MemorySSA.cpp 90.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the MemorySSA class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/MemorySSA.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "memoryssa"

INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
                      true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
                    true)

INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
                      "Memory SSA Printer", false, false)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
                    "Memory SSA Printer", false, false)

static cl::opt<unsigned> MaxCheckLimit(
    "memssa-check-limit", cl::Hidden, cl::init(100),
    cl::desc("The maximum number of stores/phis MemorySSA"
             "will consider trying to walk past (default = 100)"));

// Always verify MemorySSA if expensive checking is enabled.
#ifdef EXPENSIVE_CHECKS
bool llvm::VerifyMemorySSA = true;
#else
bool llvm::VerifyMemorySSA = false;
#endif
/// Enables memory ssa as a dependency for loop passes in legacy pass manager.
cl::opt<bool> llvm::EnableMSSALoopDependency(
    "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
    cl::desc("Enable MemorySSA dependency for loop pass manager"));

static cl::opt<bool, true>
    VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
                     cl::Hidden, cl::desc("Enable verification of MemorySSA."));

namespace llvm {

/// An assembly annotator class to print Memory SSA information in
/// comments.
class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
  friend class MemorySSA;

  const MemorySSA *MSSA;

public:
  MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}

  void emitBasicBlockStartAnnot(const BasicBlock *BB,
                                formatted_raw_ostream &OS) override {
    if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
      OS << "; " << *MA << "\n";
  }

  void emitInstructionAnnot(const Instruction *I,
                            formatted_raw_ostream &OS) override {
    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
      OS << "; " << *MA << "\n";
  }
};

} // end namespace llvm

namespace {

/// Our current alias analysis API differentiates heavily between calls and
/// non-calls, and functions called on one usually assert on the other.
/// This class encapsulates the distinction to simplify other code that wants
/// "Memory affecting instructions and related data" to use as a key.
/// For example, this class is used as a densemap key in the use optimizer.
class MemoryLocOrCall {
public:
  bool IsCall = false;

  MemoryLocOrCall(MemoryUseOrDef *MUD)
      : MemoryLocOrCall(MUD->getMemoryInst()) {}
  MemoryLocOrCall(const MemoryUseOrDef *MUD)
      : MemoryLocOrCall(MUD->getMemoryInst()) {}

  MemoryLocOrCall(Instruction *Inst) {
    if (auto *C = dyn_cast<CallBase>(Inst)) {
      IsCall = true;
      Call = C;
    } else {
      IsCall = false;
      // There is no such thing as a memorylocation for a fence inst, and it is
      // unique in that regard.
      if (!isa<FenceInst>(Inst))
        Loc = MemoryLocation::get(Inst);
    }
  }

  explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}

  const CallBase *getCall() const {
    assert(IsCall);
    return Call;
  }

  MemoryLocation getLoc() const {
    assert(!IsCall);
    return Loc;
  }

  bool operator==(const MemoryLocOrCall &Other) const {
    if (IsCall != Other.IsCall)
      return false;

    if (!IsCall)
      return Loc == Other.Loc;

    if (Call->getCalledOperand() != Other.Call->getCalledOperand())
      return false;

    return Call->arg_size() == Other.Call->arg_size() &&
           std::equal(Call->arg_begin(), Call->arg_end(),
                      Other.Call->arg_begin());
  }

private:
  union {
    const CallBase *Call;
    MemoryLocation Loc;
  };
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<MemoryLocOrCall> {
  static inline MemoryLocOrCall getEmptyKey() {
    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
  }

  static inline MemoryLocOrCall getTombstoneKey() {
    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
  }

  static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
    if (!MLOC.IsCall)
      return hash_combine(
          MLOC.IsCall,
          DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));

    hash_code hash =
        hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
                                      MLOC.getCall()->getCalledOperand()));

    for (const Value *Arg : MLOC.getCall()->args())
      hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
    return hash;
  }

  static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
    return LHS == RHS;
  }
};

} // end namespace llvm

/// This does one-way checks to see if Use could theoretically be hoisted above
/// MayClobber. This will not check the other way around.
///
/// This assumes that, for the purposes of MemorySSA, Use comes directly after
/// MayClobber, with no potentially clobbering operations in between them.
/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
static bool areLoadsReorderable(const LoadInst *Use,
                                const LoadInst *MayClobber) {
  bool VolatileUse = Use->isVolatile();
  bool VolatileClobber = MayClobber->isVolatile();
  // Volatile operations may never be reordered with other volatile operations.
  if (VolatileUse && VolatileClobber)
    return false;
  // Otherwise, volatile doesn't matter here. From the language reference:
  // 'optimizers may change the order of volatile operations relative to
  // non-volatile operations.'"

  // If a load is seq_cst, it cannot be moved above other loads. If its ordering
  // is weaker, it can be moved above other loads. We just need to be sure that
  // MayClobber isn't an acquire load, because loads can't be moved above
  // acquire loads.
  //
  // Note that this explicitly *does* allow the free reordering of monotonic (or
  // weaker) loads of the same address.
  bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
  bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
                                                     AtomicOrdering::Acquire);
  return !(SeqCstUse || MayClobberIsAcquire);
}

namespace {

struct ClobberAlias {
  bool IsClobber;
  Optional<AliasResult> AR;
};

} // end anonymous namespace

// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
// ignored if IsClobber = false.
template <typename AliasAnalysisType>
static ClobberAlias
instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
                         const Instruction *UseInst, AliasAnalysisType &AA) {
  Instruction *DefInst = MD->getMemoryInst();
  assert(DefInst && "Defining instruction not actually an instruction");
  const auto *UseCall = dyn_cast<CallBase>(UseInst);
  Optional<AliasResult> AR;

  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
    // These intrinsics will show up as affecting memory, but they are just
    // markers, mostly.
    //
    // FIXME: We probably don't actually want MemorySSA to model these at all
    // (including creating MemoryAccesses for them): we just end up inventing
    // clobbers where they don't really exist at all. Please see D43269 for
    // context.
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_start:
      if (UseCall)
        return {false, NoAlias};
      AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
      return {AR != NoAlias, AR};
    case Intrinsic::lifetime_end:
    case Intrinsic::invariant_start:
    case Intrinsic::invariant_end:
    case Intrinsic::assume:
      return {false, NoAlias};
    case Intrinsic::dbg_addr:
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_label:
    case Intrinsic::dbg_value:
      llvm_unreachable("debuginfo shouldn't have associated defs!");
    default:
      break;
    }
  }

  if (UseCall) {
    ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
    AR = isMustSet(I) ? MustAlias : MayAlias;
    return {isModOrRefSet(I), AR};
  }

  if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
    if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
      return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};

  ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
  AR = isMustSet(I) ? MustAlias : MayAlias;
  return {isModSet(I), AR};
}

template <typename AliasAnalysisType>
static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
                                             const MemoryUseOrDef *MU,
                                             const MemoryLocOrCall &UseMLOC,
                                             AliasAnalysisType &AA) {
  // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
  // to exist while MemoryLocOrCall is pushed through places.
  if (UseMLOC.IsCall)
    return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
                                    AA);
  return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
                                  AA);
}

// Return true when MD may alias MU, return false otherwise.
bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
                                        AliasAnalysis &AA) {
  return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
}

namespace {

struct UpwardsMemoryQuery {
  // True if our original query started off as a call
  bool IsCall = false;
  // The pointer location we started the query with. This will be empty if
  // IsCall is true.
  MemoryLocation StartingLoc;
  // This is the instruction we were querying about.
  const Instruction *Inst = nullptr;
  // The MemoryAccess we actually got called with, used to test local domination
  const MemoryAccess *OriginalAccess = nullptr;
  Optional<AliasResult> AR = MayAlias;
  bool SkipSelfAccess = false;

  UpwardsMemoryQuery() = default;

  UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
      : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
    if (!IsCall)
      StartingLoc = MemoryLocation::get(Inst);
  }
};

} // end anonymous namespace

static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
                           BatchAAResults &AA) {
  Instruction *Inst = MD->getMemoryInst();
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_end:
      return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
    default:
      return false;
    }
  }
  return false;
}

template <typename AliasAnalysisType>
static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
                                                   const Instruction *I) {
  // If the memory can't be changed, then loads of the memory can't be
  // clobbered.
  return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
                              AA.pointsToConstantMemory(MemoryLocation(
                                  cast<LoadInst>(I)->getPointerOperand())));
}

/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
///
/// This is meant to be as simple and self-contained as possible. Because it
/// uses no cache, etc., it can be relatively expensive.
///
/// \param Start     The MemoryAccess that we want to walk from.
/// \param ClobberAt A clobber for Start.
/// \param StartLoc  The MemoryLocation for Start.
/// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
/// \param Query     The UpwardsMemoryQuery we used for our search.
/// \param AA        The AliasAnalysis we used for our search.
/// \param AllowImpreciseClobber Always false, unless we do relaxed verify.

