InlineCost.cpp 99.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements inline cost analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/InlineCost.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "inline-cost"

STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");

static cl::opt<int>
    DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
                     cl::ZeroOrMore,
                     cl::desc("Default amount of inlining to perform"));

static cl::opt<bool> PrintInstructionComments(
    "print-instruction-comments", cl::Hidden, cl::init(false),
    cl::desc("Prints comments for instruction based on inline cost analysis"));

static cl::opt<int> InlineThreshold(
    "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
    cl::desc("Control the amount of inlining to perform (default = 225)"));

static cl::opt<int> HintThreshold(
    "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
    cl::desc("Threshold for inlining functions with inline hint"));

static cl::opt<int>
    ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
                          cl::init(45), cl::ZeroOrMore,
                          cl::desc("Threshold for inlining cold callsites"));

// We introduce this threshold to help performance of instrumentation based
// PGO before we actually hook up inliner with analysis passes such as BPI and
// BFI.
static cl::opt<int> ColdThreshold(
    "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
    cl::desc("Threshold for inlining functions with cold attribute"));

static cl::opt<int>
    HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
                         cl::ZeroOrMore,
                         cl::desc("Threshold for hot callsites "));

static cl::opt<int> LocallyHotCallSiteThreshold(
    "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
    cl::desc("Threshold for locally hot callsites "));

static cl::opt<int> ColdCallSiteRelFreq(
    "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
    cl::desc("Maximum block frequency, expressed as a percentage of caller's "
             "entry frequency, for a callsite to be cold in the absence of "
             "profile information."));

static cl::opt<int> HotCallSiteRelFreq(
    "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
    cl::desc("Minimum block frequency, expressed as a multiple of caller's "
             "entry frequency, for a callsite to be hot in the absence of "
             "profile information."));

static cl::opt<bool> OptComputeFullInlineCost(
    "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
    cl::desc("Compute the full inline cost of a call site even when the cost "
             "exceeds the threshold."));

static cl::opt<bool> InlineCallerSupersetNoBuiltin(
    "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
    cl::ZeroOrMore,
    cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
             "attributes."));

static cl::opt<bool> DisableGEPConstOperand(
    "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
    cl::desc("Disables evaluation of GetElementPtr with constant operands"));

namespace {
class InlineCostCallAnalyzer;

// This struct is used to store information about inline cost of a
// particular instruction
struct InstructionCostDetail {
  int CostBefore = 0;
  int CostAfter = 0;
  int ThresholdBefore = 0;
  int ThresholdAfter = 0;

  int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }

  int getCostDelta() const { return CostAfter - CostBefore; }

  bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
};

class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
private:
  InlineCostCallAnalyzer *const ICCA;

public:
  InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
  virtual void emitInstructionAnnot(const Instruction *I,
                                    formatted_raw_ostream &OS) override;
};

/// Carry out call site analysis, in order to evaluate inlinability.
/// NOTE: the type is currently used as implementation detail of functions such
/// as llvm::getInlineCost. Note the function_ref constructor parameters - the
/// expectation is that they come from the outer scope, from the wrapper
/// functions. If we want to support constructing CallAnalyzer objects where
/// lambdas are provided inline at construction, or where the object needs to
/// otherwise survive past the scope of the provided functions, we need to
/// revisit the argument types.
class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
  typedef InstVisitor<CallAnalyzer, bool> Base;
  friend class InstVisitor<CallAnalyzer, bool>;

protected:
  virtual ~CallAnalyzer() {}
  /// The TargetTransformInfo available for this compilation.
  const TargetTransformInfo &TTI;

  /// Getter for the cache of @llvm.assume intrinsics.
  function_ref<AssumptionCache &(Function &)> GetAssumptionCache;

  /// Getter for BlockFrequencyInfo
  function_ref<BlockFrequencyInfo &(Function &)> GetBFI;

  /// Profile summary information.
  ProfileSummaryInfo *PSI;

  /// The called function.
  Function &F;

  // Cache the DataLayout since we use it a lot.
  const DataLayout &DL;

  /// The OptimizationRemarkEmitter available for this compilation.
  OptimizationRemarkEmitter *ORE;

  /// The candidate callsite being analyzed. Please do not use this to do
  /// analysis in the caller function; we want the inline cost query to be
  /// easily cacheable. Instead, use the cover function paramHasAttr.
  CallBase &CandidateCall;

  /// Extension points for handling callsite features.
  /// Called after a basic block was analyzed.
  virtual void onBlockAnalyzed(const BasicBlock *BB) {}

  /// Called before an instruction was analyzed
  virtual void onInstructionAnalysisStart(const Instruction *I) {}

  /// Called after an instruction was analyzed
  virtual void onInstructionAnalysisFinish(const Instruction *I) {}

  /// Called at the end of the analysis of the callsite. Return the outcome of
  /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
  /// the reason it can't.
  virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
  /// Called when we're about to start processing a basic block, and every time
  /// we are done processing an instruction. Return true if there is no point in
  /// continuing the analysis (e.g. we've determined already the call site is
  /// too expensive to inline)
  virtual bool shouldStop() { return false; }

  /// Called before the analysis of the callee body starts (with callsite
  /// contexts propagated).  It checks callsite-specific information. Return a
  /// reason analysis can't continue if that's the case, or 'true' if it may
  /// continue.
  virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
  /// Called if the analysis engine decides SROA cannot be done for the given
  /// alloca.
  virtual void onDisableSROA(AllocaInst *Arg) {}

  /// Called the analysis engine determines load elimination won't happen.
  virtual void onDisableLoadElimination() {}

  /// Called to account for a call.
  virtual void onCallPenalty() {}

  /// Called to account for the expectation the inlining would result in a load
  /// elimination.
  virtual void onLoadEliminationOpportunity() {}

  /// Called to account for the cost of argument setup for the Call in the
  /// callee's body (not the callsite currently under analysis).
  virtual void onCallArgumentSetup(const CallBase &Call) {}

  /// Called to account for a load relative intrinsic.
  virtual void onLoadRelativeIntrinsic() {}

  /// Called to account for a lowered call.
  virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
  }

  /// Account for a jump table of given size. Return false to stop further
  /// processing the switch instruction
  virtual bool onJumpTable(unsigned JumpTableSize) { return true; }

  /// Account for a case cluster of given size. Return false to stop further
  /// processing of the instruction.
  virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }

  /// Called at the end of processing a switch instruction, with the given
  /// number of case clusters.
  virtual void onFinalizeSwitch(unsigned JumpTableSize,
                                unsigned NumCaseCluster) {}

  /// Called to account for any other instruction not specifically accounted
  /// for.
  virtual void onMissedSimplification() {}

  /// Start accounting potential benefits due to SROA for the given alloca.
  virtual void onInitializeSROAArg(AllocaInst *Arg) {}

  /// Account SROA savings for the AllocaInst value.
  virtual void onAggregateSROAUse(AllocaInst *V) {}

  bool handleSROA(Value *V, bool DoNotDisable) {
    // Check for SROA candidates in comparisons.
    if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
      if (DoNotDisable) {
        onAggregateSROAUse(SROAArg);
        return true;
      }
      disableSROAForArg(SROAArg);
    }
    return false;
  }

  bool IsCallerRecursive = false;
  bool IsRecursiveCall = false;
  bool ExposesReturnsTwice = false;
  bool HasDynamicAlloca = false;
  bool ContainsNoDuplicateCall = false;
  bool HasReturn = false;
  bool HasIndirectBr = false;
  bool HasUninlineableIntrinsic = false;
  bool InitsVargArgs = false;

  /// Number of bytes allocated statically by the callee.
  uint64_t AllocatedSize = 0;
  unsigned NumInstructions = 0;
  unsigned NumVectorInstructions = 0;

  /// While we walk the potentially-inlined instructions, we build up and
  /// maintain a mapping of simplified values specific to this callsite. The
  /// idea is to propagate any special information we have about arguments to
  /// this call through the inlinable section of the function, and account for
  /// likely simplifications post-inlining. The most important aspect we track
  /// is CFG altering simplifications -- when we prove a basic block dead, that
  /// can cause dramatic shifts in the cost of inlining a function.
  DenseMap<Value *, Constant *> SimplifiedValues;

  /// Keep track of the values which map back (through function arguments) to
  /// allocas on the caller stack which could be simplified through SROA.
  DenseMap<Value *, AllocaInst *> SROAArgValues;

  /// Keep track of Allocas for which we believe we may get SROA optimization.
  DenseSet<AllocaInst *> EnabledSROAAllocas;

  /// Keep track of values which map to a pointer base and constant offset.
  DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;

  /// Keep track of dead blocks due to the constant arguments.
  SetVector<BasicBlock *> DeadBlocks;

  /// The mapping of the blocks to their known unique successors due to the
  /// constant arguments.
  DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;

  /// Model the elimination of repeated loads that is expected to happen
  /// whenever we simplify away the stores that would otherwise cause them to be
  /// loads.
  bool EnableLoadElimination;
  SmallPtrSet<Value *, 16> LoadAddrSet;

  AllocaInst *getSROAArgForValueOrNull(Value *V) const {
    auto It = SROAArgValues.find(V);
    if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
      return nullptr;
    return It->second;
  }

  // Custom simplification helper routines.
  bool isAllocaDerivedArg(Value *V);
  void disableSROAForArg(AllocaInst *SROAArg);
  void disableSROA(Value *V);
  void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
  void disableLoadElimination();
  bool isGEPFree(GetElementPtrInst &GEP);
  bool canFoldInboundsGEP(GetElementPtrInst &I);
  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
  bool simplifyCallSite(Function *F, CallBase &Call);
  template <typename Callable>
  bool simplifyInstruction(Instruction &I, Callable Evaluate);
  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);

