MemoryBuiltins.cpp 41.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions identifies calls to builtin functions that allocate
// or free memory.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "memory-builtins"

enum AllocType : uint8_t {
  OpNewLike          = 1<<0, // allocates; never returns null
  MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
  AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
  CallocLike         = 1<<3, // allocates + bzero
  ReallocLike        = 1<<4, // reallocates
  StrDupLike         = 1<<5,
  MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
  AllocLike          = MallocOrCallocLike | StrDupLike,
  AnyAlloc           = AllocLike | ReallocLike
};

struct AllocFnsTy {
  AllocType AllocTy;
  unsigned NumParams;
  // First and Second size parameters (or -1 if unused)
  int FstParam, SndParam;
};

// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
// know which functions are nounwind, noalias, nocapture parameters, etc.
static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
  {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
  {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
  {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
  {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
  {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
  {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
                                {MallocLike,  3, 0,  -1}},
  {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
  {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
  {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
  {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
                                {MallocLike,  3, 0,  -1}},
  {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
  {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
  {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
  {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
                                {MallocLike,  3, 0,  -1}},
  {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
  {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
  {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
  {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
                                 {MallocLike,  3, 0,  -1}},
  {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
  {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
  {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
  {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
  {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
  {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
  {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
  {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
  {LibFunc_aligned_alloc,       {AlignedAllocLike, 2, 1,  -1}},
  {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
  {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
  {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
  {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
  {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
  // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
};

static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
                                         bool &IsNoBuiltin) {
  // Don't care about intrinsics in this case.
  if (isa<IntrinsicInst>(V))
    return nullptr;

  if (LookThroughBitCast)
    V = V->stripPointerCasts();

  const auto *CB = dyn_cast<CallBase>(V);
  if (!CB)
    return nullptr;

  IsNoBuiltin = CB->isNoBuiltin();

  if (const Function *Callee = CB->getCalledFunction())
    return Callee;
  return nullptr;
}

/// Returns the allocation data for the given value if it's either a call to a
/// known allocation function, or a call to a function with the allocsize
/// attribute.
static Optional<AllocFnsTy>
getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
                             const TargetLibraryInfo *TLI) {
  // Make sure that the function is available.
  StringRef FnName = Callee->getName();
  LibFunc TLIFn;
  if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
    return None;

  const auto *Iter = find_if(
      AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
        return P.first == TLIFn;
      });

  if (Iter == std::end(AllocationFnData))
    return None;

  const AllocFnsTy *FnData = &Iter->second;
  if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
    return None;

  // Check function prototype.
  int FstParam = FnData->FstParam;
  int SndParam = FnData->SndParam;
  FunctionType *FTy = Callee->getFunctionType();

  if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
      FTy->getNumParams() == FnData->NumParams &&
      (FstParam < 0 ||
       (FTy->getParamType(FstParam)->isIntegerTy(32) ||
        FTy->getParamType(FstParam)->isIntegerTy(64))) &&
      (SndParam < 0 ||
       FTy->getParamType(SndParam)->isIntegerTy(32) ||
       FTy->getParamType(SndParam)->isIntegerTy(64)))
    return *FnData;
  return None;
}

static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
                                              const TargetLibraryInfo *TLI,
                                              bool LookThroughBitCast = false) {
  bool IsNoBuiltinCall;
  if (const Function *Callee =
          getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
    if (!IsNoBuiltinCall)
      return getAllocationDataForFunction(Callee, AllocTy, TLI);
  return None;
}

static Optional<AllocFnsTy>
getAllocationData(const Value *V, AllocType AllocTy,
                  function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
                  bool LookThroughBitCast = false) {
  bool IsNoBuiltinCall;
  if (const Function *Callee =
          getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
    if (!IsNoBuiltinCall)
      return getAllocationDataForFunction(
          Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
  return None;
}

static Optional<AllocFnsTy> getAllocationSize(const Value *V,
                                              const TargetLibraryInfo *TLI) {
  bool IsNoBuiltinCall;
  const Function *Callee =
      getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
  if (!Callee)
    return None;

  // Prefer to use existing information over allocsize. This will give us an
  // accurate AllocTy.
  if (!IsNoBuiltinCall)
    if (Optional<AllocFnsTy> Data =
            getAllocationDataForFunction(Callee, AnyAlloc, TLI))
      return Data;

  Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
  if (Attr == Attribute())
    return None;

  std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();

