PPC64.cpp 44.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
//===- PPC64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

static uint64_t ppc64TocOffset = 0x8000;
static uint64_t dynamicThreadPointerOffset = 0x8000;

// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
// instructions that can be used as part of the initial exec TLS sequence.
enum XFormOpcd {
  LBZX = 87,
  LHZX = 279,
  LWZX = 23,
  LDX = 21,
  STBX = 215,
  STHX = 407,
  STWX = 151,
  STDX = 149,
  ADD = 266,
};

enum DFormOpcd {
  LBZ = 34,
  LBZU = 35,
  LHZ = 40,
  LHZU = 41,
  LHAU = 43,
  LWZ = 32,
  LWZU = 33,
  LFSU = 49,
  LD = 58,
  LFDU = 51,
  STB = 38,
  STBU = 39,
  STH = 44,
  STHU = 45,
  STW = 36,
  STWU = 37,
  STFSU = 53,
  STFDU = 55,
  STD = 62,
  ADDI = 14
};

uint64_t elf::getPPC64TocBase() {
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
  // TOC starts where the first of these sections starts. We always create a
  // .got when we see a relocation that uses it, so for us the start is always
  // the .got.
  uint64_t tocVA = in.got->getVA();

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment. Note that the glibc startup
  // code (crt1.o) assumes that you can get from the TOC base to the
  // start of the .toc section with only a single (signed) 16-bit relocation.
  return tocVA + ppc64TocOffset;
}

unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
  // The offset is encoded into the 3 most significant bits of the st_other
  // field, with some special values described in section 3.4.1 of the ABI:
  // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
  //         the TOC pointer (r2). r2 will hold the same value on returning from
  //         the function as it did on entering the function.
  // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
  //         caller-saved register for all callers.
  // 2-6 --> The  binary logarithm of the offset eg:
  //         2 --> 2^2 = 4 bytes -->  1 instruction.
  //         6 --> 2^6 = 64 bytes --> 16 instructions.
  // 7   --> Reserved.
  uint8_t gepToLep = (stOther >> 5) & 7;
  if (gepToLep < 2)
    return 0;

  // The value encoded in the st_other bits is the
  // log-base-2(offset).
  if (gepToLep < 7)
    return 1 << gepToLep;

  error("reserved value of 7 in the 3 most-significant-bits of st_other");
  return 0;
}

bool elf::isPPC64SmallCodeModelTocReloc(RelType type) {
  // The only small code model relocations that access the .toc section.
  return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
}

static bool addOptional(StringRef name, uint64_t value,
                        std::vector<Defined *> &defined) {
  Symbol *sym = symtab->find(name);
  if (!sym || sym->isDefined())
    return false;
  sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL,
                       STV_HIDDEN, STT_FUNC, value,
                       /*size=*/0, /*section=*/nullptr});
  defined.push_back(cast<Defined>(sym));
  return true;
}

// If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
// firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
// The labels are defined only if they exist in the symbol table.
static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
                          int from, uint32_t firstInsn,
                          ArrayRef<uint32_t> tail) {
  std::vector<Defined *> defined;
  char name[16];
  int first;
  uint32_t *ptr = buf.data();
  for (int r = from; r < 32; ++r) {
    format("%s%d", prefix, r).snprint(name, sizeof(name));
    if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
      first = r - from;
    write32(ptr++, firstInsn + 0x200008 * (r - from));
  }
  for (uint32_t insn : tail)
    write32(ptr++, insn);
  assert(ptr == &*buf.end());

  if (defined.empty())
    return;
  // The full section content has the extent of [begin, end). We drop unused
  // instructions and write [first,end).
  auto *sec = make<InputSection>(
      nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
      makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
                   4 * (buf.size() - first)),
      ".text");
  inputSections.push_back(sec);
  for (Defined *sym : defined) {
    sym->section = sec;
    sym->value -= 4 * first;
  }
}

// Implements some save and restore functions as described by ELF V2 ABI to be
// compatible with GCC. With GCC -Os, when the number of call-saved registers
// exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
// expects the linker to define them. See
// https://sourceware.org/pipermail/binutils/2002-February/017444.html and
// https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
// weird because libgcc.a would be the natural place. The linker generation
// approach has the advantage that the linker can generate multiple copies to
// avoid long branch thunks. However, we don't consider the advantage
// significant enough to complicate our trunk implementation, so we take the
// simple approach and synthesize .text sections providing the implementation.
void elf::addPPC64SaveRestore() {
  static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
  constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;

  // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
  // Tail: ld 0, 16(1); mtlr 0; blr
  writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
                {0xe8010010, mtlr_0, blr});
  // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
  // Tail: blr
  writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
  // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
  // Tail: std 0, 16(1); blr
  writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
  // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
  // Tail: blr
  writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
}

// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
template <typename ELFT>
static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
  if (tocSec->numRelocations == 0)
    return {};

  // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
  // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
  // relocation index in most cases.
  //
  // In rare cases a TOC entry may store a constant that doesn't need an
  // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
  // points to a relocation with larger r_offset. Do a linear probe then.
  // Constants are extremely uncommon in .toc and the extra number of array
  // accesses can be seen as a small constant.
  ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
  uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
  for (;;) {
    if (relas[index].r_offset == offset) {
      Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
      return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
    }
    if (relas[index].r_offset < offset || index == 0)
      break;
    --index;
  }
  return {};
}

// When accessing a symbol defined in another translation unit, compilers
// reserve a .toc entry, allocate a local label and generate toc-indirect
// instructions:
//
//   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
//   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
//   ld/lwa 3, 0(3)           # load the value from the address
//
//   .section .toc,"aw",@progbits
//   .LC0: .tc var[TC],var
//
// If var is defined, non-preemptable and addressable with a 32-bit signed
// offset from the toc base, the address of var can be computed by adding an
// offset to the toc base, saving a load.
//
//   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
//   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
//   ld/lwa 3, 0(3)           # load the value from the address
//
// Returns true if the relaxation is performed.
bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
  assert(config->tocOptimize);
  if (rel.addend < 0)
    return false;

  // If the symbol is not the .toc section, this isn't a toc-indirection.
  Defined *defSym = dyn_cast<Defined>(rel.sym);
  if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
    return false;

  Defined *d;
  int64_t addend;
  auto *tocISB = cast<InputSectionBase>(defSym->section);
  std::tie(d, addend) =
      config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
                   : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);

  // Only non-preemptable defined symbols can be relaxed.
  if (!d || d->isPreemptible)
    return false;

  // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
  // ifunc and changed its type to STT_FUNC.
  assert(!d->isGnuIFunc());

  // Two instructions can materialize a 32-bit signed offset from the toc base.
  uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
  if (!isInt<32>(tocRelative))
    return false;

  // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
  target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
  return true;
}

namespace {
class PPC64 final : public TargetInfo {
public:
  PPC64();
  int getTlsGdRelaxSkip(RelType type) const override;
  uint32_t calcEFlags() const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void writeIplt(uint8_t *buf, const Symbol &sym,
                 uint64_t pltEntryAddr) const override;
  void relocate(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;
  void writeGotHeader(uint8_t *buf) const override;
  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
                  uint64_t branchAddr, const Symbol &s,
                  int64_t a) const override;
  uint32_t getThunkSectionSpacing() const override;
  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
  RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
                          RelExpr expr) const override;
  void relaxGot(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;
  void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;
  void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;
  void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;
  void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
                      uint64_t val) const override;

  bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                        uint8_t stOther) const override;
};
} // namespace

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t lo(uint64_t v) { return v; }
static uint16_t hi(uint64_t v) { return v >> 16; }
static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
static uint16_t higher(uint64_t v) { return v >> 32; }
static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
static uint16_t highest(uint64_t v) { return v >> 48; }
static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }

// Extracts the 'PO' field of an instruction encoding.
static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }

static bool isDQFormInstruction(uint32_t encoding) {
  switch (getPrimaryOpCode(encoding)) {
  default:
    return false;
  case 56:
    // The only instruction with a primary opcode of 56 is `lq`.
    return true;
  case 61:
    // There are both DS and DQ instruction forms with this primary opcode.
    // Namely `lxv` and `stxv` are the DQ-forms that use it.
    // The DS 'XO' bits being set to 01 is restricted to DQ form.
    return (encoding & 3) == 0x1;
  }
}

static bool isInstructionUpdateForm(uint32_t encoding) {
  switch (getPrimaryOpCode(encoding)) {
  default:
    return false;
  case LBZU:
  case LHAU:
  case LHZU:
  case LWZU:
  case LFSU:
  case LFDU:
  case STBU:
  case STHU:
  case STWU:
  case STFSU:
  case STFDU:
    return true;
    // LWA has the same opcode as LD, and the DS bits is what differentiates
    // between LD/LDU/LWA
  case LD:
  case STD:
    return (encoding & 3) == 1;
  }
}

// There are a number of places when we either want to read or write an
// instruction when handling a half16 relocation type. On big-endian the buffer
// pointer is pointing into the middle of the word we want to extract, and on
// little-endian it is pointing to the start of the word. These 2 helpers are to
// simplify reading and writing in that context.
static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
  write32(config->isLE ? loc : loc - 2, insn);
}

static uint32_t readFromHalf16(const uint8_t *loc) {
  return read32(config->isLE ? loc : loc - 2);
}