  /// Return true if the given argument to the function being considered for
  /// inlining has the given attribute set either at the call site or the
  /// function declaration.  Primarily used to inspect call site specific
  /// attributes since these can be more precise than the ones on the callee
  /// itself.
  bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);

  /// Return true if the given value is known non null within the callee if
  /// inlined through this particular callsite.
  bool isKnownNonNullInCallee(Value *V);

  /// Return true if size growth is allowed when inlining the callee at \p Call.
  bool allowSizeGrowth(CallBase &Call);

  // Custom analysis routines.
  InlineResult analyzeBlock(BasicBlock *BB,
                            SmallPtrSetImpl<const Value *> &EphValues);

  // Disable several entry points to the visitor so we don't accidentally use
  // them by declaring but not defining them here.
  void visit(Module *);
  void visit(Module &);
  void visit(Function *);
  void visit(Function &);
  void visit(BasicBlock *);
  void visit(BasicBlock &);

  // Provide base case for our instruction visit.
  bool visitInstruction(Instruction &I);

  // Our visit overrides.
  bool visitAlloca(AllocaInst &I);
  bool visitPHI(PHINode &I);
  bool visitGetElementPtr(GetElementPtrInst &I);
  bool visitBitCast(BitCastInst &I);
  bool visitPtrToInt(PtrToIntInst &I);
  bool visitIntToPtr(IntToPtrInst &I);
  bool visitCastInst(CastInst &I);
  bool visitUnaryInstruction(UnaryInstruction &I);
  bool visitCmpInst(CmpInst &I);
  bool visitSub(BinaryOperator &I);
  bool visitBinaryOperator(BinaryOperator &I);
  bool visitFNeg(UnaryOperator &I);
  bool visitLoad(LoadInst &I);
  bool visitStore(StoreInst &I);
  bool visitExtractValue(ExtractValueInst &I);
  bool visitInsertValue(InsertValueInst &I);
  bool visitCallBase(CallBase &Call);
  bool visitReturnInst(ReturnInst &RI);
  bool visitBranchInst(BranchInst &BI);
  bool visitSelectInst(SelectInst &SI);
  bool visitSwitchInst(SwitchInst &SI);
  bool visitIndirectBrInst(IndirectBrInst &IBI);
  bool visitResumeInst(ResumeInst &RI);
  bool visitCleanupReturnInst(CleanupReturnInst &RI);
  bool visitCatchReturnInst(CatchReturnInst &RI);
  bool visitUnreachableInst(UnreachableInst &I);

public:
  CallAnalyzer(
      Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
      function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
      function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
      ProfileSummaryInfo *PSI = nullptr,
      OptimizationRemarkEmitter *ORE = nullptr)
      : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
        PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
        CandidateCall(Call), EnableLoadElimination(true) {}

  InlineResult analyze();

  Optional<Constant*> getSimplifiedValue(Instruction *I) {
    if (SimplifiedValues.find(I) != SimplifiedValues.end())
      return SimplifiedValues[I];
    return None;
  }

  // Keep a bunch of stats about the cost savings found so we can print them
  // out when debugging.
  unsigned NumConstantArgs = 0;
  unsigned NumConstantOffsetPtrArgs = 0;
  unsigned NumAllocaArgs = 0;
  unsigned NumConstantPtrCmps = 0;
  unsigned NumConstantPtrDiffs = 0;
  unsigned NumInstructionsSimplified = 0;

  void dump();
};

/// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
/// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
class InlineCostCallAnalyzer final : public CallAnalyzer {
  const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
  const bool ComputeFullInlineCost;
  int LoadEliminationCost = 0;
  /// Bonus to be applied when percentage of vector instructions in callee is
  /// high (see more details in updateThreshold).
  int VectorBonus = 0;
  /// Bonus to be applied when the callee has only one reachable basic block.
  int SingleBBBonus = 0;

  /// Tunable parameters that control the analysis.
  const InlineParams &Params;

  // This DenseMap stores the delta change in cost and threshold after
  // accounting for the given instruction. The map is filled only with the
  // flag PrintInstructionComments on.
  DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;

  /// Upper bound for the inlining cost. Bonuses are being applied to account
  /// for speculative "expected profit" of the inlining decision.
  int Threshold = 0;

  /// Attempt to evaluate indirect calls to boost its inline cost.
  const bool BoostIndirectCalls;

  /// Ignore the threshold when finalizing analysis.
  const bool IgnoreThreshold;

  /// Inlining cost measured in abstract units, accounts for all the
  /// instructions expected to be executed for a given function invocation.
  /// Instructions that are statically proven to be dead based on call-site
  /// arguments are not counted here.
  int Cost = 0;

  bool SingleBB = true;

  unsigned SROACostSavings = 0;
  unsigned SROACostSavingsLost = 0;

  /// The mapping of caller Alloca values to their accumulated cost savings. If
  /// we have to disable SROA for one of the allocas, this tells us how much
  /// cost must be added.
  DenseMap<AllocaInst *, int> SROAArgCosts;

  /// Return true if \p Call is a cold callsite.
  bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);

  /// Update Threshold based on callsite properties such as callee
  /// attributes and callee hotness for PGO builds. The Callee is explicitly
  /// passed to support analyzing indirect calls whose target is inferred by
  /// analysis.
  void updateThreshold(CallBase &Call, Function &Callee);
  /// Return a higher threshold if \p Call is a hot callsite.
  Optional<int> getHotCallSiteThreshold(CallBase &Call,
                                        BlockFrequencyInfo *CallerBFI);

  /// Handle a capped 'int' increment for Cost.
  void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
    assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
    Cost = (int)std::min(UpperBound, Cost + Inc);
  }

  void onDisableSROA(AllocaInst *Arg) override {
    auto CostIt = SROAArgCosts.find(Arg);
    if (CostIt == SROAArgCosts.end())
      return;
    addCost(CostIt->second);
    SROACostSavings -= CostIt->second;
    SROACostSavingsLost += CostIt->second;
    SROAArgCosts.erase(CostIt);
  }

  void onDisableLoadElimination() override {
    addCost(LoadEliminationCost);
    LoadEliminationCost = 0;
  }
  void onCallPenalty() override { addCost(InlineConstants::CallPenalty); }
  void onCallArgumentSetup(const CallBase &Call) override {
    // Pay the price of the argument setup. We account for the average 1
    // instruction per call argument setup here.
    addCost(Call.arg_size() * InlineConstants::InstrCost);
  }
  void onLoadRelativeIntrinsic() override {
    // This is normally lowered to 4 LLVM instructions.
    addCost(3 * InlineConstants::InstrCost);
  }
  void onLoweredCall(Function *F, CallBase &Call,
                     bool IsIndirectCall) override {
    // We account for the average 1 instruction per call argument setup here.
    addCost(Call.arg_size() * InlineConstants::InstrCost);

    // If we have a constant that we are calling as a function, we can peer
    // through it and see the function target. This happens not infrequently
    // during devirtualization and so we want to give it a hefty bonus for
    // inlining, but cap that bonus in the event that inlining wouldn't pan out.
    // Pretend to inline the function, with a custom threshold.
    if (IsIndirectCall && BoostIndirectCalls) {
      auto IndirectCallParams = Params;
      IndirectCallParams.DefaultThreshold =
          InlineConstants::IndirectCallThreshold;
      /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
      /// to instantiate the derived class.
      InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
                                GetAssumptionCache, GetBFI, PSI, ORE, false);
      if (CA.analyze().isSuccess()) {
        // We were able to inline the indirect call! Subtract the cost from the
        // threshold to get the bonus we want to apply, but don't go below zero.
        Cost -= std::max(0, CA.getThreshold() - CA.getCost());
      }
    } else
      // Otherwise simply add the cost for merely making the call.
      addCost(InlineConstants::CallPenalty);
  }

  void onFinalizeSwitch(unsigned JumpTableSize,
                        unsigned NumCaseCluster) override {
    // If suitable for a jump table, consider the cost for the table size and
    // branch to destination.
    // Maximum valid cost increased in this function.
    if (JumpTableSize) {
      int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
                       4 * InlineConstants::InstrCost;

      addCost(JTCost, (int64_t)CostUpperBound);
      return;
    }
    // Considering forming a binary search, we should find the number of nodes
    // which is same as the number of comparisons when lowered. For a given
    // number of clusters, n, we can define a recursive function, f(n), to find
    // the number of nodes in the tree. The recursion is :
    // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
    // and f(n) = n, when n <= 3.
    // This will lead a binary tree where the leaf should be either f(2) or f(3)
    // when n > 3.  So, the number of comparisons from leaves should be n, while
    // the number of non-leaf should be :
    //   2^(log2(n) - 1) - 1
    //   = 2^log2(n) * 2^-1 - 1
    //   = n / 2 - 1.
    // Considering comparisons from leaf and non-leaf nodes, we can estimate the
    // number of comparisons in a simple closed form :
    //   n + n / 2 - 1 = n * 3 / 2 - 1
    if (NumCaseCluster <= 3) {
      // Suppose a comparison includes one compare and one conditional branch.
      addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
      return;
    }

    int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
    int64_t SwitchCost =
        ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;

    addCost(SwitchCost, (int64_t)CostUpperBound);
  }
  void onMissedSimplification() override {
    addCost(InlineConstants::InstrCost);
  }

  void onInitializeSROAArg(AllocaInst *Arg) override {
    assert(Arg != nullptr &&
           "Should not initialize SROA costs for null value.");
    SROAArgCosts[Arg] = 0;
  }

  void onAggregateSROAUse(AllocaInst *SROAArg) override {
    auto CostIt = SROAArgCosts.find(SROAArg);
    assert(CostIt != SROAArgCosts.end() &&
           "expected this argument to have a cost");
    CostIt->second += InlineConstants::InstrCost;
    SROACostSavings += InlineConstants::InstrCost;
  }

  void onBlockAnalyzed(const BasicBlock *BB) override {
    auto *TI = BB->getTerminator();
    // If we had any successors at this point, than post-inlining is likely to
    // have them as well. Note that we assume any basic blocks which existed
    // due to branches or switches which folded above will also fold after
    // inlining.
    if (SingleBB && TI->getNumSuccessors() > 1) {
      // Take off the bonus we applied to the threshold.
      Threshold -= SingleBBBonus;
      SingleBB = false;
    }
  }

  void onInstructionAnalysisStart(const Instruction *I) override {
    // This function is called to store the initial cost of inlining before
    // the given instruction was assessed.
    if (!PrintInstructionComments)
      return;
    InstructionCostDetailMap[I].CostBefore = Cost;
    InstructionCostDetailMap[I].ThresholdBefore = Threshold;
  }

  void onInstructionAnalysisFinish(const Instruction *I) override {
    // This function is called to find new values of cost and threshold after
    // the instruction has been assessed.
    if (!PrintInstructionComments)
      return;
    InstructionCostDetailMap[I].CostAfter = Cost;
    InstructionCostDetailMap[I].ThresholdAfter = Threshold;
  }