  AllocFnsTy Result;
  // Because allocsize only tells us how many bytes are allocated, we're not
  // really allowed to assume anything, so we use MallocLike.
  Result.AllocTy = MallocLike;
  Result.NumParams = Callee->getNumOperands();
  Result.FstParam = Args.first;
  Result.SndParam = Args.second.getValueOr(-1);
  return Result;
}

static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
  const auto *CB =
      dyn_cast<CallBase>(LookThroughBitCast ? V->stripPointerCasts() : V);
  return CB && CB->hasRetAttr(Attribute::NoAlias);
}

/// Tests if a value is a call or invoke to a library function that
/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
/// like).
bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
                          bool LookThroughBitCast) {
  return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
}
bool llvm::isAllocationFn(
    const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
    bool LookThroughBitCast) {
  return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue();
}

/// Tests if a value is a call or invoke to a function that returns a
/// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
                       bool LookThroughBitCast) {
  // it's safe to consider realloc as noalias since accessing the original
  // pointer is undefined behavior
  return isAllocationFn(V, TLI, LookThroughBitCast) ||
         hasNoAliasAttr(V, LookThroughBitCast);
}

/// Tests if a value is a call or invoke to a library function that
/// allocates uninitialized memory (such as malloc).
bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                          bool LookThroughBitCast) {
  return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
}
bool llvm::isMallocLikeFn(
    const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
    bool LookThroughBitCast) {
  return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast)
      .hasValue();
}

/// Tests if a value is a call or invoke to a library function that
/// allocates uninitialized memory with alignment (such as aligned_alloc).
bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                                bool LookThroughBitCast) {
  return getAllocationData(V, AlignedAllocLike, TLI, LookThroughBitCast)
      .hasValue();
}
bool llvm::isAlignedAllocLikeFn(
    const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
    bool LookThroughBitCast) {
  return getAllocationData(V, AlignedAllocLike, GetTLI, LookThroughBitCast)
      .hasValue();
}

/// Tests if a value is a call or invoke to a library function that
/// allocates zero-filled memory (such as calloc).
bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                          bool LookThroughBitCast) {
  return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
}

/// Tests if a value is a call or invoke to a library function that
/// allocates memory similar to malloc or calloc.
bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                                  bool LookThroughBitCast) {
  return getAllocationData(V, MallocOrCallocLike, TLI,
                           LookThroughBitCast).hasValue();
}

/// Tests if a value is a call or invoke to a library function that
/// allocates memory (either malloc, calloc, or strdup like).
bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                         bool LookThroughBitCast) {
  return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
}

/// Tests if a value is a call or invoke to a library function that
/// reallocates memory (e.g., realloc).
bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                     bool LookThroughBitCast) {
  return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
}

/// Tests if a functions is a call or invoke to a library function that
/// reallocates memory (e.g., realloc).
bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
  return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
}

/// Tests if a value is a call or invoke to a library function that
/// allocates memory and throws if an allocation failed (e.g., new).
bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                     bool LookThroughBitCast) {
  return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue();
}

/// Tests if a value is a call or invoke to a library function that
/// allocates memory (strdup, strndup).
bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI,
                          bool LookThroughBitCast) {
  return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue();
}

/// extractMallocCall - Returns the corresponding CallInst if the instruction
/// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
/// ignore InvokeInst here.
const CallInst *llvm::extractMallocCall(
    const Value *I,
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
  return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr;
}

static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
                               const TargetLibraryInfo *TLI,
                               bool LookThroughSExt = false) {
  if (!CI)
    return nullptr;

  // The size of the malloc's result type must be known to determine array size.
  Type *T = getMallocAllocatedType(CI, TLI);
  if (!T || !T->isSized())
    return nullptr;

  unsigned ElementSize = DL.getTypeAllocSize(T);
  if (StructType *ST = dyn_cast<StructType>(T))
    ElementSize = DL.getStructLayout(ST)->getSizeInBytes();

  // If malloc call's arg can be determined to be a multiple of ElementSize,
  // return the multiple.  Otherwise, return NULL.
  Value *MallocArg = CI->getArgOperand(0);
  Value *Multiple = nullptr;
  if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
    return Multiple;

  return nullptr;
}

/// getMallocType - Returns the PointerType resulting from the malloc call.
/// The PointerType depends on the number of bitcast uses of the malloc call:
///   0: PointerType is the calls' return type.
///   1: PointerType is the bitcast's result type.
///  >1: Unique PointerType cannot be determined, return NULL.
PointerType *llvm::getMallocType(const CallInst *CI,
                                 const TargetLibraryInfo *TLI) {
  assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");