template <typename AliasAnalysisType>
LLVM_ATTRIBUTE_UNUSED static void
checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
                   const MemoryLocation &StartLoc, const MemorySSA &MSSA,
                   const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
                   bool AllowImpreciseClobber = false) {
  assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");

  if (MSSA.isLiveOnEntryDef(Start)) {
    assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
           "liveOnEntry must clobber itself");
    return;
  }

  bool FoundClobber = false;
  DenseSet<ConstMemoryAccessPair> VisitedPhis;
  SmallVector<ConstMemoryAccessPair, 8> Worklist;
  Worklist.emplace_back(Start, StartLoc);
  // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
  // is found, complain.
  while (!Worklist.empty()) {
    auto MAP = Worklist.pop_back_val();
    // All we care about is that nothing from Start to ClobberAt clobbers Start.
    // We learn nothing from revisiting nodes.
    if (!VisitedPhis.insert(MAP).second)
      continue;

    for (const auto *MA : def_chain(MAP.first)) {
      if (MA == ClobberAt) {
        if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
          // instructionClobbersQuery isn't essentially free, so don't use `|=`,
          // since it won't let us short-circuit.
          //
          // Also, note that this can't be hoisted out of the `Worklist` loop,
          // since MD may only act as a clobber for 1 of N MemoryLocations.
          FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
          if (!FoundClobber) {
            ClobberAlias CA =
                instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
            if (CA.IsClobber) {
              FoundClobber = true;
              // Not used: CA.AR;
            }
          }
        }
        break;
      }

      // We should never hit liveOnEntry, unless it's the clobber.
      assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");

      if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
        // If Start is a Def, skip self.
        if (MD == Start)
          continue;

        assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
                    .IsClobber &&
               "Found clobber before reaching ClobberAt!");
        continue;
      }

      if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
        (void)MU;
        assert (MU == Start &&
                "Can only find use in def chain if Start is a use");
        continue;
      }

      assert(isa<MemoryPhi>(MA));
      Worklist.append(
          upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second},
                            MSSA.getDomTree()),
          upward_defs_end());
    }
  }

  // If the verify is done following an optimization, it's possible that
  // ClobberAt was a conservative clobbering, that we can now infer is not a
  // true clobbering access. Don't fail the verify if that's the case.
  // We do have accesses that claim they're optimized, but could be optimized
  // further. Updating all these can be expensive, so allow it for now (FIXME).
  if (AllowImpreciseClobber)
    return;

  // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
  // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
  assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
         "ClobberAt never acted as a clobber");
}

namespace {

/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
/// in one class.
template <class AliasAnalysisType> class ClobberWalker {
  /// Save a few bytes by using unsigned instead of size_t.
  using ListIndex = unsigned;

  /// Represents a span of contiguous MemoryDefs, potentially ending in a
  /// MemoryPhi.
  struct DefPath {
    MemoryLocation Loc;
    // Note that, because we always walk in reverse, Last will always dominate
    // First. Also note that First and Last are inclusive.
    MemoryAccess *First;
    MemoryAccess *Last;
    Optional<ListIndex> Previous;

    DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
            Optional<ListIndex> Previous)
        : Loc(Loc), First(First), Last(Last), Previous(Previous) {}

    DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
            Optional<ListIndex> Previous)
        : DefPath(Loc, Init, Init, Previous) {}
  };

  const MemorySSA &MSSA;
  AliasAnalysisType &AA;
  DominatorTree &DT;
  UpwardsMemoryQuery *Query;
  unsigned *UpwardWalkLimit;

  // Phi optimization bookkeeping
  SmallVector<DefPath, 32> Paths;
  DenseSet<ConstMemoryAccessPair> VisitedPhis;

  /// Find the nearest def or phi that `From` can legally be optimized to.
  const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
    assert(From->getNumOperands() && "Phi with no operands?");

    BasicBlock *BB = From->getBlock();
    MemoryAccess *Result = MSSA.getLiveOnEntryDef();
    DomTreeNode *Node = DT.getNode(BB);
    while ((Node = Node->getIDom())) {
      auto *Defs = MSSA.getBlockDefs(Node->getBlock());
      if (Defs)
        return &*Defs->rbegin();
    }
    return Result;
  }

  /// Result of calling walkToPhiOrClobber.
  struct UpwardsWalkResult {
    /// The "Result" of the walk. Either a clobber, the last thing we walked, or
    /// both. Include alias info when clobber found.
    MemoryAccess *Result;
    bool IsKnownClobber;
    Optional<AliasResult> AR;
  };

  /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
  /// This will update Desc.Last as it walks. It will (optionally) also stop at
  /// StopAt.
  ///
  /// This does not test for whether StopAt is a clobber
  UpwardsWalkResult
  walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
                     const MemoryAccess *SkipStopAt = nullptr) const {
    assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
    assert(UpwardWalkLimit && "Need a valid walk limit");
    bool LimitAlreadyReached = false;
    // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
    // it to 1. This will not do any alias() calls. It either returns in the
    // first iteration in the loop below, or is set back to 0 if all def chains
    // are free of MemoryDefs.
    if (!*UpwardWalkLimit) {
      *UpwardWalkLimit = 1;
      LimitAlreadyReached = true;
    }

    for (MemoryAccess *Current : def_chain(Desc.Last)) {
      Desc.Last = Current;
      if (Current == StopAt || Current == SkipStopAt)
        return {Current, false, MayAlias};

      if (auto *MD = dyn_cast<MemoryDef>(Current)) {
        if (MSSA.isLiveOnEntryDef(MD))
          return {MD, true, MustAlias};

        if (!--*UpwardWalkLimit)
          return {Current, true, MayAlias};

        ClobberAlias CA =
            instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
        if (CA.IsClobber)
          return {MD, true, CA.AR};
      }
    }

    if (LimitAlreadyReached)
      *UpwardWalkLimit = 0;

    assert(isa<MemoryPhi>(Desc.Last) &&
           "Ended at a non-clobber that's not a phi?");
    return {Desc.Last, false, MayAlias};
  }

  void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
                   ListIndex PriorNode) {
    auto UpwardDefs = make_range(
        upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT), upward_defs_end());
    for (const MemoryAccessPair &P : UpwardDefs) {
      PausedSearches.push_back(Paths.size());
      Paths.emplace_back(P.second, P.first, PriorNode);
    }
  }

  /// Represents a search that terminated after finding a clobber. This clobber
  /// may or may not be present in the path of defs from LastNode..SearchStart,
  /// since it may have been retrieved from cache.
  struct TerminatedPath {
    MemoryAccess *Clobber;
    ListIndex LastNode;
  };

  /// Get an access that keeps us from optimizing to the given phi.
  ///
  /// PausedSearches is an array of indices into the Paths array. Its incoming
  /// value is the indices of searches that stopped at the last phi optimization
  /// target. It's left in an unspecified state.
  ///
  /// If this returns None, NewPaused is a vector of searches that terminated
  /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
  Optional<TerminatedPath>
  getBlockingAccess(const MemoryAccess *StopWhere,
                    SmallVectorImpl<ListIndex> &PausedSearches,
                    SmallVectorImpl<ListIndex> &NewPaused,
                    SmallVectorImpl<TerminatedPath> &Terminated) {
    assert(!PausedSearches.empty() && "No searches to continue?");

    // BFS vs DFS really doesn't make a difference here, so just do a DFS with
    // PausedSearches as our stack.
    while (!PausedSearches.empty()) {
      ListIndex PathIndex = PausedSearches.pop_back_val();
      DefPath &Node = Paths[PathIndex];

      // If we've already visited this path with this MemoryLocation, we don't
      // need to do so again.
      //
      // NOTE: That we just drop these paths on the ground makes caching
      // behavior sporadic. e.g. given a diamond:
      //  A
      // B C
      //  D
      //
      // ...If we walk D, B, A, C, we'll only cache the result of phi
      // optimization for A, B, and D; C will be skipped because it dies here.
      // This arguably isn't the worst thing ever, since:
      //   - We generally query things in a top-down order, so if we got below D
      //     without needing cache entries for {C, MemLoc}, then chances are
      //     that those cache entries would end up ultimately unused.
      //   - We still cache things for A, so C only needs to walk up a bit.
      // If this behavior becomes problematic, we can fix without a ton of extra
      // work.
      if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
        continue;

      const MemoryAccess *SkipStopWhere = nullptr;
      if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
        assert(isa<MemoryDef>(Query->OriginalAccess));
        SkipStopWhere = Query->OriginalAccess;
      }

      UpwardsWalkResult Res = walkToPhiOrClobber(Node,
                                                 /*StopAt=*/StopWhere,
                                                 /*SkipStopAt=*/SkipStopWhere);
      if (Res.IsKnownClobber) {
        assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);