  InlineResult finalizeAnalysis() override {
    // Loops generally act a lot like calls in that they act like barriers to
    // movement, require a certain amount of setup, etc. So when optimising for
    // size, we penalise any call sites that perform loops. We do this after all
    // other costs here, so will likely only be dealing with relatively small
    // functions (and hence DT and LI will hopefully be cheap).
    auto *Caller = CandidateCall.getFunction();
    if (Caller->hasMinSize()) {
      DominatorTree DT(F);
      LoopInfo LI(DT);
      int NumLoops = 0;
      for (Loop *L : LI) {
        // Ignore loops that will not be executed
        if (DeadBlocks.count(L->getHeader()))
          continue;
        NumLoops++;
      }
      addCost(NumLoops * InlineConstants::CallPenalty);
    }

    // We applied the maximum possible vector bonus at the beginning. Now,
    // subtract the excess bonus, if any, from the Threshold before
    // comparing against Cost.
    if (NumVectorInstructions <= NumInstructions / 10)
      Threshold -= VectorBonus;
    else if (NumVectorInstructions <= NumInstructions / 2)
      Threshold -= VectorBonus / 2;

    if (IgnoreThreshold || Cost < std::max(1, Threshold))
      return InlineResult::success();
    return InlineResult::failure("Cost over threshold.");
  }
  bool shouldStop() override {
    // Bail out the moment we cross the threshold. This means we'll under-count
    // the cost, but only when undercounting doesn't matter.
    return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost;
  }

  void onLoadEliminationOpportunity() override {
    LoadEliminationCost += InlineConstants::InstrCost;
  }

  InlineResult onAnalysisStart() override {
    // Perform some tweaks to the cost and threshold based on the direct
    // callsite information.

    // We want to more aggressively inline vector-dense kernels, so up the
    // threshold, and we'll lower it if the % of vector instructions gets too
    // low. Note that these bonuses are some what arbitrary and evolved over
    // time by accident as much as because they are principled bonuses.
    //
    // FIXME: It would be nice to remove all such bonuses. At least it would be
    // nice to base the bonus values on something more scientific.
    assert(NumInstructions == 0);
    assert(NumVectorInstructions == 0);

    // Update the threshold based on callsite properties
    updateThreshold(CandidateCall, F);

    // While Threshold depends on commandline options that can take negative
    // values, we want to enforce the invariant that the computed threshold and
    // bonuses are non-negative.
    assert(Threshold >= 0);
    assert(SingleBBBonus >= 0);
    assert(VectorBonus >= 0);

    // Speculatively apply all possible bonuses to Threshold. If cost exceeds
    // this Threshold any time, and cost cannot decrease, we can stop processing
    // the rest of the function body.
    Threshold += (SingleBBBonus + VectorBonus);

    // Give out bonuses for the callsite, as the instructions setting them up
    // will be gone after inlining.
    addCost(-getCallsiteCost(this->CandidateCall, DL));

    // If this function uses the coldcc calling convention, prefer not to inline
    // it.
    if (F.getCallingConv() == CallingConv::Cold)
      Cost += InlineConstants::ColdccPenalty;

    // Check if we're done. This can happen due to bonuses and penalties.
    if (Cost >= Threshold && !ComputeFullInlineCost)
      return InlineResult::failure("high cost");

    return InlineResult::success();
  }

public:
  InlineCostCallAnalyzer(
      Function &Callee, CallBase &Call, const InlineParams &Params,
      const TargetTransformInfo &TTI,
      function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
      function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
      ProfileSummaryInfo *PSI = nullptr,
      OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
      bool IgnoreThreshold = false)
      : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
        ComputeFullInlineCost(OptComputeFullInlineCost ||
                              Params.ComputeFullInlineCost || ORE),
        Params(Params), Threshold(Params.DefaultThreshold),
        BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
        Writer(this) {}

  /// Annotation Writer for instruction details
  InlineCostAnnotationWriter Writer;

  void dump();

  // Prints the same analysis as dump(), but its definition is not dependent
  // on the build.
  void print();

  Optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
    if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end())
      return InstructionCostDetailMap[I];
    return None;
  }

  virtual ~InlineCostCallAnalyzer() {}
  int getThreshold() { return Threshold; }
  int getCost() { return Cost; }
};
} // namespace

/// Test whether the given value is an Alloca-derived function argument.
bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
  return SROAArgValues.count(V);
}

void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
  onDisableSROA(SROAArg);
  EnabledSROAAllocas.erase(SROAArg);
  disableLoadElimination();
}

void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I,
                                                formatted_raw_ostream &OS) {
  // The cost of inlining of the given instruction is printed always.
  // The threshold delta is printed only when it is non-zero. It happens
  // when we decided to give a bonus at a particular instruction.
  Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
  if (!Record)
    OS << "; No analysis for the instruction";
  else {
    OS << "; cost before = " << Record->CostBefore
       << ", cost after = " << Record->CostAfter
       << ", threshold before = " << Record->ThresholdBefore
       << ", threshold after = " << Record->ThresholdAfter << ", ";
    OS << "cost delta = " << Record->getCostDelta();
    if (Record->hasThresholdChanged())
      OS << ", threshold delta = " << Record->getThresholdDelta();
  }
  auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
  if (C) {
    OS << ", simplified to ";
    C.getValue()->print(OS, true);
  }
  OS << "\n";
}

/// If 'V' maps to a SROA candidate, disable SROA for it.
void CallAnalyzer::disableSROA(Value *V) {
  if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
    disableSROAForArg(SROAArg);
  }
}

void CallAnalyzer::disableLoadElimination() {
  if (EnableLoadElimination) {
    onDisableLoadElimination();
    EnableLoadElimination = false;
  }
}

/// Accumulate a constant GEP offset into an APInt if possible.
///
/// Returns false if unable to compute the offset for any reason. Respects any
/// simplified values known during the analysis of this callsite.
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
  unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
  assert(IntPtrWidth == Offset.getBitWidth());

  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
       GTI != GTE; ++GTI) {
    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    if (!OpC)
      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
        OpC = dyn_cast<ConstantInt>(SimpleOp);
    if (!OpC)
      return false;
    if (OpC->isZero())
      continue;

    // Handle a struct index, which adds its field offset to the pointer.
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      unsigned ElementIdx = OpC->getZExtValue();
      const StructLayout *SL = DL.getStructLayout(STy);
      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
      continue;
    }

    APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
  }
  return true;
}

/// Use TTI to check whether a GEP is free.
///
/// Respects any simplified values known during the analysis of this callsite.
bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
  SmallVector<Value *, 4> Operands;
  Operands.push_back(GEP.getOperand(0));
  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
    if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
      Operands.push_back(SimpleOp);
    else
      Operands.push_back(*I);
  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&GEP, Operands,
                         TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitAlloca(AllocaInst &I) {
  // Check whether inlining will turn a dynamic alloca into a static
  // alloca and handle that case.
  if (I.isArrayAllocation()) {
    Constant *Size = SimplifiedValues.lookup(I.getArraySize());
    if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
      // Sometimes a dynamic alloca could be converted into a static alloca
      // after this constant prop, and become a huge static alloca on an
      // unconditional CFG path. Avoid inlining if this is going to happen above
      // a threshold.
      // FIXME: If the threshold is removed or lowered too much, we could end up
      // being too pessimistic and prevent inlining non-problematic code. This
      // could result in unintended perf regressions. A better overall strategy
      // is needed to track stack usage during inlining.
      Type *Ty = I.getAllocatedType();
      AllocatedSize = SaturatingMultiplyAdd(
          AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(),
          AllocatedSize);
      if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) {
        HasDynamicAlloca = true;
        return false;
      }
      return Base::visitAlloca(I);
    }
  }

  // Accumulate the allocated size.
  if (I.isStaticAlloca()) {
    Type *Ty = I.getAllocatedType();
    AllocatedSize =
        SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize);
  }

  // We will happily inline static alloca instructions.
  if (I.isStaticAlloca())
    return Base::visitAlloca(I);

  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
  // a variety of reasons, and so we would like to not inline them into
  // functions which don't currently have a dynamic alloca. This simply
  // disables inlining altogether in the presence of a dynamic alloca.
  HasDynamicAlloca = true;
  return false;
}

bool CallAnalyzer::visitPHI(PHINode &I) {
  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
  // though we don't want to propagate it's bonuses. The idea is to disable
  // SROA if it *might* be used in an inappropriate manner.