  PointerType *MallocType = nullptr;
  unsigned NumOfBitCastUses = 0;

  // Determine if CallInst has a bitcast use.
  for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
       UI != E;)
    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
      MallocType = cast<PointerType>(BCI->getDestTy());
      NumOfBitCastUses++;
    }

  // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
  if (NumOfBitCastUses == 1)
    return MallocType;

  // Malloc call was not bitcast, so type is the malloc function's return type.
  if (NumOfBitCastUses == 0)
    return cast<PointerType>(CI->getType());

  // Type could not be determined.
  return nullptr;
}

/// getMallocAllocatedType - Returns the Type allocated by malloc call.
/// The Type depends on the number of bitcast uses of the malloc call:
///   0: PointerType is the malloc calls' return type.
///   1: PointerType is the bitcast's result type.
///  >1: Unique PointerType cannot be determined, return NULL.
Type *llvm::getMallocAllocatedType(const CallInst *CI,
                                   const TargetLibraryInfo *TLI) {
  PointerType *PT = getMallocType(CI, TLI);
  return PT ? PT->getElementType() : nullptr;
}

/// getMallocArraySize - Returns the array size of a malloc call.  If the
/// argument passed to malloc is a multiple of the size of the malloced type,
/// then return that multiple.  For non-array mallocs, the multiple is
/// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
/// determined.
Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
                                const TargetLibraryInfo *TLI,
                                bool LookThroughSExt) {
  assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
  return computeArraySize(CI, DL, TLI, LookThroughSExt);
}

/// extractCallocCall - Returns the corresponding CallInst if the instruction
/// is a calloc call.
const CallInst *llvm::extractCallocCall(const Value *I,
                                        const TargetLibraryInfo *TLI) {
  return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
}

/// isLibFreeFunction - Returns true if the function is a builtin free()
bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
  unsigned ExpectedNumParams;
  if (TLIFn == LibFunc_free ||
      TLIFn == LibFunc_ZdlPv || // operator delete(void*)
      TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
      TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
      TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
      TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
      TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
    ExpectedNumParams = 1;
  else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
           TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
           TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
           TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
           TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
           TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
           TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
           TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
           TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
           TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
           TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
           TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
           TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
           TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
           TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
           TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
    ExpectedNumParams = 2;
  else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
           TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
           TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
           TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
           TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
           TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
    ExpectedNumParams = 3;
  else
    return false;

  // Check free prototype.
  // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
  // attribute will exist.
  FunctionType *FTy = F->getFunctionType();
  if (!FTy->getReturnType()->isVoidTy())
    return false;
  if (FTy->getNumParams() != ExpectedNumParams)
    return false;
  if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
    return false;

  return true;
}

/// isFreeCall - Returns non-null if the value is a call to the builtin free()
const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
  bool IsNoBuiltinCall;
  const Function *Callee =
      getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
  if (Callee == nullptr || IsNoBuiltinCall)
    return nullptr;

  StringRef FnName = Callee->getName();
  LibFunc TLIFn;
  if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
    return nullptr;

  return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
}


//===----------------------------------------------------------------------===//
//  Utility functions to compute size of objects.
//
static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
  if (Data.second.isNegative() || Data.first.ult(Data.second))
    return APInt(Data.first.getBitWidth(), 0);
  return Data.first - Data.second;
}

/// Compute the size of the object pointed by Ptr. Returns true and the
/// object size in Size if successful, and false otherwise.
/// If RoundToAlign is true, then Size is rounded up to the alignment of
/// allocas, byval arguments, and global variables.
bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
                         const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
  ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
  SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
  if (!Visitor.bothKnown(Data))
    return false;

  Size = getSizeWithOverflow(Data).getZExtValue();
  return true;
}

Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
                                 const DataLayout &DL,
                                 const TargetLibraryInfo *TLI,
                                 bool MustSucceed) {
  assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
         "ObjectSize must be a call to llvm.objectsize!");

  bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
  ObjectSizeOpts EvalOptions;
  // Unless we have to fold this to something, try to be as accurate as
  // possible.
  if (MustSucceed)
    EvalOptions.EvalMode =
        MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
  else
    EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;