        // If this wasn't a cache hit, we hit a clobber when walking. That's a
        // failure.
        TerminatedPath Term{Res.Result, PathIndex};
        if (!MSSA.dominates(Res.Result, StopWhere))
          return Term;

        // Otherwise, it's a valid thing to potentially optimize to.
        Terminated.push_back(Term);
        continue;
      }

      if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
        // We've hit our target. Save this path off for if we want to continue
        // walking. If we are in the mode of skipping the OriginalAccess, and
        // we've reached back to the OriginalAccess, do not save path, we've
        // just looped back to self.
        if (Res.Result != SkipStopWhere)
          NewPaused.push_back(PathIndex);
        continue;
      }

      assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
      addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
    }

    return None;
  }

  template <typename T, typename Walker>
  struct generic_def_path_iterator
      : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
                                    std::forward_iterator_tag, T *> {
    generic_def_path_iterator() {}
    generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}

    T &operator*() const { return curNode(); }

    generic_def_path_iterator &operator++() {
      N = curNode().Previous;
      return *this;
    }

    bool operator==(const generic_def_path_iterator &O) const {
      if (N.hasValue() != O.N.hasValue())
        return false;
      return !N.hasValue() || *N == *O.N;
    }

  private:
    T &curNode() const { return W->Paths[*N]; }

    Walker *W = nullptr;
    Optional<ListIndex> N = None;
  };

  using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
  using const_def_path_iterator =
      generic_def_path_iterator<const DefPath, const ClobberWalker>;

  iterator_range<def_path_iterator> def_path(ListIndex From) {
    return make_range(def_path_iterator(this, From), def_path_iterator());
  }

  iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
    return make_range(const_def_path_iterator(this, From),
                      const_def_path_iterator());
  }

  struct OptznResult {
    /// The path that contains our result.
    TerminatedPath PrimaryClobber;
    /// The paths that we can legally cache back from, but that aren't
    /// necessarily the result of the Phi optimization.
    SmallVector<TerminatedPath, 4> OtherClobbers;
  };

  ListIndex defPathIndex(const DefPath &N) const {
    // The assert looks nicer if we don't need to do &N
    const DefPath *NP = &N;
    assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
           "Out of bounds DefPath!");
    return NP - &Paths.front();
  }

  /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
  /// that act as legal clobbers. Note that this won't return *all* clobbers.
  ///
  /// Phi optimization algorithm tl;dr:
  ///   - Find the earliest def/phi, A, we can optimize to
  ///   - Find if all paths from the starting memory access ultimately reach A
  ///     - If not, optimization isn't possible.
  ///     - Otherwise, walk from A to another clobber or phi, A'.
  ///       - If A' is a def, we're done.
  ///       - If A' is a phi, try to optimize it.
  ///
  /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
  /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
  OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
                             const MemoryLocation &Loc) {
    assert(Paths.empty() && VisitedPhis.empty() &&
           "Reset the optimization state.");

    Paths.emplace_back(Loc, Start, Phi, None);
    // Stores how many "valid" optimization nodes we had prior to calling
    // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
    auto PriorPathsSize = Paths.size();

    SmallVector<ListIndex, 16> PausedSearches;
    SmallVector<ListIndex, 8> NewPaused;
    SmallVector<TerminatedPath, 4> TerminatedPaths;

    addSearches(Phi, PausedSearches, 0);

    // Moves the TerminatedPath with the "most dominated" Clobber to the end of
    // Paths.
    auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
      assert(!Paths.empty() && "Need a path to move");
      auto Dom = Paths.begin();
      for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
        if (!MSSA.dominates(I->Clobber, Dom->Clobber))
          Dom = I;
      auto Last = Paths.end() - 1;
      if (Last != Dom)
        std::iter_swap(Last, Dom);
    };

    MemoryPhi *Current = Phi;
    while (true) {
      assert(!MSSA.isLiveOnEntryDef(Current) &&
             "liveOnEntry wasn't treated as a clobber?");

      const auto *Target = getWalkTarget(Current);
      // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
      // optimization for the prior phi.
      assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
        return MSSA.dominates(P.Clobber, Target);
      }));

      // FIXME: This is broken, because the Blocker may be reported to be
      // liveOnEntry, and we'll happily wait for that to disappear (read: never)
      // For the moment, this is fine, since we do nothing with blocker info.
      if (Optional<TerminatedPath> Blocker = getBlockingAccess(
              Target, PausedSearches, NewPaused, TerminatedPaths)) {

        // Find the node we started at. We can't search based on N->Last, since
        // we may have gone around a loop with a different MemoryLocation.
        auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
          return defPathIndex(N) < PriorPathsSize;
        });
        assert(Iter != def_path_iterator());

        DefPath &CurNode = *Iter;
        assert(CurNode.Last == Current);

        // Two things:
        // A. We can't reliably cache all of NewPaused back. Consider a case
        //    where we have two paths in NewPaused; one of which can't optimize
        //    above this phi, whereas the other can. If we cache the second path
        //    back, we'll end up with suboptimal cache entries. We can handle
        //    cases like this a bit better when we either try to find all
        //    clobbers that block phi optimization, or when our cache starts
        //    supporting unfinished searches.
        // B. We can't reliably cache TerminatedPaths back here without doing
        //    extra checks; consider a case like:
        //       T
        //      / \
        //     D   C
        //      \ /
        //       S
        //    Where T is our target, C is a node with a clobber on it, D is a
        //    diamond (with a clobber *only* on the left or right node, N), and
        //    S is our start. Say we walk to D, through the node opposite N
        //    (read: ignoring the clobber), and see a cache entry in the top
        //    node of D. That cache entry gets put into TerminatedPaths. We then
        //    walk up to C (N is later in our worklist), find the clobber, and
        //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
        //    the bottom part of D to the cached clobber, ignoring the clobber
        //    in N. Again, this problem goes away if we start tracking all
        //    blockers for a given phi optimization.
        TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
        return {Result, {}};
      }

      // If there's nothing left to search, then all paths led to valid clobbers
      // that we got from our cache; pick the nearest to the start, and allow
      // the rest to be cached back.
      if (NewPaused.empty()) {
        MoveDominatedPathToEnd(TerminatedPaths);
        TerminatedPath Result = TerminatedPaths.pop_back_val();
        return {Result, std::move(TerminatedPaths)};
      }

      MemoryAccess *DefChainEnd = nullptr;
      SmallVector<TerminatedPath, 4> Clobbers;
      for (ListIndex Paused : NewPaused) {
        UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
        if (WR.IsKnownClobber)
          Clobbers.push_back({WR.Result, Paused});
        else
          // Micro-opt: If we hit the end of the chain, save it.
          DefChainEnd = WR.Result;
      }

      if (!TerminatedPaths.empty()) {
        // If we couldn't find the dominating phi/liveOnEntry in the above loop,
        // do it now.
        if (!DefChainEnd)
          for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
            DefChainEnd = MA;
        assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");

        // If any of the terminated paths don't dominate the phi we'll try to
        // optimize, we need to figure out what they are and quit.
        const BasicBlock *ChainBB = DefChainEnd->getBlock();
        for (const TerminatedPath &TP : TerminatedPaths) {
          // Because we know that DefChainEnd is as "high" as we can go, we
          // don't need local dominance checks; BB dominance is sufficient.
          if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
            Clobbers.push_back(TP);
        }
      }

      // If we have clobbers in the def chain, find the one closest to Current
      // and quit.
      if (!Clobbers.empty()) {
        MoveDominatedPathToEnd(Clobbers);
        TerminatedPath Result = Clobbers.pop_back_val();
        return {Result, std::move(Clobbers)};
      }

      assert(all_of(NewPaused,
                    [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));

      // Because liveOnEntry is a clobber, this must be a phi.
      auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);

      PriorPathsSize = Paths.size();
      PausedSearches.clear();
      for (ListIndex I : NewPaused)
        addSearches(DefChainPhi, PausedSearches, I);
      NewPaused.clear();

      Current = DefChainPhi;
    }
  }

  void verifyOptResult(const OptznResult &R) const {
    assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
      return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
    }));
  }

  void resetPhiOptznState() {
    Paths.clear();
    VisitedPhis.clear();
  }

public:
  ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
      : MSSA(MSSA), AA(AA), DT(DT) {}

  AliasAnalysisType *getAA() { return &AA; }
  /// Finds the nearest clobber for the given query, optimizing phis if
  /// possible.
  MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
                            unsigned &UpWalkLimit) {
    Query = &Q;
    UpwardWalkLimit = &UpWalkLimit;
    // Starting limit must be > 0.
    if (!UpWalkLimit)
      UpWalkLimit++;

    MemoryAccess *Current = Start;
    // This walker pretends uses don't exist. If we're handed one, silently grab
    // its def. (This has the nice side-effect of ensuring we never cache uses)
    if (auto *MU = dyn_cast<MemoryUse>(Start))
      Current = MU->getDefiningAccess();

    DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
    // Fast path for the overly-common case (no crazy phi optimization
    // necessary)
    UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
    MemoryAccess *Result;
    if (WalkResult.IsKnownClobber) {
      Result = WalkResult.Result;
      Q.AR = WalkResult.AR;
    } else {
      OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
                                          Current, Q.StartingLoc);
      verifyOptResult(OptRes);
      resetPhiOptznState();
      Result = OptRes.PrimaryClobber.Clobber;
    }

#ifdef EXPENSIVE_CHECKS
    if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
      checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
#endif
    return Result;
  }
};

struct RenamePassData {
  DomTreeNode *DTN;
  DomTreeNode::const_iterator ChildIt;
  MemoryAccess *IncomingVal;

  RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
                 MemoryAccess *M)
      : DTN(D), ChildIt(It), IncomingVal(M) {}

  void swap(RenamePassData &RHS) {
    std::swap(DTN, RHS.DTN);
    std::swap(ChildIt, RHS.ChildIt);
    std::swap(IncomingVal, RHS.IncomingVal);
  }
};

} // end anonymous namespace

namespace llvm {

template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
  ClobberWalker<AliasAnalysisType> Walker;
  MemorySSA *MSSA;

public:
  ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
      : Walker(*M, *A, *D), MSSA(M) {}

  MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
                                              const MemoryLocation &,
                                              unsigned &);
  // Third argument (bool), defines whether the clobber search should skip the
  // original queried access. If true, there will be a follow-up query searching
  // for a clobber access past "self". Note that the Optimized access is not
  // updated if a new clobber is found by this SkipSelf search. If this
  // additional query becomes heavily used we may decide to cache the result.
  // Walker instantiations will decide how to set the SkipSelf bool.
  MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
};

/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
/// longer does caching on its own, but the name has been retained for the
/// moment.
template <class AliasAnalysisType>
class MemorySSA::CachingWalker final : public MemorySSAWalker {
  ClobberWalkerBase<AliasAnalysisType> *Walker;

public:
  CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
      : MemorySSAWalker(M), Walker(W) {}
  ~CachingWalker() override = default;

  using MemorySSAWalker::getClobberingMemoryAccess;

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc,
                                          unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
  }

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, UpwardWalkLimit);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
  }

  void invalidateInfo(MemoryAccess *MA) override {
    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
      MUD->resetOptimized();
  }
};

template <class AliasAnalysisType>
class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
  ClobberWalkerBase<AliasAnalysisType> *Walker;

public:
  SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
      : MemorySSAWalker(M), Walker(W) {}
  ~SkipSelfWalker() override = default;

  using MemorySSAWalker::getClobberingMemoryAccess;

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc,
                                          unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
  }

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, UpwardWalkLimit);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
  }

  void invalidateInfo(MemoryAccess *MA) override {
    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
      MUD->resetOptimized();
  }
};

} // end namespace llvm

void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
                                    bool RenameAllUses) {
  // Pass through values to our successors
  for (const BasicBlock *S : successors(BB)) {
    auto It = PerBlockAccesses.find(S);
    // Rename the phi nodes in our successor block
    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
      continue;
    AccessList *Accesses = It->second.get();
    auto *Phi = cast<MemoryPhi>(&Accesses->front());
    if (RenameAllUses) {
      bool ReplacementDone = false;
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
        if (Phi->getIncomingBlock(I) == BB) {
          Phi->setIncomingValue(I, IncomingVal);
          ReplacementDone = true;
        }
      (void) ReplacementDone;
      assert(ReplacementDone && "Incomplete phi during partial rename");
    } else
      Phi->addIncoming(IncomingVal, BB);
  }
}

/// Rename a single basic block into MemorySSA form.
/// Uses the standard SSA renaming algorithm.
/// \returns The new incoming value.
MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
                                     bool RenameAllUses) {
  auto It = PerBlockAccesses.find(BB);
  // Skip most processing if the list is empty.
  if (It != PerBlockAccesses.end()) {
    AccessList *Accesses = It->second.get();
    for (MemoryAccess &L : *Accesses) {
      if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
        if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
          MUD->setDefiningAccess(IncomingVal);
        if (isa<MemoryDef>(&L))
          IncomingVal = &L;
      } else {
        IncomingVal = &L;
      }
    }
  }
  return IncomingVal;
}

/// This is the standard SSA renaming algorithm.
///
/// We walk the dominator tree in preorder, renaming accesses, and then filling
/// in phi nodes in our successors.
void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
                           SmallPtrSetImpl<BasicBlock *> &Visited,
                           bool SkipVisited, bool RenameAllUses) {
  assert(Root && "Trying to rename accesses in an unreachable block");

  SmallVector<RenamePassData, 32> WorkStack;
  // Skip everything if we already renamed this block and we are skipping.
  // Note: You can't sink this into the if, because we need it to occur
  // regardless of whether we skip blocks or not.
  bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
  if (SkipVisited && AlreadyVisited)
    return;

  IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
  renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
  WorkStack.push_back({Root, Root->begin(), IncomingVal});

  while (!WorkStack.empty()) {
    DomTreeNode *Node = WorkStack.back().DTN;
    DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
    IncomingVal = WorkStack.back().IncomingVal;

    if (ChildIt == Node->end()) {
      WorkStack.pop_back();
    } else {
      DomTreeNode *Child = *ChildIt;
      ++WorkStack.back().ChildIt;
      BasicBlock *BB = Child->getBlock();
      // Note: You can't sink this into the if, because we need it to occur
      // regardless of whether we skip blocks or not.
      AlreadyVisited = !Visited.insert(BB).second;
      if (SkipVisited && AlreadyVisited) {
        // We already visited this during our renaming, which can happen when
        // being asked to rename multiple blocks. Figure out the incoming val,
        // which is the last def.
        // Incoming value can only change if there is a block def, and in that
        // case, it's the last block def in the list.
        if (auto *BlockDefs = getWritableBlockDefs(BB))
          IncomingVal = &*BlockDefs->rbegin();
      } else
        IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
      renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
      WorkStack.push_back({Child, Child->begin(), IncomingVal});
    }
  }
}

/// This handles unreachable block accesses by deleting phi nodes in
/// unreachable blocks, and marking all other unreachable MemoryAccess's as
/// being uses of the live on entry definition.
void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
  assert(!DT->isReachableFromEntry(BB) &&
         "Reachable block found while handling unreachable blocks");

  // Make sure phi nodes in our reachable successors end up with a
  // LiveOnEntryDef for our incoming edge, even though our block is forward
  // unreachable.  We could just disconnect these blocks from the CFG fully,
  // but we do not right now.
  for (const BasicBlock *S : successors(BB)) {
    if (!DT->isReachableFromEntry(S))
      continue;
    auto It = PerBlockAccesses.find(S);
    // Rename the phi nodes in our successor block
    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
      continue;
    AccessList *Accesses = It->second.get();
    auto *Phi = cast<MemoryPhi>(&Accesses->front());
    Phi->addIncoming(LiveOnEntryDef.get(), BB);
  }

  auto It = PerBlockAccesses.find(BB);
  if (It == PerBlockAccesses.end())
    return;

  auto &Accesses = It->second;
  for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
    auto Next = std::next(AI);
    // If we have a phi, just remove it. We are going to replace all
    // users with live on entry.
    if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
      UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
    else
      Accesses->erase(AI);
    AI = Next;
  }
}

MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
    : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
      SkipWalker(nullptr), NextID(0) {
  // Build MemorySSA using a batch alias analysis. This reuses the internal
  // state that AA collects during an alias()/getModRefInfo() call. This is
  // safe because there are no CFG changes while building MemorySSA and can
  // significantly reduce the time spent by the compiler in AA, because we will
  // make queries about all the instructions in the Function.
  assert(AA && "No alias analysis?");
  BatchAAResults BatchAA(*AA);
  buildMemorySSA(BatchAA);
  // Intentionally leave AA to nullptr while building so we don't accidently
  // use non-batch AliasAnalysis.
  this->AA = AA;
  // Also create the walker here.
  getWalker();
}

MemorySSA::~MemorySSA() {
  // Drop all our references
  for (const auto &Pair : PerBlockAccesses)
    for (MemoryAccess &MA : *Pair.second)
      MA.dropAllReferences();
}

MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
  auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));

  if (Res.second)
    Res.first->second = std::make_unique<AccessList>();
  return Res.first->second.get();
}

MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
  auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));

  if (Res.second)
    Res.first->second = std::make_unique<DefsList>();
  return Res.first->second.get();
}

namespace llvm {

/// This class is a batch walker of all MemoryUse's in the program, and points
/// their defining access at the thing that actually clobbers them.  Because it
/// is a batch walker that touches everything, it does not operate like the
/// other walkers.  This walker is basically performing a top-down SSA renaming
/// pass, where the version stack is used as the cache.  This enables it to be
/// significantly more time and memory efficient than using the regular walker,
/// which is walking bottom-up.
class MemorySSA::OptimizeUses {
public:
  OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
               BatchAAResults *BAA, DominatorTree *DT)
      : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}

  void optimizeUses();

private:
  /// This represents where a given memorylocation is in the stack.
  struct MemlocStackInfo {
    // This essentially is keeping track of versions of the stack. Whenever
    // the stack changes due to pushes or pops, these versions increase.
    unsigned long StackEpoch;
    unsigned long PopEpoch;
    // This is the lower bound of places on the stack to check. It is equal to
    // the place the last stack walk ended.
    // Note: Correctness depends on this being initialized to 0, which densemap
    // does
    unsigned long LowerBound;
    const BasicBlock *LowerBoundBlock;
    // This is where the last walk for this memory location ended.
    unsigned long LastKill;
    bool LastKillValid;
    Optional<AliasResult> AR;
  };

  void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
                           SmallVectorImpl<MemoryAccess *> &,
                           DenseMap<MemoryLocOrCall, MemlocStackInfo> &);

  MemorySSA *MSSA;
  CachingWalker<BatchAAResults> *Walker;
  BatchAAResults *AA;
  DominatorTree *DT;
};

} // end namespace llvm

/// Optimize the uses in a given block This is basically the SSA renaming
/// algorithm, with one caveat: We are able to use a single stack for all
/// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
/// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
/// going to be some position in that stack of possible ones.
///
/// We track the stack positions that each MemoryLocation needs
/// to check, and last ended at.  This is because we only want to check the
/// things that changed since last time.  The same MemoryLocation should
/// get clobbered by the same store (getModRefInfo does not use invariantness or
/// things like this, and if they start, we can modify MemoryLocOrCall to
/// include relevant data)
void MemorySSA::OptimizeUses::optimizeUsesInBlock(
    const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
    SmallVectorImpl<MemoryAccess *> &VersionStack,
    DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {

  /// If no accesses, nothing to do.
  MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
  if (Accesses == nullptr)
    return;

  // Pop everything that doesn't dominate the current block off the stack,
  // increment the PopEpoch to account for this.
  while (true) {
    assert(
        !VersionStack.empty() &&
        "Version stack should have liveOnEntry sentinel dominating everything");
    BasicBlock *BackBlock = VersionStack.back()->getBlock();
    if (DT->dominates(BackBlock, BB))
      break;
    while (VersionStack.back()->getBlock() == BackBlock)
      VersionStack.pop_back();
    ++PopEpoch;
  }

  for (MemoryAccess &MA : *Accesses) {
    auto *MU = dyn_cast<MemoryUse>(&MA);
    if (!MU) {
      VersionStack.push_back(&MA);
      ++StackEpoch;
      continue;
    }

    if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
      MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
      continue;
    }

    MemoryLocOrCall UseMLOC(MU);
    auto &LocInfo = LocStackInfo[UseMLOC];
    // If the pop epoch changed, it means we've removed stuff from top of
    // stack due to changing blocks. We may have to reset the lower bound or
    // last kill info.
    if (LocInfo.PopEpoch != PopEpoch) {
      LocInfo.PopEpoch = PopEpoch;
      LocInfo.StackEpoch = StackEpoch;
      // If the lower bound was in something that no longer dominates us, we
      // have to reset it.
      // We can't simply track stack size, because the stack may have had
      // pushes/pops in the meantime.
      // XXX: This is non-optimal, but only is slower cases with heavily
      // branching dominator trees.  To get the optimal number of queries would
      // be to make lowerbound and lastkill a per-loc stack, and pop it until
      // the top of that stack dominates us.  This does not seem worth it ATM.
      // A much cheaper optimization would be to always explore the deepest
      // branch of the dominator tree first. This will guarantee this resets on
      // the smallest set of blocks.
      if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
          !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
        // Reset the lower bound of things to check.
        // TODO: Some day we should be able to reset to last kill, rather than
        // 0.
        LocInfo.LowerBound = 0;
        LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
        LocInfo.LastKillValid = false;
      }
    } else if (LocInfo.StackEpoch != StackEpoch) {
      // If all that has changed is the StackEpoch, we only have to check the
      // new things on the stack, because we've checked everything before.  In
      // this case, the lower bound of things to check remains the same.
      LocInfo.PopEpoch = PopEpoch;
      LocInfo.StackEpoch = StackEpoch;
    }
    if (!LocInfo.LastKillValid) {
      LocInfo.LastKill = VersionStack.size() - 1;
      LocInfo.LastKillValid = true;
      LocInfo.AR = MayAlias;
    }

    // At this point, we should have corrected last kill and LowerBound to be
    // in bounds.
    assert(LocInfo.LowerBound < VersionStack.size() &&
           "Lower bound out of range");
    assert(LocInfo.LastKill < VersionStack.size() &&
           "Last kill info out of range");
    // In any case, the new upper bound is the top of the stack.
    unsigned long UpperBound = VersionStack.size() - 1;

    if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
      LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
                        << *(MU->getMemoryInst()) << ")"
                        << " because there are "
                        << UpperBound - LocInfo.LowerBound
                        << " stores to disambiguate\n");
      // Because we did not walk, LastKill is no longer valid, as this may
      // have been a kill.
      LocInfo.LastKillValid = false;
      continue;
    }
    bool FoundClobberResult = false;
    unsigned UpwardWalkLimit = MaxCheckLimit;
    while (UpperBound > LocInfo.LowerBound) {
      if (isa<MemoryPhi>(VersionStack[UpperBound])) {
        // For phis, use the walker, see where we ended up, go there
        MemoryAccess *Result =
            Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
        // We are guaranteed to find it or something is wrong
        while (VersionStack[UpperBound] != Result) {
          assert(UpperBound != 0);
          --UpperBound;
        }
        FoundClobberResult = true;
        break;
      }

      MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
      // If the lifetime of the pointer ends at this instruction, it's live on
      // entry.
      if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
        // Reset UpperBound to liveOnEntryDef's place in the stack
        UpperBound = 0;
        FoundClobberResult = true;
        LocInfo.AR = MustAlias;
        break;
      }
      ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
      if (CA.IsClobber) {
        FoundClobberResult = true;
        LocInfo.AR = CA.AR;
        break;
      }
      --UpperBound;
    }

    // Note: Phis always have AliasResult AR set to MayAlias ATM.

    // At the end of this loop, UpperBound is either a clobber, or lower bound
    // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
    if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
      // We were last killed now by where we got to
      if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
        LocInfo.AR = None;
      MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
      LocInfo.LastKill = UpperBound;
    } else {
      // Otherwise, we checked all the new ones, and now we know we can get to
      // LastKill.
      MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
    }
    LocInfo.LowerBound = VersionStack.size() - 1;
    LocInfo.LowerBoundBlock = BB;
  }
}

/// Optimize uses to point to their actual clobbering definitions.
void MemorySSA::OptimizeUses::optimizeUses() {
  SmallVector<MemoryAccess *, 16> VersionStack;
  DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
  VersionStack.push_back(MSSA->getLiveOnEntryDef());

  unsigned long StackEpoch = 1;
  unsigned long PopEpoch = 1;
  // We perform a non-recursive top-down dominator tree walk.
  for (const auto *DomNode : depth_first(DT->getRootNode()))
    optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
                        LocStackInfo);
}

void MemorySSA::placePHINodes(
    const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
  // Determine where our MemoryPhi's should go
  ForwardIDFCalculator IDFs(*DT);
  IDFs.setDefiningBlocks(DefiningBlocks);
  SmallVector<BasicBlock *, 32> IDFBlocks;
  IDFs.calculate(IDFBlocks);

  // Now place MemoryPhi nodes.
  for (auto &BB : IDFBlocks)
    createMemoryPhi(BB);
}

void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
  // We create an access to represent "live on entry", for things like
  // arguments or users of globals, where the memory they use is defined before
  // the beginning of the function. We do not actually insert it into the IR.
  // We do not define a live on exit for the immediate uses, and thus our
  // semantics do *not* imply that something with no immediate uses can simply
  // be removed.
  BasicBlock &StartingPoint = F.getEntryBlock();
  LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
                                     &StartingPoint, NextID++));

  // We maintain lists of memory accesses per-block, trading memory for time. We
  // could just look up the memory access for every possible instruction in the
  // stream.
  SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
  // Go through each block, figure out where defs occur, and chain together all
  // the accesses.
  for (BasicBlock &B : F) {
    bool InsertIntoDef = false;
    AccessList *Accesses = nullptr;
    DefsList *Defs = nullptr;
    for (Instruction &I : B) {
      MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
      if (!MUD)
        continue;

      if (!Accesses)
        Accesses = getOrCreateAccessList(&B);
      Accesses->push_back(MUD);
      if (isa<MemoryDef>(MUD)) {
        InsertIntoDef = true;
        if (!Defs)
          Defs = getOrCreateDefsList(&B);
        Defs->push_back(*MUD);
      }
    }
    if (InsertIntoDef)
      DefiningBlocks.insert(&B);
  }
  placePHINodes(DefiningBlocks);

  // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
  // filled in with all blocks.
  SmallPtrSet<BasicBlock *, 16> Visited;
  renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);

  ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
  CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
  OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();

  // Mark the uses in unreachable blocks as live on entry, so that they go
  // somewhere.
  for (auto &BB : F)
    if (!Visited.count(&BB))
      markUnreachableAsLiveOnEntry(&BB);
}

MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }

MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
  if (Walker)
    return Walker.get();

  if (!WalkerBase)
    WalkerBase =
        std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);

  Walker =
      std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
  return Walker.get();
}

MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
  if (SkipWalker)
    return SkipWalker.get();

  if (!WalkerBase)
    WalkerBase =
        std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);

  SkipWalker =
      std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
  return SkipWalker.get();
 }


// This is a helper function used by the creation routines. It places NewAccess
// into the access and defs lists for a given basic block, at the given
// insertion point.
void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
                                        const BasicBlock *BB,
                                        InsertionPlace Point) {
  auto *Accesses = getOrCreateAccessList(BB);
  if (Point == Beginning) {
    // If it's a phi node, it goes first, otherwise, it goes after any phi
    // nodes.
    if (isa<MemoryPhi>(NewAccess)) {
      Accesses->push_front(NewAccess);
      auto *Defs = getOrCreateDefsList(BB);
      Defs->push_front(*NewAccess);
    } else {
      auto AI = find_if_not(
          *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
      Accesses->insert(AI, NewAccess);
      if (!isa<MemoryUse>(NewAccess)) {
        auto *Defs = getOrCreateDefsList(BB);
        auto DI = find_if_not(
            *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
        Defs->insert(DI, *NewAccess);
      }
    }
  } else {
    Accesses->push_back(NewAccess);
    if (!isa<MemoryUse>(NewAccess)) {
      auto *Defs = getOrCreateDefsList(BB);
      Defs->push_back(*NewAccess);
    }
  }
  BlockNumberingValid.erase(BB);
}

void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
                                      AccessList::iterator InsertPt) {
  auto *Accesses = getWritableBlockAccesses(BB);
  bool WasEnd = InsertPt == Accesses->end();
  Accesses->insert(AccessList::iterator(InsertPt), What);
  if (!isa<MemoryUse>(What)) {
    auto *Defs = getOrCreateDefsList(BB);
    // If we got asked to insert at the end, we have an easy job, just shove it
    // at the end. If we got asked to insert before an existing def, we also get
    // an iterator. If we got asked to insert before a use, we have to hunt for
    // the next def.
    if (WasEnd) {
      Defs->push_back(*What);
    } else if (isa<MemoryDef>(InsertPt)) {
      Defs->insert(InsertPt->getDefsIterator(), *What);
    } else {
      while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
        ++InsertPt;
      // Either we found a def, or we are inserting at the end
      if (InsertPt == Accesses->end())
        Defs->push_back(*What);
      else
        Defs->insert(InsertPt->getDefsIterator(), *What);
    }
  }
  BlockNumberingValid.erase(BB);
}

void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
  // Keep it in the lookup tables, remove from the lists
  removeFromLists(What, false);

  // Note that moving should implicitly invalidate the optimized state of a
  // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
  // MemoryDef.
  if (auto *MD = dyn_cast<MemoryDef>(What))
    MD->resetOptimized();
  What->setBlock(BB);
}

// Move What before Where in the IR.  The end result is that What will belong to
// the right lists and have the right Block set, but will not otherwise be
// correct. It will not have the right defining access, and if it is a def,
// things below it will not properly be updated.
void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
                       AccessList::iterator Where) {
  prepareForMoveTo(What, BB);
  insertIntoListsBefore(What, BB, Where);
}

void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
                       InsertionPlace Point) {
  if (isa<MemoryPhi>(What)) {
    assert(Point == Beginning &&
           "Can only move a Phi at the beginning of the block");
    // Update lookup table entry
    ValueToMemoryAccess.erase(What->getBlock());
    bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
    (void)Inserted;
    assert(Inserted && "Cannot move a Phi to a block that already has one");
  }

  prepareForMoveTo(What, BB);
  insertIntoListsForBlock(What, BB, Point);
}

MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
  assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
  MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
  // Phi's always are placed at the front of the block.
  insertIntoListsForBlock(Phi, BB, Beginning);
  ValueToMemoryAccess[BB] = Phi;
  return Phi;
}

MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
                                               MemoryAccess *Definition,
                                               const MemoryUseOrDef *Template,
                                               bool CreationMustSucceed) {
  assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
  MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
  if (CreationMustSucceed)
    assert(NewAccess != nullptr && "Tried to create a memory access for a "
                                   "non-memory touching instruction");
  if (NewAccess)
    NewAccess->setDefiningAccess(Definition);
  return NewAccess;
}

// Return true if the instruction has ordering constraints.
// Note specifically that this only considers stores and loads
// because others are still considered ModRef by getModRefInfo.
static inline bool isOrdered(const Instruction *I) {
  if (auto *SI = dyn_cast<StoreInst>(I)) {
    if (!SI->isUnordered())
      return true;
  } else if (auto *LI = dyn_cast<LoadInst>(I)) {
    if (!LI->isUnordered())
      return true;
  }
  return false;
}

/// Helper function to create new memory accesses
template <typename AliasAnalysisType>
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
                                           AliasAnalysisType *AAP,
                                           const MemoryUseOrDef *Template) {
  // The assume intrinsic has a control dependency which we model by claiming
  // that it writes arbitrarily. Debuginfo intrinsics may be considered
  // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
  // dependencies here.
  // FIXME: Replace this special casing with a more accurate modelling of
  // assume's control dependency.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
    if (II->getIntrinsicID() == Intrinsic::assume)
      return nullptr;

  // Using a nonstandard AA pipelines might leave us with unexpected modref
  // results for I, so add a check to not model instructions that may not read
  // from or write to memory. This is necessary for correctness.
  if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
    return nullptr;

  bool Def, Use;
  if (Template) {
    Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
    Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
#if !defined(NDEBUG)
    ModRefInfo ModRef = AAP->getModRefInfo(I, None);
    bool DefCheck, UseCheck;
    DefCheck = isModSet(ModRef) || isOrdered(I);
    UseCheck = isRefSet(ModRef);
    assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
#endif
  } else {
    // Find out what affect this instruction has on memory.
    ModRefInfo ModRef = AAP->getModRefInfo(I, None);
    // The isOrdered check is used to ensure that volatiles end up as defs
    // (atomics end up as ModRef right now anyway).  Until we separate the
    // ordering chain from the memory chain, this enables people to see at least
    // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
    // will still give an answer that bypasses other volatile loads.  TODO:
    // Separate memory aliasing and ordering into two different chains so that
    // we can precisely represent both "what memory will this read/write/is
    // clobbered by" and "what instructions can I move this past".
    Def = isModSet(ModRef) || isOrdered(I);
    Use = isRefSet(ModRef);
  }

  // It's possible for an instruction to not modify memory at all. During
  // construction, we ignore them.
  if (!Def && !Use)
    return nullptr;

  MemoryUseOrDef *MUD;
  if (Def)
    MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
  else
    MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
  ValueToMemoryAccess[I] = MUD;
  return MUD;
}

/// Returns true if \p Replacer dominates \p Replacee .
bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
                             const MemoryAccess *Replacee) const {
  if (isa<MemoryUseOrDef>(Replacee))
    return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
  const auto *MP = cast<MemoryPhi>(Replacee);
  // For a phi node, the use occurs in the predecessor block of the phi node.
  // Since we may occur multiple times in the phi node, we have to check each
  // operand to ensure Replacer dominates each operand where Replacee occurs.
  for (const Use &Arg : MP->operands()) {
    if (Arg.get() != Replacee &&
        !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
      return false;
  }
  return true;
}

/// Properly remove \p MA from all of MemorySSA's lookup tables.
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
  assert(MA->use_empty() &&
         "Trying to remove memory access that still has uses");
  BlockNumbering.erase(MA);
  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
    MUD->setDefiningAccess(nullptr);
  // Invalidate our walker's cache if necessary
  if (!isa<MemoryUse>(MA))
    getWalker()->invalidateInfo(MA);

  Value *MemoryInst;
  if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
    MemoryInst = MUD->getMemoryInst();
  else
    MemoryInst = MA->getBlock();

  auto VMA = ValueToMemoryAccess.find(MemoryInst);
  if (VMA->second == MA)
    ValueToMemoryAccess.erase(VMA);
}