// The prefixed instruction is always a 4 byte prefix followed by a 4 byte
// instruction. Therefore, the prefix is always in lower memory than the
// instruction (regardless of endianness).
// As a result, we need to shift the pieces around on little endian machines.
static void writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
  insn = config->isLE ? insn << 32 | insn >> 32 : insn;
  write64(loc, insn);
}

static uint64_t readPrefixedInstruction(const uint8_t *loc) {
  uint64_t fullInstr = read64(loc);
  return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
}

PPC64::PPC64() {
  copyRel = R_PPC64_COPY;
  gotRel = R_PPC64_GLOB_DAT;
  noneRel = R_PPC64_NONE;
  pltRel = R_PPC64_JMP_SLOT;
  relativeRel = R_PPC64_RELATIVE;
  iRelativeRel = R_PPC64_IRELATIVE;
  symbolicRel = R_PPC64_ADDR64;
  pltHeaderSize = 60;
  pltEntrySize = 4;
  ipltEntrySize = 16; // PPC64PltCallStub::size
  gotBaseSymInGotPlt = false;
  gotHeaderEntriesNum = 1;
  gotPltHeaderEntriesNum = 2;
  needsThunks = true;

  tlsModuleIndexRel = R_PPC64_DTPMOD64;
  tlsOffsetRel = R_PPC64_DTPREL64;

  tlsGotRel = R_PPC64_TPREL64;

  needsMoreStackNonSplit = false;

  // We need 64K pages (at least under glibc/Linux, the loader won't
  // set different permissions on a finer granularity than that).
  defaultMaxPageSize = 65536;

  // The PPC64 ELF ABI v1 spec, says:
  //
  //   It is normally desirable to put segments with different characteristics
  //   in separate 256 Mbyte portions of the address space, to give the
  //   operating system full paging flexibility in the 64-bit address space.
  //
  // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
  // use 0x10000000 as the starting address.
  defaultImageBase = 0x10000000;

  write32(trapInstr.data(), 0x7fe00008);
}

int PPC64::getTlsGdRelaxSkip(RelType type) const {
  // A __tls_get_addr call instruction is marked with 2 relocations:
  //
  //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
  //   R_PPC64_REL24: __tls_get_addr
  //
  // After the relaxation we no longer call __tls_get_addr and should skip both
  // relocations to not create a false dependence on __tls_get_addr being
  // defined.
  if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
    return 2;
  return 1;
}

static uint32_t getEFlags(InputFile *file) {
  if (config->ekind == ELF64BEKind)
    return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader()->e_flags;
  return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader()->e_flags;
}

// This file implements v2 ABI. This function makes sure that all
// object files have v2 or an unspecified version as an ABI version.
uint32_t PPC64::calcEFlags() const {
  for (InputFile *f : objectFiles) {
    uint32_t flag = getEFlags(f);
    if (flag == 1)
      error(toString(f) + ": ABI version 1 is not supported");
    else if (flag > 2)
      error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
  }
  return 2;
}

void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  switch (rel.type) {
  case R_PPC64_TOC16_HA:
    // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
    relocate(loc, rel, val);
    break;
  case R_PPC64_TOC16_LO_DS: {
    // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
    // "addi reg, 2, var@toc".
    uint32_t insn = readFromHalf16(loc);
    if (getPrimaryOpCode(insn) != LD)
      error("expected a 'ld' for got-indirect to toc-relative relaxing");
    writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
    relocateNoSym(loc, R_PPC64_TOC16_LO, val);
    break;
  }
  default:
    llvm_unreachable("unexpected relocation type");
  }
}

void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
  // The general dynamic code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
  // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
  //                                R_PPC64_REL24               __tls_get_addr
  // nop                            None                       None

  // Relaxing to local exec entails converting:
  // addis r3, r2, x@got@tlsgd@ha    into      nop
  // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
  // bl __tls_get_addr(x@tlsgd)      into      nop
  // nop                             into      addi r3, r3, x@tprel@l

  switch (rel.type) {
  case R_PPC64_GOT_TLSGD16_HA:
    writeFromHalf16(loc, 0x60000000); // nop
    break;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_LO:
    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
    relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
    break;
  case R_PPC64_TLSGD:
    write32(loc, 0x60000000);     // nop
    write32(loc + 4, 0x38630000); // addi r3, r3
    // Since we are relocating a half16 type relocation and Loc + 4 points to
    // the start of an instruction we need to advance the buffer by an extra
    // 2 bytes on BE.
    relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
                  R_PPC64_TPREL16_LO, val);
    break;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
  }
}

void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
  // The local dynamic code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
  // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
  //                                R_PPC64_REL24               __tls_get_addr
  // nop                            None                       None