  // Phi nodes are always zero-cost.
  // FIXME: Pointer sizes may differ between different address spaces, so do we
  // need to use correct address space in the call to getPointerSizeInBits here?
  // Or could we skip the getPointerSizeInBits call completely? As far as I can
  // see the ZeroOffset is used as a dummy value, so we can probably use any
  // bit width for the ZeroOffset?
  APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
  bool CheckSROA = I.getType()->isPointerTy();

  // Track the constant or pointer with constant offset we've seen so far.
  Constant *FirstC = nullptr;
  std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
  Value *FirstV = nullptr;

  for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
    BasicBlock *Pred = I.getIncomingBlock(i);
    // If the incoming block is dead, skip the incoming block.
    if (DeadBlocks.count(Pred))
      continue;
    // If the parent block of phi is not the known successor of the incoming
    // block, skip the incoming block.
    BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
    if (KnownSuccessor && KnownSuccessor != I.getParent())
      continue;

    Value *V = I.getIncomingValue(i);
    // If the incoming value is this phi itself, skip the incoming value.
    if (&I == V)
      continue;

    Constant *C = dyn_cast<Constant>(V);
    if (!C)
      C = SimplifiedValues.lookup(V);

    std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
    if (!C && CheckSROA)
      BaseAndOffset = ConstantOffsetPtrs.lookup(V);

    if (!C && !BaseAndOffset.first)
      // The incoming value is neither a constant nor a pointer with constant
      // offset, exit early.
      return true;

    if (FirstC) {
      if (FirstC == C)
        // If we've seen a constant incoming value before and it is the same
        // constant we see this time, continue checking the next incoming value.
        continue;
      // Otherwise early exit because we either see a different constant or saw
      // a constant before but we have a pointer with constant offset this time.
      return true;
    }

    if (FirstV) {
      // The same logic as above, but check pointer with constant offset here.
      if (FirstBaseAndOffset == BaseAndOffset)
        continue;
      return true;
    }

    if (C) {
      // This is the 1st time we've seen a constant, record it.
      FirstC = C;
      continue;
    }

    // The remaining case is that this is the 1st time we've seen a pointer with
    // constant offset, record it.
    FirstV = V;
    FirstBaseAndOffset = BaseAndOffset;
  }

  // Check if we can map phi to a constant.
  if (FirstC) {
    SimplifiedValues[&I] = FirstC;
    return true;
  }

  // Check if we can map phi to a pointer with constant offset.
  if (FirstBaseAndOffset.first) {
    ConstantOffsetPtrs[&I] = FirstBaseAndOffset;

    if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
      SROAArgValues[&I] = SROAArg;
  }

  return true;
}

/// Check we can fold GEPs of constant-offset call site argument pointers.
/// This requires target data and inbounds GEPs.
///
/// \return true if the specified GEP can be folded.
bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
  // Check if we have a base + offset for the pointer.
  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(I.getPointerOperand());
  if (!BaseAndOffset.first)
    return false;

  // Check if the offset of this GEP is constant, and if so accumulate it
  // into Offset.
  if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
    return false;

  // Add the result as a new mapping to Base + Offset.
  ConstantOffsetPtrs[&I] = BaseAndOffset;

  return true;
}

bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
  auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());

  // Lambda to check whether a GEP's indices are all constant.
  auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
    for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
      if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
        return false;
    return true;
  };

  if (!DisableGEPConstOperand)
    if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        SmallVector<Constant *, 2> Indices;
        for (unsigned int Index = 1 ; Index < COps.size() ; ++Index)
            Indices.push_back(COps[Index]);
        return ConstantExpr::getGetElementPtr(I.getSourceElementType(), COps[0],
                                              Indices, I.isInBounds());
        }))
      return true;

  if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
    if (SROAArg)
      SROAArgValues[&I] = SROAArg;

    // Constant GEPs are modeled as free.
    return true;
  }

  // Variable GEPs will require math and will disable SROA.
  if (SROAArg)
    disableSROAForArg(SROAArg);
  return isGEPFree(I);
}

/// Simplify \p I if its operands are constants and update SimplifiedValues.
/// \p Evaluate is a callable specific to instruction type that evaluates the
/// instruction when all the operands are constants.
template <typename Callable>
bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
  SmallVector<Constant *, 2> COps;
  for (Value *Op : I.operands()) {
    Constant *COp = dyn_cast<Constant>(Op);
    if (!COp)
      COp = SimplifiedValues.lookup(Op);
    if (!COp)
      return false;
    COps.push_back(COp);
  }
  auto *C = Evaluate(COps);
  if (!C)
    return false;
  SimplifiedValues[&I] = C;
  return true;
}

bool CallAnalyzer::visitBitCast(BitCastInst &I) {
  // Propagate constants through bitcasts.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getBitCast(COps[0], I.getType());
      }))
    return true;

  // Track base/offsets through casts
  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(I.getOperand(0));
  // Casts don't change the offset, just wrap it up.
  if (BaseAndOffset.first)
    ConstantOffsetPtrs[&I] = BaseAndOffset;

  // Also look for SROA candidates here.
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
    SROAArgValues[&I] = SROAArg;

  // Bitcasts are always zero cost.
  return true;
}

bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
  // Propagate constants through ptrtoint.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getPtrToInt(COps[0], I.getType());
      }))
    return true;

  // Track base/offset pairs when converted to a plain integer provided the
  // integer is large enough to represent the pointer.
  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
  unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
  if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
    std::pair<Value *, APInt> BaseAndOffset =
        ConstantOffsetPtrs.lookup(I.getOperand(0));
    if (BaseAndOffset.first)
      ConstantOffsetPtrs[&I] = BaseAndOffset;
  }

  // This is really weird. Technically, ptrtoint will disable SROA. However,
  // unless that ptrtoint is *used* somewhere in the live basic blocks after
  // inlining, it will be nuked, and SROA should proceed. All of the uses which
  // would block SROA would also block SROA if applied directly to a pointer,
  // and so we can just add the integer in here. The only places where SROA is
  // preserved either cannot fire on an integer, or won't in-and-of themselves
  // disable SROA (ext) w/o some later use that we would see and disable.
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
    SROAArgValues[&I] = SROAArg;

  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
  // Propagate constants through ptrtoint.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getIntToPtr(COps[0], I.getType());
      }))
    return true;

  // Track base/offset pairs when round-tripped through a pointer without
  // modifications provided the integer is not too large.
  Value *Op = I.getOperand(0);
  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
  if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
    if (BaseAndOffset.first)
      ConstantOffsetPtrs[&I] = BaseAndOffset;
  }

  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
  if (auto *SROAArg = getSROAArgForValueOrNull(Op))
    SROAArgValues[&I] = SROAArg;

  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitCastInst(CastInst &I) {
  // Propagate constants through casts.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
      }))
    return true;

  // Disable SROA in the face of arbitrary casts we don't explicitly list
  // elsewhere.
  disableSROA(I.getOperand(0));

  // If this is a floating-point cast, and the target says this operation
  // is expensive, this may eventually become a library call. Treat the cost
  // as such.
  switch (I.getOpcode()) {
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
    if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
      onCallPenalty();
    break;
  default:
    break;
  }

  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
  Value *Operand = I.getOperand(0);
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantFoldInstOperands(&I, COps[0], DL);
      }))
    return true;

  // Disable any SROA on the argument to arbitrary unary instructions.
  disableSROA(Operand);

  return false;
}

bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
  return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
}

bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
  // Does the *call site* have the NonNull attribute set on an argument?  We
  // use the attribute on the call site to memoize any analysis done in the
  // caller. This will also trip if the callee function has a non-null
  // parameter attribute, but that's a less interesting case because hopefully
  // the callee would already have been simplified based on that.
  if (Argument *A = dyn_cast<Argument>(V))
    if (paramHasAttr(A, Attribute::NonNull))
      return true;

  // Is this an alloca in the caller?  This is distinct from the attribute case
  // above because attributes aren't updated within the inliner itself and we
  // always want to catch the alloca derived case.
  if (isAllocaDerivedArg(V))
    // We can actually predict the result of comparisons between an
    // alloca-derived value and null. Note that this fires regardless of
    // SROA firing.
    return true;

  return false;
}

bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
  // If the normal destination of the invoke or the parent block of the call
  // site is unreachable-terminated, there is little point in inlining this
  // unless there is literally zero cost.
  // FIXME: Note that it is possible that an unreachable-terminated block has a
  // hot entry. For example, in below scenario inlining hot_call_X() may be
  // beneficial :
  // main() {
  //   hot_call_1();
  //   ...
  //   hot_call_N()
  //   exit(0);
  // }
  // For now, we are not handling this corner case here as it is rare in real
  // code. In future, we should elaborate this based on BPI and BFI in more
  // general threshold adjusting heuristics in updateThreshold().
  if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
    if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
      return false;
  } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
    return false;

  return true;
}

bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
                                            BlockFrequencyInfo *CallerBFI) {
  // If global profile summary is available, then callsite's coldness is
  // determined based on that.
  if (PSI && PSI->hasProfileSummary())
    return PSI->isColdCallSite(Call, CallerBFI);

  // Otherwise we need BFI to be available.
  if (!CallerBFI)
    return false;

  // Determine if the callsite is cold relative to caller's entry. We could
  // potentially cache the computation of scaled entry frequency, but the added
  // complexity is not worth it unless this scaling shows up high in the
  // profiles.
  const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
  auto CallSiteBB = Call.getParent();
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
  auto CallerEntryFreq =
      CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
  return CallSiteFreq < CallerEntryFreq * ColdProb;
}

Optional<int>
InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
                                                BlockFrequencyInfo *CallerBFI) {

  // If global profile summary is available, then callsite's hotness is
  // determined based on that.
  if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
    return Params.HotCallSiteThreshold;

  // Otherwise we need BFI to be available and to have a locally hot callsite
  // threshold.
  if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
    return None;

  // Determine if the callsite is hot relative to caller's entry. We could
  // potentially cache the computation of scaled entry frequency, but the added
  // complexity is not worth it unless this scaling shows up high in the
  // profiles.
  auto CallSiteBB = Call.getParent();
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
  auto CallerEntryFreq = CallerBFI->getEntryFreq();
  if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
    return Params.LocallyHotCallSiteThreshold;

