X86.cpp 21.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
//===- X86.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

namespace {
class X86 : public TargetInfo {
public:
  X86();
  int getTlsGdRelaxSkip(RelType type) const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
  void writeGotPltHeader(uint8_t *buf) const override;
  RelType getDynRel(RelType type) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void relocate(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;

  RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
                          RelExpr expr) const override;
  void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;
  void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;
  void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;
  void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;
};
} // namespace

X86::X86() {
  copyRel = R_386_COPY;
  gotRel = R_386_GLOB_DAT;
  noneRel = R_386_NONE;
  pltRel = R_386_JUMP_SLOT;
  iRelativeRel = R_386_IRELATIVE;
  relativeRel = R_386_RELATIVE;
  symbolicRel = R_386_32;
  tlsGotRel = R_386_TLS_TPOFF;
  tlsModuleIndexRel = R_386_TLS_DTPMOD32;
  tlsOffsetRel = R_386_TLS_DTPOFF32;
  pltHeaderSize = 16;
  pltEntrySize = 16;
  ipltEntrySize = 16;
  trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3

  // Align to the non-PAE large page size (known as a superpage or huge page).
  // FreeBSD automatically promotes large, superpage-aligned allocations.
  defaultImageBase = 0x400000;
}

int X86::getTlsGdRelaxSkip(RelType type) const {
  return 2;
}

RelExpr X86::getRelExpr(RelType type, const Symbol &s,
                        const uint8_t *loc) const {
  // There are 4 different TLS variable models with varying degrees of
  // flexibility and performance. LocalExec and InitialExec models are fast but
  // less-flexible models. If they are in use, we set DF_STATIC_TLS flag in the
  // dynamic section to let runtime know about that.
  if (type == R_386_TLS_LE || type == R_386_TLS_LE_32 || type == R_386_TLS_IE ||
      type == R_386_TLS_GOTIE)
    config->hasStaticTlsModel = true;

  switch (type) {
  case R_386_8:
  case R_386_16:
  case R_386_32:
    return R_ABS;
  case R_386_TLS_LDO_32:
    return R_DTPREL;
  case R_386_TLS_GD:
    return R_TLSGD_GOTPLT;
  case R_386_TLS_LDM:
    return R_TLSLD_GOTPLT;
  case R_386_PLT32:
    return R_PLT_PC;
  case R_386_PC8:
  case R_386_PC16:
  case R_386_PC32:
    return R_PC;
  case R_386_GOTPC:
    return R_GOTPLTONLY_PC;
  case R_386_TLS_IE:
    return R_GOT;
  case R_386_GOT32:
  case R_386_GOT32X:
    // These relocations are arguably mis-designed because their calculations
    // depend on the instructions they are applied to. This is bad because we
    // usually don't care about whether the target section contains valid
    // machine instructions or not. But this is part of the documented ABI, so
    // we had to implement as the standard requires.
    //
    // x86 does not support PC-relative data access. Therefore, in order to
    // access GOT contents, a GOT address needs to be known at link-time
    // (which means non-PIC) or compilers have to emit code to get a GOT
    // address at runtime (which means code is position-independent but
    // compilers need to emit extra code for each GOT access.) This decision
    // is made at compile-time. In the latter case, compilers emit code to
    // load a GOT address to a register, which is usually %ebx.
    //
    // So, there are two ways to refer to symbol foo's GOT entry: foo@GOT or
    // foo@GOT(%ebx).
    //
    // foo@GOT is not usable in PIC. If we are creating a PIC output and if we
    // find such relocation, we should report an error. foo@GOT is resolved to
    // an *absolute* address of foo's GOT entry, because both GOT address and
    // foo's offset are known. In other words, it's G + A.
    //
    // foo@GOT(%ebx) needs to be resolved to a *relative* offset from a GOT to
    // foo's GOT entry in the table, because GOT address is not known but foo's
    // offset in the table is known. It's G + A - GOT.
    //
    // It's unfortunate that compilers emit the same relocation for these
    // different use cases. In order to distinguish them, we have to read a
    // machine instruction.
    //
    // The following code implements it. We assume that Loc[0] is the first byte
    // of a displacement or an immediate field of a valid machine
    // instruction. That means a ModRM byte is at Loc[-1]. By taking a look at
    // the byte, we can determine whether the instruction uses the operand as an
    // absolute address (R_GOT) or a register-relative address (R_GOTPLT).
    return (loc[-1] & 0xc7) == 0x5 ? R_GOT : R_GOTPLT;
  case R_386_TLS_GOTIE:
    return R_GOTPLT;
  case R_386_GOTOFF:
    return R_GOTPLTREL;
  case R_386_TLS_LE:
    return R_TLS;
  case R_386_TLS_LE_32:
    return R_NEG_TLS;
  case R_386_NONE:
    return R_NONE;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