  EvalOptions.NullIsUnknownSize =
      cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();

  auto *ResultType = cast<IntegerType>(ObjectSize->getType());
  bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
  if (StaticOnly) {
    // FIXME: Does it make sense to just return a failure value if the size won't
    // fit in the output and `!MustSucceed`?
    uint64_t Size;
    if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
        isUIntN(ResultType->getBitWidth(), Size))
      return ConstantInt::get(ResultType, Size);
  } else {
    LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
    ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
    SizeOffsetEvalType SizeOffsetPair =
        Eval.compute(ObjectSize->getArgOperand(0));

    if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
      IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
      Builder.SetInsertPoint(ObjectSize);

      // If we've outside the end of the object, then we can always access
      // exactly 0 bytes.
      Value *ResultSize =
          Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
      Value *UseZero =
          Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
      ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
      return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0),
                                  ResultSize);
    }
  }

  if (!MustSucceed)
    return nullptr;

  return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
}

STATISTIC(ObjectVisitorArgument,
          "Number of arguments with unsolved size and offset");
STATISTIC(ObjectVisitorLoad,
          "Number of load instructions with unsolved size and offset");

APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) {
  if (Options.RoundToAlign && Alignment)
    return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment)));
  return Size;
}

ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
                                                 const TargetLibraryInfo *TLI,
                                                 LLVMContext &Context,
                                                 ObjectSizeOpts Options)
    : DL(DL), TLI(TLI), Options(Options) {
  // Pointer size must be rechecked for each object visited since it could have
  // a different address space.
}

SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
  IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
  Zero = APInt::getNullValue(IntTyBits);

  V = V->stripPointerCasts();
  if (Instruction *I = dyn_cast<Instruction>(V)) {
    // If we have already seen this instruction, bail out. Cycles can happen in
    // unreachable code after constant propagation.
    if (!SeenInsts.insert(I).second)
      return unknown();

    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
      return visitGEPOperator(*GEP);
    return visit(*I);
  }
  if (Argument *A = dyn_cast<Argument>(V))
    return visitArgument(*A);
  if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
    return visitConstantPointerNull(*P);
  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    return visitGlobalAlias(*GA);
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    return visitGlobalVariable(*GV);
  if (UndefValue *UV = dyn_cast<UndefValue>(V))
    return visitUndefValue(*UV);
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() == Instruction::IntToPtr)
      return unknown(); // clueless
    if (CE->getOpcode() == Instruction::GetElementPtr)
      return visitGEPOperator(cast<GEPOperator>(*CE));
  }

  LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
                    << *V << '\n');
  return unknown();
}

/// When we're compiling N-bit code, and the user uses parameters that are
/// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
/// trouble with APInt size issues. This function handles resizing + overflow
/// checks for us. Check and zext or trunc \p I depending on IntTyBits and
/// I's value.
bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
  // More bits than we can handle. Checking the bit width isn't necessary, but
  // it's faster than checking active bits, and should give `false` in the
  // vast majority of cases.
  if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
    return false;
  if (I.getBitWidth() != IntTyBits)
    I = I.zextOrTrunc(IntTyBits);
  return true;
}

SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
  if (!I.getAllocatedType()->isSized())
    return unknown();

  if (isa<ScalableVectorType>(I.getAllocatedType()))
    return unknown();

  APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
  if (!I.isArrayAllocation())
    return std::make_pair(align(Size, I.getAlignment()), Zero);

  Value *ArraySize = I.getArraySize();
  if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
    APInt NumElems = C->getValue();
    if (!CheckedZextOrTrunc(NumElems))
      return unknown();

    bool Overflow;
    Size = Size.umul_ov(NumElems, Overflow);
    return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
                                                 Zero);
  }
  return unknown();
}

SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
  // No interprocedural analysis is done at the moment.
  if (!A.hasPassPointeeByValueAttr()) {
    ++ObjectVisitorArgument;
    return unknown();
  }
  PointerType *PT = cast<PointerType>(A.getType());
  APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
  return std::make_pair(align(Size, A.getParamAlignment()), Zero);
}

SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
  Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
  if (!FnData)
    return unknown();

  // Handle strdup-like functions separately.
  if (FnData->AllocTy == StrDupLike) {
    APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
    if (!Size)
      return unknown();

    // Strndup limits strlen.
    if (FnData->FstParam > 0) {
      ConstantInt *Arg =
          dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
      if (!Arg)
        return unknown();

      APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
      if (Size.ugt(MaxSize))
        Size = MaxSize + 1;
    }
    return std::make_pair(Size, Zero);
  }

  ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
  if (!Arg)
    return unknown();

  APInt Size = Arg->getValue();
  if (!CheckedZextOrTrunc(Size))
    return unknown();

  // Size is determined by just 1 parameter.
  if (FnData->SndParam < 0)
    return std::make_pair(Size, Zero);

  Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
  if (!Arg)
    return unknown();

  APInt NumElems = Arg->getValue();
  if (!CheckedZextOrTrunc(NumElems))
    return unknown();

  bool Overflow;
  Size = Size.umul_ov(NumElems, Overflow);
  return Overflow ? unknown() : std::make_pair(Size, Zero);

  // TODO: handle more standard functions (+ wchar cousins):
  // - strdup / strndup
  // - strcpy / strncpy
  // - strcat / strncat
  // - memcpy / memmove
  // - strcat / strncat
  // - memset
}

SizeOffsetType
ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
  // If null is unknown, there's nothing we can do. Additionally, non-zero
  // address spaces can make use of null, so we don't presume to know anything
  // about that.
  //
  // TODO: How should this work with address space casts? We currently just drop
  // them on the floor, but it's unclear what we should do when a NULL from
  // addrspace(1) gets casted to addrspace(0) (or vice-versa).
  if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
    return unknown();
  return std::make_pair(Zero, Zero);
}

SizeOffsetType
ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
  return unknown();
}

SizeOffsetType
ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
  // Easy cases were already folded by previous passes.
  return unknown();
}

SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
  SizeOffsetType PtrData = compute(GEP.getPointerOperand());
  APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
  if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
    return unknown();

  return std::make_pair(PtrData.first, PtrData.second + Offset);
}

SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
  if (GA.isInterposable())
    return unknown();
  return compute(GA.getAliasee());
}

SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
  if (!GV.hasDefinitiveInitializer())
    return unknown();

  APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
  return std::make_pair(align(Size, GV.getAlignment()), Zero);
}

SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
  // clueless
  return unknown();
}

SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
  ++ObjectVisitorLoad;
  return unknown();
}

SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
  // too complex to analyze statically.
  return unknown();
}

SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
  SizeOffsetType TrueSide  = compute(I.getTrueValue());
  SizeOffsetType FalseSide = compute(I.getFalseValue());
  if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
    if (TrueSide == FalseSide) {
        return TrueSide;
    }

    APInt TrueResult = getSizeWithOverflow(TrueSide);
    APInt FalseResult = getSizeWithOverflow(FalseSide);

    if (TrueResult == FalseResult) {
      return TrueSide;
    }
    if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
      if (TrueResult.slt(FalseResult))
        return TrueSide;
      return FalseSide;
    }
    if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
      if (TrueResult.sgt(FalseResult))
        return TrueSide;
      return FalseSide;
    }
  }
  return unknown();
}

SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
  return std::make_pair(Zero, Zero);
}

SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
  LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
                    << '\n');
  return unknown();
}

ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
    const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
    ObjectSizeOpts EvalOpts)
    : DL(DL), TLI(TLI), Context(Context),
      Builder(Context, TargetFolder(DL),
              IRBuilderCallbackInserter(
                  [&](Instruction *I) { InsertedInstructions.insert(I); })),
      EvalOpts(EvalOpts) {
  // IntTy and Zero must be set for each compute() since the address space may
  // be different for later objects.
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
  // XXX - Are vectors of pointers possible here?
  IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
  Zero = ConstantInt::get(IntTy, 0);

  SizeOffsetEvalType Result = compute_(V);

  if (!bothKnown(Result)) {
    // Erase everything that was computed in this iteration from the cache, so
    // that no dangling references are left behind. We could be a bit smarter if
    // we kept a dependency graph. It's probably not worth the complexity.
    for (const Value *SeenVal : SeenVals) {
      CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
      // non-computable results can be safely cached
      if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
        CacheMap.erase(CacheIt);
    }

    // Erase any instructions we inserted as part of the traversal.
    for (Instruction *I : InsertedInstructions) {
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
      I->eraseFromParent();
    }
  }

  SeenVals.clear();
  InsertedInstructions.clear();
  return Result;
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
  ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
  SizeOffsetType Const = Visitor.compute(V);
  if (Visitor.bothKnown(Const))
    return std::make_pair(ConstantInt::get(Context, Const.first),
                          ConstantInt::get(Context, Const.second));

  V = V->stripPointerCasts();

