlock *To,
                                                Instruction *Start) {
  assert(MSSA->getBlockAccesses(To) == nullptr &&
         "To block is expected to be free of MemoryAccesses.");
  moveAllAccesses(From, To, Start);
  for (BasicBlock *Succ : successors(To))
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
      MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
}

void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
                                               Instruction *Start) {
  assert(From->getUniquePredecessor() == To &&
         "From block is expected to have a single predecessor (To).");
  moveAllAccesses(From, To, Start);
  for (BasicBlock *Succ : successors(From))
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
      MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
}

/// If all arguments of a MemoryPHI are defined by the same incoming
/// argument, return that argument.
static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
  MemoryAccess *MA = nullptr;

  for (auto &Arg : MP->operands()) {
    if (!MA)
      MA = cast<MemoryAccess>(Arg);
    else if (MA != Arg)
      return nullptr;
  }
  return MA;
}

void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
    BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
    bool IdenticalEdgesWereMerged) {
  assert(!MSSA->getWritableBlockAccesses(New) &&
         "Access list should be null for a new block.");
  MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
  if (!Phi)
    return;
  if (Old->hasNPredecessors(1)) {
    assert(pred_size(New) == Preds.size() &&
           "Should have moved all predecessors.");
    MSSA->moveTo(Phi, New, MemorySSA::Beginning);
  } else {
    assert(!Preds.empty() && "Must be moving at least one predecessor to the "
                             "new immediate predecessor.");
    MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
    SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
    // Currently only support the case of removing a single incoming edge when
    // identical edges were not merged.
    if (!IdenticalEdgesWereMerged)
      assert(PredsSet.size() == Preds.size() &&
             "If identical edges were not merged, we cannot have duplicate "
             "blocks in the predecessors");
    Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
      if (PredsSet.count(B)) {
        NewPhi->addIncoming(MA, B);
        if (!IdenticalEdgesWereMerged)
          PredsSet.erase(B);
        return true;
      }
      return false;
    });
    Phi->addIncoming(NewPhi, New);
    tryRemoveTrivialPhi(NewPhi);
  }
}

void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
  assert(!MSSA->isLiveOnEntryDef(MA) &&
         "Trying to remove the live on entry def");
  // We can only delete phi nodes if they have no uses, or we can replace all
  // uses with a single definition.
  MemoryAccess *NewDefTarget = nullptr;
  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
    // Note that it is sufficient to know that all edges of the phi node have
    // the same argument.  If they do, by the definition of dominance frontiers
    // (which we used to place this phi), that argument must dominate this phi,
    // and thus, must dominate the phi's uses, and so we will not hit the assert
    // below.
    NewDefTarget = onlySingleValue(MP);
    assert((NewDefTarget || MP->use_empty()) &&
           "We can't delete this memory phi");
  } else {
    NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
  }

  SmallSetVector<MemoryPhi *, 4> PhisToCheck;

  // Re-point the uses at our defining access
  if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
    // Reset optimized on users of this store, and reset the uses.
    // A few notes:
    // 1. This is a slightly modified version of RAUW to avoid walking the
    // uses twice here.
    // 2. If we wanted to be complete, we would have to reset the optimized
    // flags on users of phi nodes if doing the below makes a phi node have all
    // the same arguments. Instead, we prefer users to removeMemoryAccess those
    // phi nodes, because doing it here would be N^3.
    if (MA->hasValueHandle())
      ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
    // Note: We assume MemorySSA is not used in metadata since it's not really
    // part of the IR.

    while (!MA->use_empty()) {
      Use &U = *MA->use_begin();
      if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
        MUD->resetOptimized();
      if (OptimizePhis)
        if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
          PhisToCheck.insert(MP);
      U.set(NewDefTarget);
    }
  }

  // The call below to erase will destroy MA, so we can't change the order we
  // are doing things here
  MSSA->removeFromLookups(MA);
  MSSA->removeFromLists(MA);

  // Optionally optimize Phi uses. This will recursively remove trivial phis.
  if (!PhisToCheck.empty()) {
    SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
                                           PhisToCheck.end()};
    PhisToCheck.clear();

    unsigned PhisSize = PhisToOptimize.size();
    while (PhisSize-- > 0)
      if (MemoryPhi *MP =
              cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
        tryRemoveTrivialPhi(MP);
  }
}

void MemorySSAUpdater::removeBlocks(
    const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
  // First delete all uses of BB in MemoryPhis.
  for (BasicBlock *BB : DeadBlocks) {
    Instruction *TI = BB->getTerminator();
    assert(TI && "Basic block expected to have a terminator instruction");
    for (BasicBlock *Succ : successors(TI))
      if (!DeadBlocks.count(Succ))
        if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
          MP->unorderedDeleteIncomingBlock(BB);
          tryRemoveTrivialPhi(MP);
        }
    // Drop all references of all accesses in BB
    if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
      for (MemoryAccess &MA : *Acc)
        MA.dropAllReferences();
  }

  // Next, delete all memory accesses in each block
  for (BasicBlock *BB : DeadBlocks) {
    MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
    if (!Acc)
      continue;
    for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
      MemoryAccess *MA = &*AB;
      ++AB;
      MSSA->removeFromLookups(MA);
      MSSA->removeFromLists(MA);
    }
  }
}

void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
  for (auto &VH : UpdatedPHIs)
    if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
      tryRemoveTrivialPhi(MPhi);
}

void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
  const BasicBlock *BB = I->getParent();
  // Remove memory accesses in BB for I and all following instructions.
  auto BBI = I->getIterator(), BBE = BB->end();
  // FIXME: If this becomes too expensive, iterate until the first instruction
  // with a memory access, then iterate over MemoryAccesses.
  while (BBI != BBE)
    removeMemoryAccess(&*(BBI++));
  // Update phis in BB's successors to remove BB.
  SmallVector<WeakVH, 16> UpdatedPHIs;
  for (const BasicBlock *Successor : successors(BB)) {
    removeDuplicatePhiEdgesBetween(BB, Successor);
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
      MPhi->unorderedDeleteIncomingBlock(BB);
      UpdatedPHIs.push_back(MPhi);
    }
  }
  // Optimize trivial phis.
  tryRemoveTrivialPhis(UpdatedPHIs);
}

void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
                                                         const BasicBlock *To) {
  const BasicBlock *BB = BI->getParent();
  SmallVector<WeakVH, 16> UpdatedPHIs;
  for (const BasicBlock *Succ : successors(BB)) {
    removeDuplicatePhiEdgesBetween(BB, Succ);
    if (Succ != To)
      if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
        MPhi->unorderedDeleteIncomingBlock(BB);
        UpdatedPHIs.push_back(MPhi);
      }
  }
  // Optimize trivial phis.
  tryRemoveTrivialPhis(UpdatedPHIs);
}

MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
    Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
    MemorySSA::InsertionPlace Point) {
  MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
  MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
  return NewAccess;
}

MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
    Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
  assert(I->getParent() == InsertPt->getBlock() &&
         "New and old access must be in the same block");
  MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
  MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
                              InsertPt->getIterator());
  return NewAccess;
}

MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
    Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
  assert(I->getParent() == InsertPt->getBlock() &&
         "New and old access must be in the same block");
  MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
  MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
                              ++InsertPt->getIterator());
  return NewAccess;
}