/// Properly remove \p MA from all of MemorySSA's lists.
///
/// Because of the way the intrusive list and use lists work, it is important to
/// do removal in the right order.
/// ShouldDelete defaults to true, and will cause the memory access to also be
/// deleted, not just removed.
void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
  BasicBlock *BB = MA->getBlock();
  // The access list owns the reference, so we erase it from the non-owning list
  // first.
  if (!isa<MemoryUse>(MA)) {
    auto DefsIt = PerBlockDefs.find(BB);
    std::unique_ptr<DefsList> &Defs = DefsIt->second;
    Defs->remove(*MA);
    if (Defs->empty())
      PerBlockDefs.erase(DefsIt);
  }

  // The erase call here will delete it. If we don't want it deleted, we call
  // remove instead.
  auto AccessIt = PerBlockAccesses.find(BB);
  std::unique_ptr<AccessList> &Accesses = AccessIt->second;
  if (ShouldDelete)
    Accesses->erase(MA);
  else
    Accesses->remove(MA);

  if (Accesses->empty()) {
    PerBlockAccesses.erase(AccessIt);
    BlockNumberingValid.erase(BB);
  }
}

void MemorySSA::print(raw_ostream &OS) const {
  MemorySSAAnnotatedWriter Writer(this);
  F.print(OS, &Writer);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
#endif

void MemorySSA::verifyMemorySSA() const {
  verifyOrderingDominationAndDefUses(F);
  verifyDominationNumbers(F);
  verifyPrevDefInPhis(F);
  // Previously, the verification used to also verify that the clobberingAccess
  // cached by MemorySSA is the same as the clobberingAccess found at a later
  // query to AA. This does not hold true in general due to the current fragility
  // of BasicAA which has arbitrary caps on the things it analyzes before giving
  // up. As a result, transformations that are correct, will lead to BasicAA
  // returning different Alias answers before and after that transformation.
  // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
  // random, in the worst case we'd need to rebuild MemorySSA from scratch after
  // every transformation, which defeats the purpose of using it. For such an
  // example, see test4 added in D51960.
}

void MemorySSA::verifyPrevDefInPhis(Function &F) const {
#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
  for (const BasicBlock &BB : F) {
    if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
        auto *Pred = Phi->getIncomingBlock(I);
        auto *IncAcc = Phi->getIncomingValue(I);
        // If Pred has no unreachable predecessors, get last def looking at
        // IDoms. If, while walkings IDoms, any of these has an unreachable
        // predecessor, then the incoming def can be any access.
        if (auto *DTNode = DT->getNode(Pred)) {
          while (DTNode) {
            if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
              auto *LastAcc = &*(--DefList->end());
              assert(LastAcc == IncAcc &&
                     "Incorrect incoming access into phi.");
              break;
            }
            DTNode = DTNode->getIDom();
          }
        } else {
          // If Pred has unreachable predecessors, but has at least a Def, the
          // incoming access can be the last Def in Pred, or it could have been
          // optimized to LoE. After an update, though, the LoE may have been
          // replaced by another access, so IncAcc may be any access.
          // If Pred has unreachable predecessors and no Defs, incoming access
          // should be LoE; However, after an update, it may be any access.
        }
      }
    }
  }
#endif
}

/// Verify that all of the blocks we believe to have valid domination numbers
/// actually have valid domination numbers.
void MemorySSA::verifyDominationNumbers(const Function &F) const {
#ifndef NDEBUG
  if (BlockNumberingValid.empty())
    return;

  SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
  for (const BasicBlock &BB : F) {
    if (!ValidBlocks.count(&BB))
      continue;

    ValidBlocks.erase(&BB);

    const AccessList *Accesses = getBlockAccesses(&BB);
    // It's correct to say an empty block has valid numbering.
    if (!Accesses)
      continue;

    // Block numbering starts at 1.
    unsigned long LastNumber = 0;
    for (const MemoryAccess &MA : *Accesses) {
      auto ThisNumberIter = BlockNumbering.find(&MA);
      assert(ThisNumberIter != BlockNumbering.end() &&
             "MemoryAccess has no domination number in a valid block!");

      unsigned long ThisNumber = ThisNumberIter->second;
      assert(ThisNumber > LastNumber &&
             "Domination numbers should be strictly increasing!");
      LastNumber = ThisNumber;
    }
  }

  assert(ValidBlocks.empty() &&
         "All valid BasicBlocks should exist in F -- dangling pointers?");
#endif
}

/// Verify ordering: the order and existence of MemoryAccesses matches the
/// order and existence of memory affecting instructions.
/// Verify domination: each definition dominates all of its uses.
/// Verify def-uses: the immediate use information - walk all the memory
/// accesses and verifying that, for each use, it appears in the appropriate
/// def's use list
void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const {
#if !defined(NDEBUG)
  // Walk all the blocks, comparing what the lookups think and what the access
  // lists think, as well as the order in the blocks vs the order in the access
  // lists.
  SmallVector<MemoryAccess *, 32> ActualAccesses;
  SmallVector<MemoryAccess *, 32> ActualDefs;
  for (BasicBlock &B : F) {
    const AccessList *AL = getBlockAccesses(&B);
    const auto *DL = getBlockDefs(&B);
    MemoryPhi *Phi = getMemoryAccess(&B);
    if (Phi) {
      // Verify ordering.
      ActualAccesses.push_back(Phi);
      ActualDefs.push_back(Phi);
      // Verify domination
      for (const Use &U : Phi->uses())
        assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
#if defined(EXPENSIVE_CHECKS)
      // Verify def-uses.
      assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
                                          pred_begin(&B), pred_end(&B))) &&
             "Incomplete MemoryPhi Node");
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
        verifyUseInDefs(Phi->getIncomingValue(I), Phi);
        assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
                   pred_end(&B) &&
               "Incoming phi block not a block predecessor");
      }
#endif
    }

    for (Instruction &I : B) {
      MemoryUseOrDef *MA = getMemoryAccess(&I);
      assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
             "We have memory affecting instructions "
             "in this block but they are not in the "
             "access list or defs list");
      if (MA) {
        // Verify ordering.
        ActualAccesses.push_back(MA);
        if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
          // Verify ordering.
          ActualDefs.push_back(MA);
          // Verify domination.
          for (const Use &U : MD->uses())
            assert(dominates(MD, U) &&
                   "Memory Def does not dominate it's uses");
        }
#if defined(EXPENSIVE_CHECKS)
        // Verify def-uses.
        verifyUseInDefs(MA->getDefiningAccess(), MA);
#endif
      }
    }
    // Either we hit the assert, really have no accesses, or we have both
    // accesses and an access list. Same with defs.
    if (!AL && !DL)
      continue;
    // Verify ordering.
    assert(AL->size() == ActualAccesses.size() &&
           "We don't have the same number of accesses in the block as on the "
           "access list");
    assert((DL || ActualDefs.size() == 0) &&
           "Either we should have a defs list, or we should have no defs");
    assert((!DL || DL->size() == ActualDefs.size()) &&
           "We don't have the same number of defs in the block as on the "
           "def list");
    auto ALI = AL->begin();
    auto AAI = ActualAccesses.begin();
    while (ALI != AL->end() && AAI != ActualAccesses.end()) {
      assert(&*ALI == *AAI && "Not the same accesses in the same order");
      ++ALI;
      ++AAI;
    }
    ActualAccesses.clear();
    if (DL) {
      auto DLI = DL->begin();
      auto ADI = ActualDefs.begin();
      while (DLI != DL->end() && ADI != ActualDefs.end()) {
        assert(&*DLI == *ADI && "Not the same defs in the same order");
        ++DLI;
        ++ADI;
      }
    }
    ActualDefs.clear();
  }
#endif
}

/// Verify the def-use lists in MemorySSA, by verifying that \p Use
/// appears in the use list of \p Def.
void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
#ifndef NDEBUG
  // The live on entry use may cause us to get a NULL def here
  if (!Def)
    assert(isLiveOnEntryDef(Use) &&
           "Null def but use not point to live on entry def");
  else
    assert(is_contained(Def->users(), Use) &&
           "Did not find use in def's use list");
#endif
}

/// Perform a local numbering on blocks so that instruction ordering can be
/// determined in constant time.
/// TODO: We currently just number in order.  If we numbered by N, we could
/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
/// log2(N) sequences of mixed before and after) without needing to invalidate
/// the numbering.
void MemorySSA::renumberBlock(const BasicBlock *B) const {
  // The pre-increment ensures the numbers really start at 1.
  unsigned long CurrentNumber = 0;
  const AccessList *AL = getBlockAccesses(B);
  assert(AL != nullptr && "Asking to renumber an empty block");
  for (const auto &I : *AL)
    BlockNumbering[&I] = ++CurrentNumber;
  BlockNumberingValid.insert(B);
}

/// Determine, for two memory accesses in the same block,
/// whether \p Dominator dominates \p Dominatee.
/// \returns True if \p Dominator dominates \p Dominatee.
bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
                                 const MemoryAccess *Dominatee) const {
  const BasicBlock *DominatorBlock = Dominator->getBlock();

  assert((DominatorBlock == Dominatee->getBlock()) &&
         "Asking for local domination when accesses are in different blocks!");
  // A node dominates itself.
  if (Dominatee == Dominator)
    return true;