RelExpr X86::adjustRelaxExpr(RelType type, const uint8_t *data,
                             RelExpr expr) const {
  switch (expr) {
  default:
    return expr;
  case R_RELAX_TLS_GD_TO_IE:
    return R_RELAX_TLS_GD_TO_IE_GOTPLT;
  case R_RELAX_TLS_GD_TO_LE:
    return R_RELAX_TLS_GD_TO_LE_NEG;
  }
}

void X86::writeGotPltHeader(uint8_t *buf) const {
  write32le(buf, mainPart->dynamic->getVA());
}

void X86::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  // Entries in .got.plt initially points back to the corresponding
  // PLT entries with a fixed offset to skip the first instruction.
  write32le(buf, s.getPltVA() + 6);
}

void X86::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
  // An x86 entry is the address of the ifunc resolver function.
  write32le(buf, s.getVA());
}

RelType X86::getDynRel(RelType type) const {
  if (type == R_386_TLS_LE)
    return R_386_TLS_TPOFF;
  if (type == R_386_TLS_LE_32)
    return R_386_TLS_TPOFF32;
  return type;
}

void X86::writePltHeader(uint8_t *buf) const {
  if (config->isPic) {
    const uint8_t v[] = {
        0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
        0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
        0x90, 0x90, 0x90, 0x90              // nop
    };
    memcpy(buf, v, sizeof(v));
    return;
  }

  const uint8_t pltData[] = {
      0xff, 0x35, 0, 0, 0, 0, // pushl (GOTPLT+4)
      0xff, 0x25, 0, 0, 0, 0, // jmp *(GOTPLT+8)
      0x90, 0x90, 0x90, 0x90, // nop
  };
  memcpy(buf, pltData, sizeof(pltData));
  uint32_t gotPlt = in.gotPlt->getVA();
  write32le(buf + 2, gotPlt + 4);
  write32le(buf + 8, gotPlt + 8);
}

void X86::writePlt(uint8_t *buf, const Symbol &sym,
                   uint64_t pltEntryAddr) const {
  unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
  if (config->isPic) {
    const uint8_t inst[] = {
        0xff, 0xa3, 0, 0, 0, 0, // jmp *foo@GOT(%ebx)
        0x68, 0,    0, 0, 0,    // pushl $reloc_offset
        0xe9, 0,    0, 0, 0,    // jmp .PLT0@PC
    };
    memcpy(buf, inst, sizeof(inst));
    write32le(buf + 2, sym.getGotPltVA() - in.gotPlt->getVA());
  } else {
    const uint8_t inst[] = {
        0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
        0x68, 0,    0, 0, 0,    // pushl $reloc_offset
        0xe9, 0,    0, 0, 0,    // jmp .PLT0@PC
    };
    memcpy(buf, inst, sizeof(inst));
    write32le(buf + 2, sym.getGotPltVA());
  }

  write32le(buf + 7, relOff);
  write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
}

int64_t X86::getImplicitAddend(const uint8_t *buf, RelType type) const {
  switch (type) {
  case R_386_8:
  case R_386_PC8:
    return SignExtend64<8>(*buf);
  case R_386_16:
  case R_386_PC16:
    return SignExtend64<16>(read16le(buf));
  case R_386_32:
  case R_386_GOT32:
  case R_386_GOT32X:
  case R_386_GOTOFF:
  case R_386_GOTPC:
  case R_386_PC32:
  case R_386_PLT32:
  case R_386_TLS_LDO_32:
  case R_386_TLS_LE:
    return SignExtend64<32>(read32le(buf));
  default:
    return 0;
  }
}