  // Relaxing to local exec entails converting:
  // addis r3, r2, x@got@tlsld@ha   into      nop
  // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
  // bl __tls_get_addr(x@tlsgd)     into      nop
  // nop                            into      addi r3, r3, 4096

  switch (rel.type) {
  case R_PPC64_GOT_TLSLD16_HA:
    writeFromHalf16(loc, 0x60000000); // nop
    break;
  case R_PPC64_GOT_TLSLD16_LO:
    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
    break;
  case R_PPC64_TLSLD:
    write32(loc, 0x60000000);     // nop
    write32(loc + 4, 0x38631000); // addi r3, r3, 4096
    break;
  case R_PPC64_DTPREL16:
  case R_PPC64_DTPREL16_HA:
  case R_PPC64_DTPREL16_HI:
  case R_PPC64_DTPREL16_DS:
  case R_PPC64_DTPREL16_LO:
  case R_PPC64_DTPREL16_LO_DS:
    relocate(loc, rel, val);
    break;
  default:
    llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
  }
}

unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
  switch (secondaryOp) {
  case LBZX:
    return LBZ;
  case LHZX:
    return LHZ;
  case LWZX:
    return LWZ;
  case LDX:
    return LD;
  case STBX:
    return STB;
  case STHX:
    return STH;
  case STWX:
    return STW;
  case STDX:
    return STD;
  case ADD:
    return ADDI;
  default:
    return 0;
  }
}

void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  // The initial exec code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
  // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
  // add r9, r9, x@tls              R_PPC64_TLS                 x

  // Relaxing to local exec entails converting:
  // addis r9, r2, x@got@tprel@ha       into        nop
  // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
  // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l

  // x@tls R_PPC64_TLS is a relocation which does not compute anything,
  // it is replaced with r13 (thread pointer).

  // The add instruction in the initial exec sequence has multiple variations
  // that need to be handled. If we are building an address it will use an add
  // instruction, if we are accessing memory it will use any of the X-form
  // indexed load or store instructions.

  unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
  switch (rel.type) {
  case R_PPC64_GOT_TPREL16_HA:
    write32(loc - offset, 0x60000000); // nop
    break;
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_TPREL16_DS: {
    uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
    write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
    relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
    break;
  }
  case R_PPC64_TLS: {
    uint32_t primaryOp = getPrimaryOpCode(read32(loc));
    if (primaryOp != 31)
      error("unrecognized instruction for IE to LE R_PPC64_TLS");
    uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
    uint32_t dFormOp = getPPCDFormOp(secondaryOp);
    if (dFormOp == 0)
      error("unrecognized instruction for IE to LE R_PPC64_TLS");
    write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
    relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
    break;
  }
  default:
    llvm_unreachable("unknown relocation for IE to LE");
    break;
  }
}

RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
                          const uint8_t *loc) const {
  switch (type) {
  case R_PPC64_NONE:
    return R_NONE;
  case R_PPC64_ADDR16:
  case R_PPC64_ADDR16_DS:
  case R_PPC64_ADDR16_HA:
  case R_PPC64_ADDR16_HI:
  case R_PPC64_ADDR16_HIGHER:
  case R_PPC64_ADDR16_HIGHERA:
  case R_PPC64_ADDR16_HIGHEST:
  case R_PPC64_ADDR16_HIGHESTA:
  case R_PPC64_ADDR16_LO:
  case R_PPC64_ADDR16_LO_DS:
  case R_PPC64_ADDR32:
  case R_PPC64_ADDR64:
    return R_ABS;
  case R_PPC64_GOT16:
  case R_PPC64_GOT16_DS:
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT16_HI:
  case R_PPC64_GOT16_LO:
  case R_PPC64_GOT16_LO_DS:
    return R_GOT_OFF;
  case R_PPC64_TOC16:
  case R_PPC64_TOC16_DS:
  case R_PPC64_TOC16_HI:
  case R_PPC64_TOC16_LO:
    return R_GOTREL;
  case R_PPC64_GOT_PCREL34:
    return R_GOT_PC;
  case R_PPC64_TOC16_HA:
  case R_PPC64_TOC16_LO_DS:
    return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
  case R_PPC64_TOC:
    return R_PPC64_TOCBASE;
  case R_PPC64_REL14:
  case R_PPC64_REL24:
    return R_PPC64_CALL_PLT;
  case R_PPC64_REL24_NOTOC:
    return R_PLT_PC;
  case R_PPC64_REL16_LO:
  case R_PPC64_REL16_HA:
  case R_PPC64_REL16_HI:
  case R_PPC64_REL32:
  case R_PPC64_REL64:
  case R_PPC64_PCREL34:
    return R_PC;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_HA:
  case R_PPC64_GOT_TLSGD16_HI:
  case R_PPC64_GOT_TLSGD16_LO:
    return R_TLSGD_GOT;
  case R_PPC64_GOT_TLSLD16:
  case R_PPC64_GOT_TLSLD16_HA:
  case R_PPC64_GOT_TLSLD16_HI:
  case R_PPC64_GOT_TLSLD16_LO:
    return R_TLSLD_GOT;
  case R_PPC64_GOT_TPREL16_HA:
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_TPREL16_DS:
  case R_PPC64_GOT_TPREL16_HI:
    return R_GOT_OFF;
  case R_PPC64_GOT_DTPREL16_HA:
  case R_PPC64_GOT_DTPREL16_LO_DS:
  case R_PPC64_GOT_DTPREL16_DS:
  case R_PPC64_GOT_DTPREL16_HI:
    return R_TLSLD_GOT_OFF;
  case R_PPC64_TPREL16:
  case R_PPC64_TPREL16_HA:
  case R_PPC64_TPREL16_LO:
  case R_PPC64_TPREL16_HI:
  case R_PPC64_TPREL16_DS:
  case R_PPC64_TPREL16_LO_DS:
  case R_PPC64_TPREL16_HIGHER:
  case R_PPC64_TPREL16_HIGHERA:
  case R_PPC64_TPREL16_HIGHEST:
  case R_PPC64_TPREL16_HIGHESTA:
    return R_TLS;
  case R_PPC64_DTPREL16:
  case R_PPC64_DTPREL16_DS:
  case R_PPC64_DTPREL16_HA:
  case R_PPC64_DTPREL16_HI:
  case R_PPC64_DTPREL16_HIGHER:
  case R_PPC64_DTPREL16_HIGHERA:
  case R_PPC64_DTPREL16_HIGHEST:
  case R_PPC64_DTPREL16_HIGHESTA:
  case R_PPC64_DTPREL16_LO:
  case R_PPC64_DTPREL16_LO_DS:
  case R_PPC64_DTPREL64:
    return R_DTPREL;
  case R_PPC64_TLSGD:
    return R_TLSDESC_CALL;
  case R_PPC64_TLSLD:
    return R_TLSLD_HINT;
  case R_PPC64_TLS:
    return R_TLSIE_HINT;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