  // Otherwise treat it normally.
  return None;
}

void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
  // If no size growth is allowed for this inlining, set Threshold to 0.
  if (!allowSizeGrowth(Call)) {
    Threshold = 0;
    return;
  }

  Function *Caller = Call.getCaller();

  // return min(A, B) if B is valid.
  auto MinIfValid = [](int A, Optional<int> B) {
    return B ? std::min(A, B.getValue()) : A;
  };

  // return max(A, B) if B is valid.
  auto MaxIfValid = [](int A, Optional<int> B) {
    return B ? std::max(A, B.getValue()) : A;
  };

  // Various bonus percentages. These are multiplied by Threshold to get the
  // bonus values.
  // SingleBBBonus: This bonus is applied if the callee has a single reachable
  // basic block at the given callsite context. This is speculatively applied
  // and withdrawn if more than one basic block is seen.
  //
  // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
  // of the last call to a static function as inlining such functions is
  // guaranteed to reduce code size.
  //
  // These bonus percentages may be set to 0 based on properties of the caller
  // and the callsite.
  int SingleBBBonusPercent = 50;
  int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
  int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;

  // Lambda to set all the above bonus and bonus percentages to 0.
  auto DisallowAllBonuses = [&]() {
    SingleBBBonusPercent = 0;
    VectorBonusPercent = 0;
    LastCallToStaticBonus = 0;
  };

  // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
  // and reduce the threshold if the caller has the necessary attribute.
  if (Caller->hasMinSize()) {
    Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
    // For minsize, we want to disable the single BB bonus and the vector
    // bonuses, but not the last-call-to-static bonus. Inlining the last call to
    // a static function will, at the minimum, eliminate the parameter setup and
    // call/return instructions.
    SingleBBBonusPercent = 0;
    VectorBonusPercent = 0;
  } else if (Caller->hasOptSize())
    Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);

  // Adjust the threshold based on inlinehint attribute and profile based
  // hotness information if the caller does not have MinSize attribute.
  if (!Caller->hasMinSize()) {
    if (Callee.hasFnAttribute(Attribute::InlineHint))
      Threshold = MaxIfValid(Threshold, Params.HintThreshold);

    // FIXME: After switching to the new passmanager, simplify the logic below
    // by checking only the callsite hotness/coldness as we will reliably
    // have local profile information.
    //
    // Callsite hotness and coldness can be determined if sample profile is
    // used (which adds hotness metadata to calls) or if caller's
    // BlockFrequencyInfo is available.
    BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
    auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
    if (!Caller->hasOptSize() && HotCallSiteThreshold) {
      LLVM_DEBUG(dbgs() << "Hot callsite.\n");
      // FIXME: This should update the threshold only if it exceeds the
      // current threshold, but AutoFDO + ThinLTO currently relies on this
      // behavior to prevent inlining of hot callsites during ThinLTO
      // compile phase.
      Threshold = HotCallSiteThreshold.getValue();
    } else if (isColdCallSite(Call, CallerBFI)) {
      LLVM_DEBUG(dbgs() << "Cold callsite.\n");
      // Do not apply bonuses for a cold callsite including the
      // LastCallToStatic bonus. While this bonus might result in code size
      // reduction, it can cause the size of a non-cold caller to increase
      // preventing it from being inlined.
      DisallowAllBonuses();
      Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
    } else if (PSI) {
      // Use callee's global profile information only if we have no way of
      // determining this via callsite information.
      if (PSI->isFunctionEntryHot(&Callee)) {
        LLVM_DEBUG(dbgs() << "Hot callee.\n");
        // If callsite hotness can not be determined, we may still know
        // that the callee is hot and treat it as a weaker hint for threshold
        // increase.
        Threshold = MaxIfValid(Threshold, Params.HintThreshold);
      } else if (PSI->isFunctionEntryCold(&Callee)) {
        LLVM_DEBUG(dbgs() << "Cold callee.\n");
        // Do not apply bonuses for a cold callee including the
        // LastCallToStatic bonus. While this bonus might result in code size
        // reduction, it can cause the size of a non-cold caller to increase
        // preventing it from being inlined.
        DisallowAllBonuses();
        Threshold = MinIfValid(Threshold, Params.ColdThreshold);
      }
    }
  }

  // Finally, take the target-specific inlining threshold multiplier into
  // account.
  Threshold *= TTI.getInliningThresholdMultiplier();

  SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
  VectorBonus = Threshold * VectorBonusPercent / 100;

  bool OnlyOneCallAndLocalLinkage =
      F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
  // If there is only one call of the function, and it has internal linkage,
  // the cost of inlining it drops dramatically. It may seem odd to update
  // Cost in updateThreshold, but the bonus depends on the logic in this method.
  if (OnlyOneCallAndLocalLinkage)
    Cost -= LastCallToStaticBonus;
}

bool CallAnalyzer::visitCmpInst(CmpInst &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  // First try to handle simplified comparisons.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
      }))
    return true;

  if (I.getOpcode() == Instruction::FCmp)
    return false;

  // Otherwise look for a comparison between constant offset pointers with
  // a common base.
  Value *LHSBase, *RHSBase;
  APInt LHSOffset, RHSOffset;
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
  if (LHSBase) {
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    if (RHSBase && LHSBase == RHSBase) {
      // We have common bases, fold the icmp to a constant based on the
      // offsets.
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        ++NumConstantPtrCmps;
        return true;
      }
    }
  }

  // If the comparison is an equality comparison with null, we can simplify it
  // if we know the value (argument) can't be null
  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
      isKnownNonNullInCallee(I.getOperand(0))) {
    bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
    SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
                                      : ConstantInt::getFalse(I.getType());
    return true;
  }
  return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
}

bool CallAnalyzer::visitSub(BinaryOperator &I) {
  // Try to handle a special case: we can fold computing the difference of two
  // constant-related pointers.
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Value *LHSBase, *RHSBase;
  APInt LHSOffset, RHSOffset;
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
  if (LHSBase) {
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    if (RHSBase && LHSBase == RHSBase) {
      // We have common bases, fold the subtract to a constant based on the
      // offsets.
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        ++NumConstantPtrDiffs;
        return true;
      }
    }
  }

  // Otherwise, fall back to the generic logic for simplifying and handling
  // instructions.
  return Base::visitSub(I);
}

bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Constant *CLHS = dyn_cast<Constant>(LHS);
  if (!CLHS)
    CLHS = SimplifiedValues.lookup(LHS);
  Constant *CRHS = dyn_cast<Constant>(RHS);
  if (!CRHS)
    CRHS = SimplifiedValues.lookup(RHS);

  Value *SimpleV = nullptr;
  if (auto FI = dyn_cast<FPMathOperator>(&I))
    SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
                            FI->getFastMathFlags(), DL);
  else
    SimpleV =
        SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);

  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    SimplifiedValues[&I] = C;

  if (SimpleV)
    return true;

  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
  disableSROA(LHS);
  disableSROA(RHS);

  // If the instruction is floating point, and the target says this operation
  // is expensive, this may eventually become a library call. Treat the cost
  // as such. Unless it's fneg which can be implemented with an xor.
  using namespace llvm::PatternMatch;
  if (I.getType()->isFloatingPointTy() &&
      TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
      !match(&I, m_FNeg(m_Value())))
    onCallPenalty();

  return false;
}

bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
  Value *Op = I.getOperand(0);
  Constant *COp = dyn_cast<Constant>(Op);
  if (!COp)
    COp = SimplifiedValues.lookup(Op);

  Value *SimpleV = SimplifyFNegInst(
      COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);

  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    SimplifiedValues[&I] = C;

  if (SimpleV)
    return true;

  // Disable any SROA on arguments to arbitrary, unsimplified fneg.
  disableSROA(Op);

  return false;
}

bool CallAnalyzer::visitLoad(LoadInst &I) {
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
    return true;

  // If the data is already loaded from this address and hasn't been clobbered
  // by any stores or calls, this load is likely to be redundant and can be
  // eliminated.
  if (EnableLoadElimination &&
      !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
    onLoadEliminationOpportunity();
    return true;
  }

  return false;
}

bool CallAnalyzer::visitStore(StoreInst &I) {
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
    return true;

  // The store can potentially clobber loads and prevent repeated loads from
  // being eliminated.
  // FIXME:
  // 1. We can probably keep an initial set of eliminatable loads substracted
  // from the cost even when we finally see a store. We just need to disable
  // *further* accumulation of elimination savings.
  // 2. We should probably at some point thread MemorySSA for the callee into
  // this and then use that to actually compute *really* precise savings.
  disableLoadElimination();
  return false;
}

bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
  // Constant folding for extract value is trivial.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getExtractValue(COps[0], I.getIndices());
      }))
    return true;

  // SROA can look through these but give them a cost.
  return false;
}

bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
  // Constant folding for insert value is trivial.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
                                            /*InsertedValueOperand*/ COps[1],
                                            I.getIndices());
      }))
    return true;

  // SROA can look through these but give them a cost.
  return false;
}

/// Try to simplify a call site.
///
/// Takes a concrete function and callsite and tries to actually simplify it by
/// analyzing the arguments and call itself with instsimplify. Returns true if
/// it has simplified the callsite to some other entity (a constant), making it
/// free.
bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
  // FIXME: Using the instsimplify logic directly for this is inefficient
  // because we have to continually rebuild the argument list even when no
  // simplifications can be performed. Until that is fixed with remapping
  // inside of instsimplify, directly constant fold calls here.
  if (!canConstantFoldCallTo(&Call, F))
    return false;

  // Try to re-map the arguments to constants.
  SmallVector<Constant *, 4> ConstantArgs;
  ConstantArgs.reserve(Call.arg_size());
  for (Value *I : Call.args()) {
    Constant *C = dyn_cast<Constant>(I);
    if (!C)
      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
    if (!C)
      return false; // This argument doesn't map to a constant.