void X86::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  switch (rel.type) {
  case R_386_8:
    // R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
    // being used for some 16-bit programs such as boot loaders, so
    // we want to support them.
    checkIntUInt(loc, val, 8, rel);
    *loc = val;
    break;
  case R_386_PC8:
    checkInt(loc, val, 8, rel);
    *loc = val;
    break;
  case R_386_16:
    checkIntUInt(loc, val, 16, rel);
    write16le(loc, val);
    break;
  case R_386_PC16:
    // R_386_PC16 is normally used with 16 bit code. In that situation
    // the PC is 16 bits, just like the addend. This means that it can
    // point from any 16 bit address to any other if the possibility
    // of wrapping is included.
    // The only restriction we have to check then is that the destination
    // address fits in 16 bits. That is impossible to do here. The problem is
    // that we are passed the final value, which already had the
    // current location subtracted from it.
    // We just check that Val fits in 17 bits. This misses some cases, but
    // should have no false positives.
    checkInt(loc, val, 17, rel);
    write16le(loc, val);
    break;
  case R_386_32:
  case R_386_GOT32:
  case R_386_GOT32X:
  case R_386_GOTOFF:
  case R_386_GOTPC:
  case R_386_PC32:
  case R_386_PLT32:
  case R_386_RELATIVE:
  case R_386_TLS_DTPMOD32:
  case R_386_TLS_DTPOFF32:
  case R_386_TLS_GD:
  case R_386_TLS_GOTIE:
  case R_386_TLS_IE:
  case R_386_TLS_LDM:
  case R_386_TLS_LDO_32:
  case R_386_TLS_LE:
  case R_386_TLS_LE_32:
  case R_386_TLS_TPOFF:
  case R_386_TLS_TPOFF32:
    checkInt(loc, val, 32, rel);
    write32le(loc, val);
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

void X86::relaxTlsGdToLe(uint8_t *loc, const Relocation &, uint64_t val) const {
  // Convert
  //   leal x@tlsgd(, %ebx, 1),
  //   call __tls_get_addr@plt
  // to
  //   movl %gs:0,%eax
  //   subl $x@ntpoff,%eax
  const uint8_t inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x81, 0xe8, 0, 0, 0, 0,             // subl Val(%ebx), %eax
  };
  memcpy(loc - 3, inst, sizeof(inst));
  write32le(loc + 5, val);
}

void X86::relaxTlsGdToIe(uint8_t *loc, const Relocation &, uint64_t val) const {
  // Convert
  //   leal x@tlsgd(, %ebx, 1),
  //   call __tls_get_addr@plt
  // to
  //   movl %gs:0, %eax
  //   addl x@gotntpoff(%ebx), %eax
  const uint8_t inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x03, 0x83, 0, 0, 0, 0,             // addl Val(%ebx), %eax
  };
  memcpy(loc - 3, inst, sizeof(inst));
  write32le(loc + 5, val);
}

// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
                         uint64_t val) const {
  // Ulrich's document section 6.2 says that @gotntpoff can
  // be used with MOVL or ADDL instructions.
  // @indntpoff is similar to @gotntpoff, but for use in
  // position dependent code.
  uint8_t reg = (loc[-1] >> 3) & 7;

  if (rel.type == R_386_TLS_IE) {
    if (loc[-1] == 0xa1) {
      // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
      // This case is different from the generic case below because
      // this is a 5 byte instruction while below is 6 bytes.
      loc[-1] = 0xb8;
    } else if (loc[-2] == 0x8b) {
      // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
      loc[-2] = 0xc7;
      loc[-1] = 0xc0 | reg;
    } else {
      // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
      loc[-2] = 0x81;
      loc[-1] = 0xc0 | reg;
    }
  } else {
    assert(rel.type == R_386_TLS_GOTIE);
    if (loc[-2] == 0x8b) {
      // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
      loc[-2] = 0xc7;
      loc[-1] = 0xc0 | reg;
    } else {
      // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
      loc[-2] = 0x8d;
      loc[-1] = 0x80 | (reg << 3) | reg;
    }
  }
  write32le(loc, val);
}

void X86::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
                         uint64_t val) const {
  if (rel.type == R_386_TLS_LDO_32) {
    write32le(loc, val);
    return;
  }