RelType PPC64::getDynRel(RelType type) const {
  if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
    return R_PPC64_ADDR64;
  return R_PPC64_NONE;
}

void PPC64::writeGotHeader(uint8_t *buf) const {
  write64(buf, getPPC64TocBase());
}

void PPC64::writePltHeader(uint8_t *buf) const {
  // The generic resolver stub goes first.
  write32(buf +  0, 0x7c0802a6); // mflr r0
  write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
  write32(buf +  8, 0x7d6802a6); // mflr r11
  write32(buf + 12, 0x7c0803a6); // mtlr r0
  write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
  write32(buf + 20, 0x380cffcc); // subi r0,r12,52
  write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
  write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
  write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
  write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
  write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
  write32(buf + 44, 0x7d8903a6); // mtctr   r12
  write32(buf + 48, 0x4e800420); // bctr

  // The 'bcl' instruction will set the link register to the address of the
  // following instruction ('mflr r11'). Here we store the offset from that
  // instruction  to the first entry in the GotPlt section.
  int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
  write64(buf + 52, gotPltOffset);
}

void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
                     uint64_t /*pltEntryAddr*/) const {
  int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize;
  // bl __glink_PLTresolve
  write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
}

void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
                      uint64_t /*pltEntryAddr*/) const {
  writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
}

static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
  // Relocations relative to the toc-base need to be adjusted by the Toc offset.
  uint64_t tocBiasedVal = val - ppc64TocOffset;
  // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
  uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;

  switch (type) {
  // TOC biased relocation.
  case R_PPC64_GOT16:
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSLD16:
  case R_PPC64_TOC16:
    return {R_PPC64_ADDR16, tocBiasedVal};
  case R_PPC64_GOT16_DS:
  case R_PPC64_TOC16_DS:
  case R_PPC64_GOT_TPREL16_DS:
  case R_PPC64_GOT_DTPREL16_DS:
    return {R_PPC64_ADDR16_DS, tocBiasedVal};
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT_TLSGD16_HA:
  case R_PPC64_GOT_TLSLD16_HA:
  case R_PPC64_GOT_TPREL16_HA:
  case R_PPC64_GOT_DTPREL16_HA:
  case R_PPC64_TOC16_HA:
    return {R_PPC64_ADDR16_HA, tocBiasedVal};
  case R_PPC64_GOT16_HI:
  case R_PPC64_GOT_TLSGD16_HI:
  case R_PPC64_GOT_TLSLD16_HI:
  case R_PPC64_GOT_TPREL16_HI:
  case R_PPC64_GOT_DTPREL16_HI:
  case R_PPC64_TOC16_HI:
    return {R_PPC64_ADDR16_HI, tocBiasedVal};
  case R_PPC64_GOT16_LO:
  case R_PPC64_GOT_TLSGD16_LO:
  case R_PPC64_GOT_TLSLD16_LO:
  case R_PPC64_TOC16_LO:
    return {R_PPC64_ADDR16_LO, tocBiasedVal};
  case R_PPC64_GOT16_LO_DS:
  case R_PPC64_TOC16_LO_DS:
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_DTPREL16_LO_DS:
    return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};