    ConstantArgs.push_back(C);
  }
  if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
    SimplifiedValues[&Call] = C;
    return true;
  }

  return false;
}

bool CallAnalyzer::visitCallBase(CallBase &Call) {
  if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
      !F.hasFnAttribute(Attribute::ReturnsTwice)) {
    // This aborts the entire analysis.
    ExposesReturnsTwice = true;
    return false;
  }
  if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
    ContainsNoDuplicateCall = true;

  Value *Callee = Call.getCalledOperand();
  Function *F = dyn_cast_or_null<Function>(Callee);
  bool IsIndirectCall = !F;
  if (IsIndirectCall) {
    // Check if this happens to be an indirect function call to a known function
    // in this inline context. If not, we've done all we can.
    F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
    if (!F) {
      onCallArgumentSetup(Call);

      if (!Call.onlyReadsMemory())
        disableLoadElimination();
      return Base::visitCallBase(Call);
    }
  }

  assert(F && "Expected a call to a known function");

  // When we have a concrete function, first try to simplify it directly.
  if (simplifyCallSite(F, Call))
    return true;

  // Next check if it is an intrinsic we know about.
  // FIXME: Lift this into part of the InstVisitor.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
    switch (II->getIntrinsicID()) {
    default:
      if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
        disableLoadElimination();
      return Base::visitCallBase(Call);

    case Intrinsic::load_relative:
      onLoadRelativeIntrinsic();
      return false;

    case Intrinsic::memset:
    case Intrinsic::memcpy:
    case Intrinsic::memmove:
      disableLoadElimination();
      // SROA can usually chew through these intrinsics, but they aren't free.
      return false;
    case Intrinsic::icall_branch_funnel:
    case Intrinsic::localescape:
      HasUninlineableIntrinsic = true;
      return false;
    case Intrinsic::vastart:
      InitsVargArgs = true;
      return false;
    }
  }

  if (F == Call.getFunction()) {
    // This flag will fully abort the analysis, so don't bother with anything
    // else.
    IsRecursiveCall = true;
    return false;
  }

  if (TTI.isLoweredToCall(F)) {
    onLoweredCall(F, Call, IsIndirectCall);
  }

  if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
    disableLoadElimination();
  return Base::visitCallBase(Call);
}

bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
  // At least one return instruction will be free after inlining.
  bool Free = !HasReturn;
  HasReturn = true;
  return Free;
}

bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
  // We model unconditional branches as essentially free -- they really
  // shouldn't exist at all, but handling them makes the behavior of the
  // inliner more regular and predictable. Interestingly, conditional branches
  // which will fold away are also free.
  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
         dyn_cast_or_null<ConstantInt>(
             SimplifiedValues.lookup(BI.getCondition()));
}

bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
  bool CheckSROA = SI.getType()->isPointerTy();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();

  Constant *TrueC = dyn_cast<Constant>(TrueVal);
  if (!TrueC)
    TrueC = SimplifiedValues.lookup(TrueVal);
  Constant *FalseC = dyn_cast<Constant>(FalseVal);
  if (!FalseC)
    FalseC = SimplifiedValues.lookup(FalseVal);
  Constant *CondC =
      dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));

  if (!CondC) {
    // Select C, X, X => X
    if (TrueC == FalseC && TrueC) {
      SimplifiedValues[&SI] = TrueC;
      return true;
    }

    if (!CheckSROA)
      return Base::visitSelectInst(SI);

    std::pair<Value *, APInt> TrueBaseAndOffset =
        ConstantOffsetPtrs.lookup(TrueVal);
    std::pair<Value *, APInt> FalseBaseAndOffset =
        ConstantOffsetPtrs.lookup(FalseVal);
    if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
      ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;

      if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
        SROAArgValues[&SI] = SROAArg;
      return true;
    }

    return Base::visitSelectInst(SI);
  }

  // Select condition is a constant.
  Value *SelectedV = CondC->isAllOnesValue()
                         ? TrueVal
                         : (CondC->isNullValue()) ? FalseVal : nullptr;
  if (!SelectedV) {
    // Condition is a vector constant that is not all 1s or all 0s.  If all
    // operands are constants, ConstantExpr::getSelect() can handle the cases
    // such as select vectors.
    if (TrueC && FalseC) {
      if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
        SimplifiedValues[&SI] = C;
        return true;
      }
    }
    return Base::visitSelectInst(SI);
  }

  // Condition is either all 1s or all 0s. SI can be simplified.
  if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
    SimplifiedValues[&SI] = SelectedC;
    return true;
  }

  if (!CheckSROA)
    return true;

  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(SelectedV);
  if (BaseAndOffset.first) {
    ConstantOffsetPtrs[&SI] = BaseAndOffset;

    if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
      SROAArgValues[&SI] = SROAArg;
  }

  return true;
}

bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
  // We model unconditional switches as free, see the comments on handling
  // branches.
  if (isa<ConstantInt>(SI.getCondition()))
    return true;
  if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
    if (isa<ConstantInt>(V))
      return true;

  // Assume the most general case where the switch is lowered into
  // either a jump table, bit test, or a balanced binary tree consisting of
  // case clusters without merging adjacent clusters with the same
  // destination. We do not consider the switches that are lowered with a mix
  // of jump table/bit test/binary search tree. The cost of the switch is
  // proportional to the size of the tree or the size of jump table range.
  //
  // NB: We convert large switches which are just used to initialize large phi
  // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
  // inlining those. It will prevent inlining in cases where the optimization
  // does not (yet) fire.

  unsigned JumpTableSize = 0;
  BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
  unsigned NumCaseCluster =
      TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);

  onFinalizeSwitch(JumpTableSize, NumCaseCluster);
  return false;
}

bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
  // We never want to inline functions that contain an indirectbr.  This is
  // incorrect because all the blockaddress's (in static global initializers
  // for example) would be referring to the original function, and this
  // indirect jump would jump from the inlined copy of the function into the
  // original function which is extremely undefined behavior.
  // FIXME: This logic isn't really right; we can safely inline functions with
  // indirectbr's as long as no other function or global references the
  // blockaddress of a block within the current function.
  HasIndirectBr = true;
  return false;
}

bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a resume instruction.
  return false;
}

bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a cleanupret instruction.
  return false;
}

bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a catchret instruction.
  return false;
}

bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
  // FIXME: It might be reasonably to discount the cost of instructions leading
  // to unreachable as they have the lowest possible impact on both runtime and
  // code size.
  return true; // No actual code is needed for unreachable.
}

bool CallAnalyzer::visitInstruction(Instruction &I) {
  // Some instructions are free. All of the free intrinsics can also be
  // handled by SROA, etc.
  if (TargetTransformInfo::TCC_Free ==
      TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency))
    return true;

  // We found something we don't understand or can't handle. Mark any SROA-able
  // values in the operand list as no longer viable.
  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
    disableSROA(*OI);

  return false;
}

/// Analyze a basic block for its contribution to the inline cost.
///
/// This method walks the analyzer over every instruction in the given basic
/// block and accounts for their cost during inlining at this callsite. It
/// aborts early if the threshold has been exceeded or an impossible to inline
/// construct has been detected. It returns false if inlining is no longer
/// viable, and true if inlining remains viable.
InlineResult
CallAnalyzer::analyzeBlock(BasicBlock *BB,
                           SmallPtrSetImpl<const Value *> &EphValues) {
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    // FIXME: Currently, the number of instructions in a function regardless of
    // our ability to simplify them during inline to constants or dead code,
    // are actually used by the vector bonus heuristic. As long as that's true,
    // we have to special case debug intrinsics here to prevent differences in
    // inlining due to debug symbols. Eventually, the number of unsimplified
    // instructions shouldn't factor into the cost computation, but until then,
    // hack around it here.
    if (isa<DbgInfoIntrinsic>(I))
      continue;

    // Skip ephemeral values.
    if (EphValues.count(&*I))
      continue;

    ++NumInstructions;
    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
      ++NumVectorInstructions;

    // If the instruction simplified to a constant, there is no cost to this
    // instruction. Visit the instructions using our InstVisitor to account for
    // all of the per-instruction logic. The visit tree returns true if we
    // consumed the instruction in any way, and false if the instruction's base
    // cost should count against inlining.
    onInstructionAnalysisStart(&*I);

    if (Base::visit(&*I))
      ++NumInstructionsSimplified;
    else
      onMissedSimplification();

    onInstructionAnalysisFinish(&*I);
    using namespace ore;
    // If the visit this instruction detected an uninlinable pattern, abort.
    InlineResult IR = InlineResult::success();
    if (IsRecursiveCall)
      IR = InlineResult::failure("recursive");
    else if (ExposesReturnsTwice)
      IR = InlineResult::failure("exposes returns twice");
    else if (HasDynamicAlloca)
      IR = InlineResult::failure("dynamic alloca");
    else if (HasIndirectBr)
      IR = InlineResult::failure("indirect branch");
    else if (HasUninlineableIntrinsic)
      IR = InlineResult::failure("uninlinable intrinsic");
    else if (InitsVargArgs)
      IR = InlineResult::failure("varargs");
    if (!IR.isSuccess()) {
      if (ORE)
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
                                          &CandidateCall)
                 << NV("Callee", &F) << " has uninlinable pattern ("
                 << NV("InlineResult", IR.getFailureReason())
                 << ") and cost is not fully computed";
        });
      return IR;
    }