  // Convert
  //   leal foo(%reg),%eax
  //   call ___tls_get_addr
  // to
  //   movl %gs:0,%eax
  //   nop
  //   leal 0(%esi,1),%esi
  const uint8_t inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
      0x90,                               // nop
      0x8d, 0x74, 0x26, 0x00,             // leal 0(%esi,1),%esi
  };
  memcpy(loc - 2, inst, sizeof(inst));
}

// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
// entries containing endbr32 instructions. A PLT entry will be split into two
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
namespace {
class IntelIBT : public X86 {
public:
  IntelIBT();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;

  static const unsigned IBTPltHeaderSize = 16;
};
} // namespace

IntelIBT::IntelIBT() { pltHeaderSize = 0; }

void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  uint64_t va =
      in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
  write32le(buf, va);
}

void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
                        uint64_t /*pltEntryAddr*/) const {
  if (config->isPic) {
    const uint8_t inst[] = {
        0xf3, 0x0f, 0x1e, 0xfb,       // endbr32
        0xff, 0xa3, 0,    0,    0, 0, // jmp *name@GOT(%ebx)
        0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
    };
    memcpy(buf, inst, sizeof(inst));
    write32le(buf + 6, sym.getGotPltVA() - in.gotPlt->getVA());
    return;
  }

  const uint8_t inst[] = {
      0xf3, 0x0f, 0x1e, 0xfb,       // endbr32
      0xff, 0x25, 0,    0,    0, 0, // jmp *foo@GOT
      0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
  };
  memcpy(buf, inst, sizeof(inst));
  write32le(buf + 6, sym.getGotPltVA());
}

void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
  writePltHeader(buf);
  buf += IBTPltHeaderSize;

  const uint8_t inst[] = {
      0xf3, 0x0f, 0x1e, 0xfb,    // endbr32
      0x68, 0,    0,    0,    0, // pushl $reloc_offset
      0xe9, 0,    0,    0,    0, // jmpq .PLT0@PC
      0x66, 0x90,                // nop
  };

  for (size_t i = 0; i < numEntries; ++i) {
    memcpy(buf, inst, sizeof(inst));
    write32le(buf + 5, i * sizeof(object::ELF32LE::Rel));
    write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
    buf += sizeof(inst);
  }
}

namespace {
class RetpolinePic : public X86 {
public:
  RetpolinePic();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
};

class RetpolineNoPic : public X86 {
public:
  RetpolineNoPic();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
};
} // namespace

RetpolinePic::RetpolinePic() {
  pltHeaderSize = 48;
  pltEntrySize = 32;
  ipltEntrySize = 32;
}

void RetpolinePic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  write32le(buf, s.getPltVA() + 17);
}

void RetpolinePic::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xff, 0xb3, 4,    0,    0,    0,          // 0:    pushl 4(%ebx)
      0x50,                                     // 6:    pushl %eax
      0x8b, 0x83, 8,    0,    0,    0,          // 7:    mov 8(%ebx), %eax
      0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    call next
      0xf3, 0x90,                               // 12: loop: pause
      0x0f, 0xae, 0xe8,                         // 14:   lfence
      0xeb, 0xf9,                               // 17:   jmp loop
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
      0x89, 0x0c, 0x24,                         // 20: next: mov %ecx, (%esp)
      0x8b, 0x4c, 0x24, 0x04,                   // 23:   mov 0x4(%esp), %ecx
      0x89, 0x44, 0x24, 0x04,                   // 27:   mov %eax ,0x4(%esp)
      0x89, 0xc8,                               // 2b:   mov %ecx, %eax
      0x59,                                     // 2d:   pop %ecx
      0xc3,                                     // 2e:   ret
      0xcc,                                     // 2f:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));
}