  // Check cache.
  CacheMapTy::iterator CacheIt = CacheMap.find(V);
  if (CacheIt != CacheMap.end())
    return CacheIt->second;

  // Always generate code immediately before the instruction being
  // processed, so that the generated code dominates the same BBs.
  BuilderTy::InsertPointGuard Guard(Builder);
  if (Instruction *I = dyn_cast<Instruction>(V))
    Builder.SetInsertPoint(I);

  // Now compute the size and offset.
  SizeOffsetEvalType Result;

  // Record the pointers that were handled in this run, so that they can be
  // cleaned later if something fails. We also use this set to break cycles that
  // can occur in dead code.
  if (!SeenVals.insert(V).second) {
    Result = unknown();
  } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    Result = visitGEPOperator(*GEP);
  } else if (Instruction *I = dyn_cast<Instruction>(V)) {
    Result = visit(*I);
  } else if (isa<Argument>(V) ||
             (isa<ConstantExpr>(V) &&
              cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
             isa<GlobalAlias>(V) ||
             isa<GlobalVariable>(V)) {
    // Ignore values where we cannot do more than ObjectSizeVisitor.
    Result = unknown();
  } else {
    LLVM_DEBUG(
        dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
               << '\n');
    Result = unknown();
  }

  // Don't reuse CacheIt since it may be invalid at this point.
  CacheMap[V] = Result;
  return Result;
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
  if (!I.getAllocatedType()->isSized())
    return unknown();

  // must be a VLA
  assert(I.isArrayAllocation());
  Value *ArraySize = I.getArraySize();
  Value *Size = ConstantInt::get(ArraySize->getType(),
                                 DL.getTypeAllocSize(I.getAllocatedType()));
  Size = Builder.CreateMul(Size, ArraySize);
  return std::make_pair(Size, Zero);
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
  Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
  if (!FnData)
    return unknown();

  // Handle strdup-like functions separately.
  if (FnData->AllocTy == StrDupLike) {
    // TODO
    return unknown();
  }

  Value *FirstArg = CB.getArgOperand(FnData->FstParam);
  FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
  if (FnData->SndParam < 0)
    return std::make_pair(FirstArg, Zero);

  Value *SecondArg = CB.getArgOperand(FnData->SndParam);
  SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
  Value *Size = Builder.CreateMul(FirstArg, SecondArg);
  return std::make_pair(Size, Zero);

  // TODO: handle more standard functions (+ wchar cousins):
  // - strdup / strndup
  // - strcpy / strncpy
  // - strcat / strncat
  // - memcpy / memmove
  // - strcat / strncat
  // - memset
}

SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
  return unknown();
}

SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
  return unknown();
}

SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
  SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
  if (!bothKnown(PtrData))
    return unknown();

  Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
  Offset = Builder.CreateAdd(PtrData.second, Offset);
  return std::make_pair(PtrData.first, Offset);
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
  // clueless
  return unknown();
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
  return unknown();
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
  // Create 2 PHIs: one for size and another for offset.
  PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
  PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());

  // Insert right away in the cache to handle recursive PHIs.
  CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);

  // Compute offset/size for each PHI incoming pointer.
  for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
    Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
    SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));

    if (!bothKnown(EdgeData)) {
      OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
      OffsetPHI->eraseFromParent();
      InsertedInstructions.erase(OffsetPHI);
      SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
      SizePHI->eraseFromParent();
      InsertedInstructions.erase(SizePHI);
      return unknown();
    }
    SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
    OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
  }

  Value *Size = SizePHI, *Offset = OffsetPHI;
  if (Value *Tmp = SizePHI->hasConstantValue()) {
    Size = Tmp;
    SizePHI->replaceAllUsesWith(Size);
    SizePHI->eraseFromParent();
    InsertedInstructions.erase(SizePHI);
  }
  if (Value *Tmp = OffsetPHI->hasConstantValue()) {
    Offset = Tmp;
    OffsetPHI->replaceAllUsesWith(Offset);
    OffsetPHI->eraseFromParent();
    InsertedInstructions.erase(OffsetPHI);
  }
  return std::make_pair(Size, Offset);
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
  SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
  SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());

  if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
    return unknown();
  if (TrueSide == FalseSide)
    return TrueSide;

  Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
                                     FalseSide.first);
  Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
                                       FalseSide.second);
  return std::make_pair(Size, Offset);
}

SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
  LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
                    << '\n');
  return unknown();
}