  // Dynamic Thread pointer biased relocation types.
  case R_PPC64_DTPREL16:
    return {R_PPC64_ADDR16, dtpBiasedVal};
  case R_PPC64_DTPREL16_DS:
    return {R_PPC64_ADDR16_DS, dtpBiasedVal};
  case R_PPC64_DTPREL16_HA:
    return {R_PPC64_ADDR16_HA, dtpBiasedVal};
  case R_PPC64_DTPREL16_HI:
    return {R_PPC64_ADDR16_HI, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHER:
    return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHERA:
    return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHEST:
    return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHESTA:
    return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
  case R_PPC64_DTPREL16_LO:
    return {R_PPC64_ADDR16_LO, dtpBiasedVal};
  case R_PPC64_DTPREL16_LO_DS:
    return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
  case R_PPC64_DTPREL64:
    return {R_PPC64_ADDR64, dtpBiasedVal};

  default:
    return {type, val};
  }
}

static bool isTocOptType(RelType type) {
  switch (type) {
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT16_LO_DS:
  case R_PPC64_TOC16_HA:
  case R_PPC64_TOC16_LO_DS:
  case R_PPC64_TOC16_LO:
    return true;
  default:
    return false;
  }
}

void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  RelType type = rel.type;
  bool shouldTocOptimize =  isTocOptType(type);
  // For dynamic thread pointer relative, toc-relative, and got-indirect
  // relocations, proceed in terms of the corresponding ADDR16 relocation type.
  std::tie(type, val) = toAddr16Rel(type, val);

  switch (type) {
  case R_PPC64_ADDR14: {
    checkAlignment(loc, val, 4, rel);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t aalk = loc[3];
    write16(loc + 2, (aalk & 3) | (val & 0xfffc));
    break;
  }
  case R_PPC64_ADDR16:
    checkIntUInt(loc, val, 16, rel);
    write16(loc, val);
    break;
  case R_PPC64_ADDR32:
    checkIntUInt(loc, val, 32, rel);
    write32(loc, val);
    break;
  case R_PPC64_ADDR16_DS:
  case R_PPC64_TPREL16_DS: {
    checkInt(loc, val, 16, rel);
    // DQ-form instructions use bits 28-31 as part of the instruction encoding
    // DS-form instructions only use bits 30-31.
    uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
    checkAlignment(loc, lo(val), mask + 1, rel);
    write16(loc, (read16(loc) & mask) | lo(val));
  } break;
  case R_PPC64_ADDR16_HA:
  case R_PPC64_REL16_HA:
  case R_PPC64_TPREL16_HA:
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
      writeFromHalf16(loc, 0x60000000);
    else
      write16(loc, ha(val));
    break;
  case R_PPC64_ADDR16_HI:
  case R_PPC64_REL16_HI:
  case R_PPC64_TPREL16_HI:
    write16(loc, hi(val));
    break;
  case R_PPC64_ADDR16_HIGHER:
  case R_PPC64_TPREL16_HIGHER:
    write16(loc, higher(val));
    break;
  case R_PPC64_ADDR16_HIGHERA:
  case R_PPC64_TPREL16_HIGHERA:
    write16(loc, highera(val));
    break;
  case R_PPC64_ADDR16_HIGHEST:
  case R_PPC64_TPREL16_HIGHEST:
    write16(loc, highest(val));
    break;
  case R_PPC64_ADDR16_HIGHESTA:
  case R_PPC64_TPREL16_HIGHESTA:
    write16(loc, highesta(val));
    break;
  case R_PPC64_ADDR16_LO:
  case R_PPC64_REL16_LO:
  case R_PPC64_TPREL16_LO:
    // When the high-adjusted part of a toc relocation evaluates to 0, it is
    // changed into a nop. The lo part then needs to be updated to use the
    // toc-pointer register r2, as the base register.
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
      uint32_t insn = readFromHalf16(loc);
      if (isInstructionUpdateForm(insn))
        error(getErrorLocation(loc) +
              "can't toc-optimize an update instruction: 0x" +
              utohexstr(insn));
      writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
    } else {
      write16(loc, lo(val));
    }
    break;
  case R_PPC64_ADDR16_LO_DS:
  case R_PPC64_TPREL16_LO_DS: {
    // DQ-form instructions use bits 28-31 as part of the instruction encoding
    // DS-form instructions only use bits 30-31.
    uint32_t insn = readFromHalf16(loc);
    uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
    checkAlignment(loc, lo(val), mask + 1, rel);
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
      // When the high-adjusted part of a toc relocation evaluates to 0, it is
      // changed into a nop. The lo part then needs to be updated to use the toc
      // pointer register r2, as the base register.
      if (isInstructionUpdateForm(insn))
        error(getErrorLocation(loc) +
              "Can't toc-optimize an update instruction: 0x" +
              Twine::utohexstr(insn));
      insn &= 0xffe00000 | mask;
      writeFromHalf16(loc, insn | 0x00020000 | lo(val));
    } else {
      write16(loc, (read16(loc) & mask) | lo(val));
    }
  } break;
  case R_PPC64_TPREL16:
    checkInt(loc, val, 16, rel);
    write16(loc, val);
    break;
  case R_PPC64_REL32:
    checkInt(loc, val, 32, rel);
    write32(loc, val);
    break;
  case R_PPC64_ADDR64:
  case R_PPC64_REL64:
  case R_PPC64_TOC:
    write64(loc, val);
    break;
  case R_PPC64_REL14: {
    uint32_t mask = 0x0000FFFC;
    checkInt(loc, val, 16, rel);
    checkAlignment(loc, val, 4, rel);
    write32(loc, (read32(loc) & ~mask) | (val & mask));
    break;
  }
  case R_PPC64_REL24:
  case R_PPC64_REL24_NOTOC: {
    uint32_t mask = 0x03FFFFFC;
    checkInt(loc, val, 26, rel);
    checkAlignment(loc, val, 4, rel);
    write32(loc, (read32(loc) & ~mask) | (val & mask));
    break;
  }
  case R_PPC64_DTPREL64:
    write64(loc, val - dynamicThreadPointerOffset);
    break;
  case R_PPC64_PCREL34: {
    const uint64_t si0Mask = 0x00000003ffff0000;
    const uint64_t si1Mask = 0x000000000000ffff;
    const uint64_t fullMask = 0x0003ffff0000ffff;
    checkInt(loc, val, 34, rel);

    uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
    writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
                             (val & si1Mask));
    break;
  }
  case R_PPC64_GOT_PCREL34: {
    const uint64_t si0Mask = 0x00000003ffff0000;
    const uint64_t si1Mask = 0x000000000000ffff;
    const uint64_t fullMask = 0x0003ffff0000ffff;
    checkInt(loc, val, 34, rel);

    uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
    writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
                             (val & si1Mask));
    break;
  }
  default:
    llvm_unreachable("unknown relocation");
  }
}

bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
                       uint64_t branchAddr, const Symbol &s, int64_t a) const {
  if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
      type != R_PPC64_REL24_NOTOC)
    return false;

  // FIXME: Remove the fatal error once the call protocol is implemented.
  if (type == R_PPC64_REL24_NOTOC && s.isInPlt())
    fatal("unimplemented feature: external function call with the reltype"
          " R_PPC64_REL24_NOTOC");

  // If a function is in the Plt it needs to be called with a call-stub.
  if (s.isInPlt())
    return true;

  // FIXME: Remove the fatal error once the call protocol is implemented.
  if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
    fatal("unimplemented feature: local function call with the reltype"
          " R_PPC64_REL24_NOTOC and the callee needs toc-pointer setup");

  // This check looks at the st_other bits of the callee with relocation
  // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
  // clobbers the TOC and we need an R2 save stub.
  if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
    return true;

  // If a symbol is a weak undefined and we are compiling an executable
  // it doesn't need a range-extending thunk since it can't be called.
  if (s.isUndefWeak() && !config->shared)
    return false;

  // If the offset exceeds the range of the branch type then it will need
  // a range-extending thunk.
  // See the comment in getRelocTargetVA() about R_PPC64_CALL.
  return !inBranchRange(type, branchAddr,
                        s.getVA(a) +
                            getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
}

uint32_t PPC64::getThunkSectionSpacing() const {
  // See comment in Arch/ARM.cpp for a more detailed explanation of
  // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
  // R_PPC64_REL24, which is used by unconditional branch instructions.
  // 0x2000000 = (1 << 24-1) * 4
  return 0x2000000;
}

bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
  int64_t offset = dst - src;
  if (type == R_PPC64_REL14)
    return isInt<16>(offset);
  if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
    return isInt<26>(offset);
  llvm_unreachable("unsupported relocation type used in branch");
}

RelExpr PPC64::adjustRelaxExpr(RelType type, const uint8_t *data,
                               RelExpr expr) const {
  if (expr == R_RELAX_TLS_GD_TO_IE)
    return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
  if (expr == R_RELAX_TLS_LD_TO_LE)
    return R_RELAX_TLS_LD_TO_LE_ABS;
  return expr;
}

// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
// The general dynamic code sequence for a global `x` uses 4 instructions.
// Instruction                    Relocation                Symbol
// addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
// addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
// bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
//                                R_PPC64_REL24               __tls_get_addr
// nop                            None                       None
//
// Relaxing to initial-exec entails:
// 1) Convert the addis/addi pair that builds the address of the tls_index
//    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
// 2) Convert the call to __tls_get_addr to a nop.
// 3) Convert the nop following the call to an add of the loaded offset to the
//    thread pointer.
// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
// used as the relaxation hint for both steps 2 and 3.
void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  switch (rel.type) {
  case R_PPC64_GOT_TLSGD16_HA:
    // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
    //                      addis rT, r2, sym@got@tprel@ha.
    relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
    return;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_LO: {
    // Relax from addi  r3, rA, sym@got@tlsgd@l to
    //            ld r3, sym@got@tprel@l(rA)
    uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
    writeFromHalf16(loc, 0xe8600000 | ra);
    relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
    return;
  }
  case R_PPC64_TLSGD:
    write32(loc, 0x60000000);     // bl __tls_get_addr(sym@tlsgd) --> nop
    write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
    return;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
  }
}

// The prologue for a split-stack function is expected to look roughly
// like this:
//    .Lglobal_entry_point:
//      # TOC pointer initialization.
//      ...
//    .Llocal_entry_point:
//      # load the __private_ss member of the threads tcbhead.
//      ld r0,-0x7000-64(r13)
//      # subtract the functions stack size from the stack pointer.
//      addis r12, r1, ha(-stack-frame size)
//      addi  r12, r12, l(-stack-frame size)
//      # compare needed to actual and branch to allocate_more_stack if more
//      # space is needed, otherwise fallthrough to 'normal' function body.
//      cmpld cr7,r12,r0
//      blt- cr7, .Lallocate_more_stack
//
// -) The allocate_more_stack block might be placed after the split-stack
//    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
//    instead.
// -) If either the addis or addi is not needed due to the stack size being
//    smaller then 32K or a multiple of 64K they will be replaced with a nop,
//    but there will always be 2 instructions the linker can overwrite for the
//    adjusted stack size.
//
// The linkers job here is to increase the stack size used in the addis/addi
// pair by split-stack-size-adjust.
// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
// addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                             uint8_t stOther) const {
  // If the caller has a global entry point adjust the buffer past it. The start
  // of the split-stack prologue will be at the local entry point.
  loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);

  // At the very least we expect to see a load of some split-stack data from the
  // tcb, and 2 instructions that calculate the ending stack address this
  // function will require. If there is not enough room for at least 3
  // instructions it can't be a split-stack prologue.
  if (loc + 12 >= end)
    return false;

  // First instruction must be `ld r0, -0x7000-64(r13)`
  if (read32(loc) != 0xe80d8fc0)
    return false;

  int16_t hiImm = 0;
  int16_t loImm = 0;
  // First instruction can be either an addis if the frame size is larger then
  // 32K, or an addi if the size is less then 32K.
  int32_t firstInstr = read32(loc + 4);
  if (getPrimaryOpCode(firstInstr) == 15) {
    hiImm = firstInstr & 0xFFFF;
  } else if (getPrimaryOpCode(firstInstr) == 14) {
    loImm = firstInstr & 0xFFFF;
  } else {
    return false;
  }

  // Second instruction is either an addi or a nop. If the first instruction was
  // an addi then LoImm is set and the second instruction must be a nop.
  uint32_t secondInstr = read32(loc + 8);
  if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
    loImm = secondInstr & 0xFFFF;
  } else if (secondInstr != 0x60000000) {
    return false;
  }

  // The register operands of the first instruction should be the stack-pointer
  // (r1) as the input (RA) and r12 as the output (RT). If the second
  // instruction is not a nop, then it should use r12 as both input and output.
  auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
                             uint8_t expectedRA) {
    return ((instr & 0x3E00000) >> 21 == expectedRT) &&
           ((instr & 0x1F0000) >> 16 == expectedRA);
  };
  if (!checkRegOperands(firstInstr, 12, 1))
    return false;
  if (secondInstr != 0x60000000 && !checkRegOperands(secondInstr, 12, 12))
    return false;

  int32_t stackFrameSize = (hiImm * 65536) + loImm;
  // Check that the adjusted size doesn't overflow what we can represent with 2
  // instructions.
  if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
    error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
    return false;
  }

  int32_t adjustedStackFrameSize =
      stackFrameSize - config->splitStackAdjustSize;

  loImm = adjustedStackFrameSize & 0xFFFF;
  hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
  if (hiImm) {
    write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
    // If the low immediate is zero the second instruction will be a nop.
    secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : 0x60000000;
    write32(loc + 8, secondInstr);
  } else {
    // addi r12, r1, imm
    write32(loc + 4, (0x39810000) | (uint16_t)loImm);
    write32(loc + 8, 0x60000000);
  }

  return true;
}

TargetInfo *elf::getPPC64TargetInfo() {
  static PPC64 target;
  return &target;
}