    // If the caller is a recursive function then we don't want to inline
    // functions which allocate a lot of stack space because it would increase
    // the caller stack usage dramatically.
    if (IsCallerRecursive &&
        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
      auto IR =
          InlineResult::failure("recursive and allocates too much stack space");
      if (ORE)
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
                                          &CandidateCall)
                 << NV("Callee", &F) << " is "
                 << NV("InlineResult", IR.getFailureReason())
                 << ". Cost is not fully computed";
        });
      return IR;
    }

    if (shouldStop())
      return InlineResult::failure(
          "Call site analysis is not favorable to inlining.");
  }

  return InlineResult::success();
}

/// Compute the base pointer and cumulative constant offsets for V.
///
/// This strips all constant offsets off of V, leaving it the base pointer, and
/// accumulates the total constant offset applied in the returned constant. It
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
  if (!V->getType()->isPointerTy())
    return nullptr;

  unsigned AS = V->getType()->getPointerAddressSpace();
  unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
  APInt Offset = APInt::getNullValue(IntPtrWidth);

  // Even though we don't look through PHI nodes, we could be called on an
  // instruction in an unreachable block, which may be on a cycle.
  SmallPtrSet<Value *, 4> Visited;
  Visited.insert(V);
  do {
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
        return nullptr;
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
      if (GA->isInterposable())
        break;
      V = GA->getAliasee();
    } else {
      break;
    }
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
  } while (Visited.insert(V).second);

  Type *IdxPtrTy = DL.getIndexType(V->getType());
  return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
}

/// Find dead blocks due to deleted CFG edges during inlining.
///
/// If we know the successor of the current block, \p CurrBB, has to be \p
/// NextBB, the other successors of \p CurrBB are dead if these successors have
/// no live incoming CFG edges.  If one block is found to be dead, we can
/// continue growing the dead block list by checking the successors of the dead
/// blocks to see if all their incoming edges are dead or not.
void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
  auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
    // A CFG edge is dead if the predecessor is dead or the predecessor has a
    // known successor which is not the one under exam.
    return (DeadBlocks.count(Pred) ||
            (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
  };

  auto IsNewlyDead = [&](BasicBlock *BB) {
    // If all the edges to a block are dead, the block is also dead.
    return (!DeadBlocks.count(BB) &&
            llvm::all_of(predecessors(BB),
                         [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
  };

  for (BasicBlock *Succ : successors(CurrBB)) {
    if (Succ == NextBB || !IsNewlyDead(Succ))
      continue;
    SmallVector<BasicBlock *, 4> NewDead;
    NewDead.push_back(Succ);
    while (!NewDead.empty()) {
      BasicBlock *Dead = NewDead.pop_back_val();
      if (DeadBlocks.insert(Dead))
        // Continue growing the dead block lists.
        for (BasicBlock *S : successors(Dead))
          if (IsNewlyDead(S))
            NewDead.push_back(S);
    }
  }
}

/// Analyze a call site for potential inlining.
///
/// Returns true if inlining this call is viable, and false if it is not
/// viable. It computes the cost and adjusts the threshold based on numerous
/// factors and heuristics. If this method returns false but the computed cost
/// is below the computed threshold, then inlining was forcibly disabled by
/// some artifact of the routine.
InlineResult CallAnalyzer::analyze() {
  ++NumCallsAnalyzed;

  auto Result = onAnalysisStart();
  if (!Result.isSuccess())
    return Result;

  if (F.empty())
    return InlineResult::success();

  Function *Caller = CandidateCall.getFunction();
  // Check if the caller function is recursive itself.
  for (User *U : Caller->users()) {
    CallBase *Call = dyn_cast<CallBase>(U);
    if (Call && Call->getFunction() == Caller) {
      IsCallerRecursive = true;
      break;
    }
  }

  // Populate our simplified values by mapping from function arguments to call
  // arguments with known important simplifications.
  auto CAI = CandidateCall.arg_begin();
  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
       FAI != FAE; ++FAI, ++CAI) {
    assert(CAI != CandidateCall.arg_end());
    if (Constant *C = dyn_cast<Constant>(CAI))
      SimplifiedValues[&*FAI] = C;

    Value *PtrArg = *CAI;
    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
      ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());

      // We can SROA any pointer arguments derived from alloca instructions.
      if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
        SROAArgValues[&*FAI] = SROAArg;
        onInitializeSROAArg(SROAArg);
        EnabledSROAAllocas.insert(SROAArg);
      }
    }
  }
  NumConstantArgs = SimplifiedValues.size();
  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
  NumAllocaArgs = SROAArgValues.size();

  // FIXME: If a caller has multiple calls to a callee, we end up recomputing
  // the ephemeral values multiple times (and they're completely determined by
  // the callee, so this is purely duplicate work).
  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);

  // The worklist of live basic blocks in the callee *after* inlining. We avoid
  // adding basic blocks of the callee which can be proven to be dead for this
  // particular call site in order to get more accurate cost estimates. This
  // requires a somewhat heavyweight iteration pattern: we need to walk the
  // basic blocks in a breadth-first order as we insert live successors. To
  // accomplish this, prioritizing for small iterations because we exit after
  // crossing our threshold, we use a small-size optimized SetVector.
  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
                    SmallPtrSet<BasicBlock *, 16>>
      BBSetVector;
  BBSetVector BBWorklist;
  BBWorklist.insert(&F.getEntryBlock());

  // Note that we *must not* cache the size, this loop grows the worklist.
  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
    if (shouldStop())
      break;

    BasicBlock *BB = BBWorklist[Idx];
    if (BB->empty())
      continue;

    // Disallow inlining a blockaddress with uses other than strictly callbr.
    // A blockaddress only has defined behavior for an indirect branch in the
    // same function, and we do not currently support inlining indirect
    // branches.  But, the inliner may not see an indirect branch that ends up
    // being dead code at a particular call site. If the blockaddress escapes
    // the function, e.g., via a global variable, inlining may lead to an
    // invalid cross-function reference.
    // FIXME: pr/39560: continue relaxing this overt restriction.
    if (BB->hasAddressTaken())
      for (User *U : BlockAddress::get(&*BB)->users())
        if (!isa<CallBrInst>(*U))
          return InlineResult::failure("blockaddress used outside of callbr");

    // Analyze the cost of this block. If we blow through the threshold, this
    // returns false, and we can bail on out.
    InlineResult IR = analyzeBlock(BB, EphValues);
    if (!IR.isSuccess())
      return IR;

    Instruction *TI = BB->getTerminator();

    // Add in the live successors by first checking whether we have terminator
    // that may be simplified based on the values simplified by this call.
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional()) {
        Value *Cond = BI->getCondition();
        if (ConstantInt *SimpleCond =
                dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
          BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
          BBWorklist.insert(NextBB);
          KnownSuccessors[BB] = NextBB;
          findDeadBlocks(BB, NextBB);
          continue;
        }
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *Cond = SI->getCondition();
      if (ConstantInt *SimpleCond =
              dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
        BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
        BBWorklist.insert(NextBB);
        KnownSuccessors[BB] = NextBB;
        findDeadBlocks(BB, NextBB);
        continue;
      }
    }

    // If we're unable to select a particular successor, just count all of
    // them.
    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
         ++TIdx)
      BBWorklist.insert(TI->getSuccessor(TIdx));

    onBlockAnalyzed(BB);
  }

  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
                                    &F == CandidateCall.getCalledFunction();
  // If this is a noduplicate call, we can still inline as long as
  // inlining this would cause the removal of the caller (so the instruction
  // is not actually duplicated, just moved).
  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
    return InlineResult::failure("noduplicate");

  return finalizeAnalysis();
}

void InlineCostCallAnalyzer::print() {
#define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
  if (PrintInstructionComments)
    F.print(dbgs(), &Writer);
  DEBUG_PRINT_STAT(NumConstantArgs);
  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
  DEBUG_PRINT_STAT(NumAllocaArgs);
  DEBUG_PRINT_STAT(NumConstantPtrCmps);
  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
  DEBUG_PRINT_STAT(NumInstructionsSimplified);
  DEBUG_PRINT_STAT(NumInstructions);
  DEBUG_PRINT_STAT(SROACostSavings);
  DEBUG_PRINT_STAT(SROACostSavingsLost);
  DEBUG_PRINT_STAT(LoadEliminationCost);
  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
  DEBUG_PRINT_STAT(Cost);
  DEBUG_PRINT_STAT(Threshold);
#undef DEBUG_PRINT_STAT
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Dump stats about this call's analysis.
LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() {
  print();
}
#endif

/// Test that there are no attribute conflicts between Caller and Callee
///        that prevent inlining.
static bool functionsHaveCompatibleAttributes(
    Function *Caller, Function *Callee, TargetTransformInfo &TTI,
    function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
  // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
  // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
  // object, and always returns the same object (which is overwritten on each
  // GetTLI call). Therefore we copy the first result.
  auto CalleeTLI = GetTLI(*Callee);
  return TTI.areInlineCompatible(Caller, Callee) &&
         GetTLI(*Caller).areInlineCompatible(CalleeTLI,
                                             InlineCallerSupersetNoBuiltin) &&
         AttributeFuncs::areInlineCompatible(*Caller, *Callee);
}

int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
  int Cost = 0;
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
    if (Call.isByValArgument(I)) {
      // We approximate the number of loads and stores needed by dividing the
      // size of the byval type by the target's pointer size.
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
      unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
      unsigned AS = PTy->getAddressSpace();
      unsigned PointerSize = DL.getPointerSizeInBits(AS);
      // Ceiling division.
      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;

      // If it generates more than 8 stores it is likely to be expanded as an
      // inline memcpy so we take that as an upper bound. Otherwise we assume
      // one load and one store per word copied.
      // FIXME: The maxStoresPerMemcpy setting from the target should be used
      // here instead of a magic number of 8, but it's not available via
      // DataLayout.
      NumStores = std::min(NumStores, 8U);

      Cost += 2 * NumStores * InlineConstants::InstrCost;
    } else {
      // For non-byval arguments subtract off one instruction per call
      // argument.
      Cost += InlineConstants::InstrCost;
    }
  }
  // The call instruction also disappears after inlining.
  Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
  return Cost;
}