  // When Dominatee is defined on function entry, it is not dominated by another
  // memory access.
  if (isLiveOnEntryDef(Dominatee))
    return false;

  // When Dominator is defined on function entry, it dominates the other memory
  // access.
  if (isLiveOnEntryDef(Dominator))
    return true;

  if (!BlockNumberingValid.count(DominatorBlock))
    renumberBlock(DominatorBlock);

  unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
  // All numbers start with 1
  assert(DominatorNum != 0 && "Block was not numbered properly");
  unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
  assert(DominateeNum != 0 && "Block was not numbered properly");
  return DominatorNum < DominateeNum;
}

bool MemorySSA::dominates(const MemoryAccess *Dominator,
                          const MemoryAccess *Dominatee) const {
  if (Dominator == Dominatee)
    return true;

  if (isLiveOnEntryDef(Dominatee))
    return false;

  if (Dominator->getBlock() != Dominatee->getBlock())
    return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
  return locallyDominates(Dominator, Dominatee);
}

bool MemorySSA::dominates(const MemoryAccess *Dominator,
                          const Use &Dominatee) const {
  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
    BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
    // The def must dominate the incoming block of the phi.
    if (UseBB != Dominator->getBlock())
      return DT->dominates(Dominator->getBlock(), UseBB);
    // If the UseBB and the DefBB are the same, compare locally.
    return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
  }
  // If it's not a PHI node use, the normal dominates can already handle it.
  return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
}

const static char LiveOnEntryStr[] = "liveOnEntry";

void MemoryAccess::print(raw_ostream &OS) const {
  switch (getValueID()) {
  case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
  case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
  case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
  }
  llvm_unreachable("invalid value id");
}

void MemoryDef::print(raw_ostream &OS) const {
  MemoryAccess *UO = getDefiningAccess();

  auto printID = [&OS](MemoryAccess *A) {
    if (A && A->getID())
      OS << A->getID();
    else
      OS << LiveOnEntryStr;
  };

  OS << getID() << " = MemoryDef(";
  printID(UO);
  OS << ")";

  if (isOptimized()) {
    OS << "->";
    printID(getOptimized());

    if (Optional<AliasResult> AR = getOptimizedAccessType())
      OS << " " << *AR;
  }
}

void MemoryPhi::print(raw_ostream &OS) const {
  bool First = true;
  OS << getID() << " = MemoryPhi(";
  for (const auto &Op : operands()) {
    BasicBlock *BB = getIncomingBlock(Op);
    MemoryAccess *MA = cast<MemoryAccess>(Op);
    if (!First)
      OS << ',';
    else
      First = false;

    OS << '{';
    if (BB->hasName())
      OS << BB->getName();
    else
      BB->printAsOperand(OS, false);
    OS << ',';
    if (unsigned ID = MA->getID())
      OS << ID;
    else
      OS << LiveOnEntryStr;
    OS << '}';
  }
  OS << ')';
}

void MemoryUse::print(raw_ostream &OS) const {
  MemoryAccess *UO = getDefiningAccess();
  OS << "MemoryUse(";
  if (UO && UO->getID())
    OS << UO->getID();
  else
    OS << LiveOnEntryStr;
  OS << ')';

  if (Optional<AliasResult> AR = getOptimizedAccessType())
    OS << " " << *AR;
}

void MemoryAccess::dump() const {
// Cannot completely remove virtual function even in release mode.
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  print(dbgs());
  dbgs() << "\n";
#endif
}

char MemorySSAPrinterLegacyPass::ID = 0;

MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
  initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
}

void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<MemorySSAWrapperPass>();
}

bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
  auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
  MSSA.print(dbgs());
  if (VerifyMemorySSA)
    MSSA.verifyMemorySSA();
  return false;
}

AnalysisKey MemorySSAAnalysis::Key;

MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
}

bool MemorySSAAnalysis::Result::invalidate(
    Function &F, const PreservedAnalyses &PA,
    FunctionAnalysisManager::Invalidator &Inv) {
  auto PAC = PA.getChecker<MemorySSAAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
         Inv.invalidate<AAManager>(F, PA) ||
         Inv.invalidate<DominatorTreeAnalysis>(F, PA);
}

PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  OS << "MemorySSA for function: " << F.getName() << "\n";
  AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);

  return PreservedAnalyses::all();
}

PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
                                             FunctionAnalysisManager &AM) {
  AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();

  return PreservedAnalyses::all();
}

char MemorySSAWrapperPass::ID = 0;

MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
  initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
}

void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }

void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<AAResultsWrapperPass>();
}

bool MemorySSAWrapperPass::runOnFunction(Function &F) {
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  MSSA.reset(new MemorySSA(F, &AA, &DT));
  return false;
}

void MemorySSAWrapperPass::verifyAnalysis() const {
  if (VerifyMemorySSA)
    MSSA->verifyMemorySSA();
}

void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
  MSSA->print(OS);
}

MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}

/// Walk the use-def chains starting at \p StartingAccess and find
/// the MemoryAccess that actually clobbers Loc.
///
/// \returns our clobbering memory access
template <typename AliasAnalysisType>
MemoryAccess *
MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
    MemoryAccess *StartingAccess, const MemoryLocation &Loc,
    unsigned &UpwardWalkLimit) {
  if (isa<MemoryPhi>(StartingAccess))
    return StartingAccess;

  auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
  if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
    return StartingUseOrDef;

  Instruction *I = StartingUseOrDef->getMemoryInst();

  // Conservatively, fences are always clobbers, so don't perform the walk if we
  // hit a fence.
  if (!isa<CallBase>(I) && I->isFenceLike())
    return StartingUseOrDef;

  UpwardsMemoryQuery Q;
  Q.OriginalAccess = StartingUseOrDef;
  Q.StartingLoc = Loc;
  Q.Inst = I;
  Q.IsCall = false;

  // Unlike the other function, do not walk to the def of a def, because we are
  // handed something we already believe is the clobbering access.
  // We never set SkipSelf to true in Q in this method.
  MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
                                     ? StartingUseOrDef->getDefiningAccess()
                                     : StartingUseOrDef;

  MemoryAccess *Clobber =
      Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
  LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *Clobber << "\n");
  return Clobber;
}

template <typename AliasAnalysisType>
MemoryAccess *
MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
    MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
  auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
  // If this is a MemoryPhi, we can't do anything.
  if (!StartingAccess)
    return MA;

  bool IsOptimized = false;

  // If this is an already optimized use or def, return the optimized result.
  // Note: Currently, we store the optimized def result in a separate field,
  // since we can't use the defining access.
  if (StartingAccess->isOptimized()) {
    if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
      return StartingAccess->getOptimized();
    IsOptimized = true;
  }

  const Instruction *I = StartingAccess->getMemoryInst();
  // We can't sanely do anything with a fence, since they conservatively clobber
  // all memory, and have no locations to get pointers from to try to
  // disambiguate.
  if (!isa<CallBase>(I) && I->isFenceLike())
    return StartingAccess;

  UpwardsMemoryQuery Q(I, StartingAccess);

  if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
    MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
    StartingAccess->setOptimized(LiveOnEntry);
    StartingAccess->setOptimizedAccessType(None);
    return LiveOnEntry;
  }

  MemoryAccess *OptimizedAccess;
  if (!IsOptimized) {
    // Start with the thing we already think clobbers this location
    MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();

    // At this point, DefiningAccess may be the live on entry def.
    // If it is, we will not get a better result.
    if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
      StartingAccess->setOptimized(DefiningAccess);
      StartingAccess->setOptimizedAccessType(None);
      return DefiningAccess;
    }

    OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
    StartingAccess->setOptimized(OptimizedAccess);
    if (MSSA->isLiveOnEntryDef(OptimizedAccess))
      StartingAccess->setOptimizedAccessType(None);
    else if (Q.AR == MustAlias)
      StartingAccess->setOptimizedAccessType(MustAlias);
  } else
    OptimizedAccess = StartingAccess->getOptimized();

  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
  LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");

  MemoryAccess *Result;
  if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
      isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
    assert(isa<MemoryDef>(Q.OriginalAccess));
    Q.SkipSelfAccess = true;
    Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
  } else
    Result = OptimizedAccess;

  LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
  LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");

  return Result;
}

MemoryAccess *
DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
  if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
    return Use->getDefiningAccess();
  return MA;
}

MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
    MemoryAccess *StartingAccess, const MemoryLocation &) {
  if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
    return Use->getDefiningAccess();
  return StartingAccess;
}

void MemoryPhi::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryPhi *>(Self);
}

void MemoryDef::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryDef *>(Self);
}

void MemoryUse::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryUse *>(Self);
}