void RetpolinePic::writePlt(uint8_t *buf, const Symbol &sym,
                            uint64_t pltEntryAddr) const {
  unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
  const uint8_t insn[] = {
      0x50,                            // pushl %eax
      0x8b, 0x83, 0,    0,    0,    0, // mov foo@GOT(%ebx), %eax
      0xe8, 0,    0,    0,    0,       // call plt+0x20
      0xe9, 0,    0,    0,    0,       // jmp plt+0x12
      0x68, 0,    0,    0,    0,       // pushl $reloc_offset
      0xe9, 0,    0,    0,    0,       // jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc,    // int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint32_t ebx = in.gotPlt->getVA();
  unsigned off = pltEntryAddr - in.plt->getVA();
  write32le(buf + 3, sym.getGotPltVA() - ebx);
  write32le(buf + 8, -off - 12 + 32);
  write32le(buf + 13, -off - 17 + 18);
  write32le(buf + 18, relOff);
  write32le(buf + 23, -off - 27);
}

RetpolineNoPic::RetpolineNoPic() {
  pltHeaderSize = 48;
  pltEntrySize = 32;
  ipltEntrySize = 32;
}

void RetpolineNoPic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  write32le(buf, s.getPltVA() + 16);
}

void RetpolineNoPic::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xff, 0x35, 0,    0,    0,    0, // 0:    pushl GOTPLT+4
      0x50,                            // 6:    pushl %eax
      0xa1, 0,    0,    0,    0,       // 7:    mov GOTPLT+8, %eax
      0xe8, 0x0f, 0x00, 0x00, 0x00,    // c:    call next
      0xf3, 0x90,                      // 11: loop: pause
      0x0f, 0xae, 0xe8,                // 13:   lfence
      0xeb, 0xf9,                      // 16:   jmp loop
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc,    // 18:   int3
      0xcc, 0xcc, 0xcc,                // 1f:   int3; .align 16
      0x89, 0x0c, 0x24,                // 20: next: mov %ecx, (%esp)
      0x8b, 0x4c, 0x24, 0x04,          // 23:   mov 0x4(%esp), %ecx
      0x89, 0x44, 0x24, 0x04,          // 27:   mov %eax ,0x4(%esp)
      0x89, 0xc8,                      // 2b:   mov %ecx, %eax
      0x59,                            // 2d:   pop %ecx
      0xc3,                            // 2e:   ret
      0xcc,                            // 2f:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint32_t gotPlt = in.gotPlt->getVA();
  write32le(buf + 2, gotPlt + 4);
  write32le(buf + 8, gotPlt + 8);
}

void RetpolineNoPic::writePlt(uint8_t *buf, const Symbol &sym,
                              uint64_t pltEntryAddr) const {
  unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
  const uint8_t insn[] = {
      0x50,                         // 0:  pushl %eax
      0xa1, 0,    0,    0,    0,    // 1:  mov foo_in_GOT, %eax
      0xe8, 0,    0,    0,    0,    // 6:  call plt+0x20
      0xe9, 0,    0,    0,    0,    // b:  jmp plt+0x11
      0x68, 0,    0,    0,    0,    // 10: pushl $reloc_offset
      0xe9, 0,    0,    0,    0,    // 15: jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
      0xcc,                         // 1f: int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  unsigned off = pltEntryAddr - in.plt->getVA();
  write32le(buf + 2, sym.getGotPltVA());
  write32le(buf + 7, -off - 11 + 32);
  write32le(buf + 12, -off - 16 + 17);
  write32le(buf + 17, relOff);
  write32le(buf + 22, -off - 26);
}

TargetInfo *elf::getX86TargetInfo() {
  if (config->zRetpolineplt) {
    if (config->isPic) {
      static RetpolinePic t;
      return &t;
    }
    static RetpolineNoPic t;
    return &t;
  }

  if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
    static IntelIBT t;
    return &t;
  }

  static X86 t;
  return &t;
}