InlineCost llvm::getInlineCost(
    CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
  return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
                       GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
}

Optional<int> llvm::getInliningCostEstimate(
    CallBase &Call, TargetTransformInfo &CalleeTTI,
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
  const InlineParams Params = {/* DefaultThreshold*/ 0,
                               /*HintThreshold*/ {},
                               /*ColdThreshold*/ {},
                               /*OptSizeThreshold*/ {},
                               /*OptMinSizeThreshold*/ {},
                               /*HotCallSiteThreshold*/ {},
                               /*LocallyHotCallSiteThreshold*/ {},
                               /*ColdCallSiteThreshold*/ {},
                               /*ComputeFullInlineCost*/ true,
                               /*EnableDeferral*/ true};

  InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
                            GetAssumptionCache, GetBFI, PSI, ORE, true,
                            /*IgnoreThreshold*/ true);
  auto R = CA.analyze();
  if (!R.isSuccess())
    return None;
  return CA.getCost();
}

Optional<InlineResult> llvm::getAttributeBasedInliningDecision(
    CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {

  // Cannot inline indirect calls.
  if (!Callee)
    return InlineResult::failure("indirect call");

  // Never inline calls with byval arguments that does not have the alloca
  // address space. Since byval arguments can be replaced with a copy to an
  // alloca, the inlined code would need to be adjusted to handle that the
  // argument is in the alloca address space (so it is a little bit complicated
  // to solve).
  unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
    if (Call.isByValArgument(I)) {
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
      if (PTy->getAddressSpace() != AllocaAS)
        return InlineResult::failure("byval arguments without alloca"
                                     " address space");
    }

  // Calls to functions with always-inline attributes should be inlined
  // whenever possible.
  if (Call.hasFnAttr(Attribute::AlwaysInline)) {
    auto IsViable = isInlineViable(*Callee);
    if (IsViable.isSuccess())
      return InlineResult::success();
    return InlineResult::failure(IsViable.getFailureReason());
  }

  // Never inline functions with conflicting attributes (unless callee has
  // always-inline attribute).
  Function *Caller = Call.getCaller();
  if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
    return InlineResult::failure("conflicting attributes");

  // Don't inline this call if the caller has the optnone attribute.
  if (Caller->hasOptNone())
    return InlineResult::failure("optnone attribute");

  // Don't inline a function that treats null pointer as valid into a caller
  // that does not have this attribute.
  if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
    return InlineResult::failure("nullptr definitions incompatible");

  // Don't inline functions which can be interposed at link-time.
  if (Callee->isInterposable())
    return InlineResult::failure("interposable");

  // Don't inline functions marked noinline.
  if (Callee->hasFnAttribute(Attribute::NoInline))
    return InlineResult::failure("noinline function attribute");

  // Don't inline call sites marked noinline.
  if (Call.isNoInline())
    return InlineResult::failure("noinline call site attribute");

  return None;
}

InlineCost llvm::getInlineCost(
    CallBase &Call, Function *Callee, const InlineParams &Params,
    TargetTransformInfo &CalleeTTI,
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {

  auto UserDecision =
      llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);

  if (UserDecision.hasValue()) {
    if (UserDecision->isSuccess())
      return llvm::InlineCost::getAlways("always inline attribute");
    return llvm::InlineCost::getNever(UserDecision->getFailureReason());
  }

  LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
                          << "... (caller:" << Call.getCaller()->getName()
                          << ")\n");

  InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
                            GetAssumptionCache, GetBFI, PSI, ORE);
  InlineResult ShouldInline = CA.analyze();

  LLVM_DEBUG(CA.dump());

  // Check if there was a reason to force inlining or no inlining.
  if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold())
    return InlineCost::getNever(ShouldInline.getFailureReason());
  if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold())
    return InlineCost::getAlways("empty function");

  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
}

InlineResult llvm::isInlineViable(Function &F) {
  bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
    // Disallow inlining of functions which contain indirect branches.
    if (isa<IndirectBrInst>(BI->getTerminator()))
      return InlineResult::failure("contains indirect branches");

    // Disallow inlining of blockaddresses which are used by non-callbr
    // instructions.
    if (BI->hasAddressTaken())
      for (User *U : BlockAddress::get(&*BI)->users())
        if (!isa<CallBrInst>(*U))
          return InlineResult::failure("blockaddress used outside of callbr");

    for (auto &II : *BI) {
      CallBase *Call = dyn_cast<CallBase>(&II);
      if (!Call)
        continue;

      // Disallow recursive calls.
      if (&F == Call->getCalledFunction())
        return InlineResult::failure("recursive call");

      // Disallow calls which expose returns-twice to a function not previously
      // attributed as such.
      if (!ReturnsTwice && isa<CallInst>(Call) &&
          cast<CallInst>(Call)->canReturnTwice())
        return InlineResult::failure("exposes returns-twice attribute");

      if (Call->getCalledFunction())
        switch (Call->getCalledFunction()->getIntrinsicID()) {
        default:
          break;
        case llvm::Intrinsic::icall_branch_funnel:
          // Disallow inlining of @llvm.icall.branch.funnel because current
          // backend can't separate call targets from call arguments.
          return InlineResult::failure(
              "disallowed inlining of @llvm.icall.branch.funnel");
        case llvm::Intrinsic::localescape:
          // Disallow inlining functions that call @llvm.localescape. Doing this
          // correctly would require major changes to the inliner.
          return InlineResult::failure(
              "disallowed inlining of @llvm.localescape");
        case llvm::Intrinsic::vastart:
          // Disallow inlining of functions that initialize VarArgs with
          // va_start.
          return InlineResult::failure(
              "contains VarArgs initialized with va_start");
        }
    }
  }

  return InlineResult::success();
}

// APIs to create InlineParams based on command line flags and/or other
// parameters.

InlineParams llvm::getInlineParams(int Threshold) {
  InlineParams Params;

  // This field is the threshold to use for a callee by default. This is
  // derived from one or more of:
  //  * optimization or size-optimization levels,
  //  * a value passed to createFunctionInliningPass function, or
  //  * the -inline-threshold flag.
  //  If the -inline-threshold flag is explicitly specified, that is used
  //  irrespective of anything else.
  if (InlineThreshold.getNumOccurrences() > 0)
    Params.DefaultThreshold = InlineThreshold;
  else
    Params.DefaultThreshold = Threshold;

  // Set the HintThreshold knob from the -inlinehint-threshold.
  Params.HintThreshold = HintThreshold;

  // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
  Params.HotCallSiteThreshold = HotCallSiteThreshold;

  // If the -locally-hot-callsite-threshold is explicitly specified, use it to
  // populate LocallyHotCallSiteThreshold. Later, we populate
  // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
  // we know that optimization level is O3 (in the getInlineParams variant that
  // takes the opt and size levels).
  // FIXME: Remove this check (and make the assignment unconditional) after
  // addressing size regression issues at O2.
  if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;

  // Set the ColdCallSiteThreshold knob from the
  // -inline-cold-callsite-threshold.
  Params.ColdCallSiteThreshold = ColdCallSiteThreshold;

  // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
  // -inlinehint-threshold commandline option is not explicitly given. If that
  // option is present, then its value applies even for callees with size and
  // minsize attributes.
  // If the -inline-threshold is not specified, set the ColdThreshold from the
  // -inlinecold-threshold even if it is not explicitly passed. If
  // -inline-threshold is specified, then -inlinecold-threshold needs to be
  // explicitly specified to set the ColdThreshold knob
  if (InlineThreshold.getNumOccurrences() == 0) {
    Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
    Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
    Params.ColdThreshold = ColdThreshold;
  } else if (ColdThreshold.getNumOccurrences() > 0) {
    Params.ColdThreshold = ColdThreshold;
  }
  return Params;
}

InlineParams llvm::getInlineParams() {
  return getInlineParams(DefaultThreshold);
}

// Compute the default threshold for inlining based on the opt level and the
// size opt level.
static int computeThresholdFromOptLevels(unsigned OptLevel,
                                         unsigned SizeOptLevel) {
  if (OptLevel > 2)
    return InlineConstants::OptAggressiveThreshold;
  if (SizeOptLevel == 1) // -Os
    return InlineConstants::OptSizeThreshold;
  if (SizeOptLevel == 2) // -Oz
    return InlineConstants::OptMinSizeThreshold;
  return DefaultThreshold;
}

InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
  auto Params =
      getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
  // At O3, use the value of -locally-hot-callsite-threshold option to populate
  // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
  // when it is specified explicitly.
  if (OptLevel > 2)
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
  return Params;
}

PreservedAnalyses
InlineCostAnnotationPrinterPass::run(Function &F,
                                     FunctionAnalysisManager &FAM) {
  PrintInstructionComments = true;
  std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
      Function &F) -> AssumptionCache & {
    return FAM.getResult<AssumptionAnalysis>(F);
  };
  Module *M = F.getParent();
  ProfileSummaryInfo PSI(*M);
  DataLayout DL(M);
  TargetTransformInfo TTI(DL);
  // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
  // In the current implementation, the type of InlineParams doesn't matter as
  // the pass serves only for verification of inliner's decisions.
  // We can add a flag which determines InlineParams for this run. Right now,
  // the default InlineParams are used.
  const InlineParams Params = llvm::getInlineParams();
    for (BasicBlock &BB : F) {
    for (Instruction &I : BB) {
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
        Function *CalledFunction = CI->getCalledFunction();
        if (!CalledFunction || CalledFunction->isDeclaration())
          continue;
        OptimizationRemarkEmitter ORE(CalledFunction);
        InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
                                    GetAssumptionCache, nullptr, &PSI, &ORE);
        ICCA.analyze();
        OS << "      Analyzing call of " << CalledFunction->getName()
           << "... (caller:" << CI->getCaller()->getName() << ")\n";
        ICCA.print();
      }
    }
  }
  return PreservedAnalyses::all();
}