BuildTree.cpp 49.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <map>

using namespace clang;

LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }

namespace {
/// Get start location of the Declarator from the TypeLoc.
/// E.g.:
///   loc of `(` in `int (a)`
///   loc of `*` in `int *(a)`
///   loc of the first `(` in `int (*a)(int)`
///   loc of the `*` in `int *(a)(int)`
///   loc of the first `*` in `const int *const *volatile a;`
///
/// It is non-trivial to get the start location because TypeLocs are stored
/// inside out. In the example above `*volatile` is the TypeLoc returned
/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
/// returns.
struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
  SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
    auto L = Visit(T.getInnerLoc());
    if (L.isValid())
      return L;
    return T.getLParenLoc();
  }

  // Types spelled in the prefix part of the declarator.
  SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
    return HandlePointer(T);
  }

  // All other cases are not important, as they are either part of declaration
  // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
  // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
  // declarator themselves, but their underlying type can.
  SourceLocation VisitTypeLoc(TypeLoc T) {
    auto N = T.getNextTypeLoc();
    if (!N)
      return SourceLocation();
    return Visit(N);
  }

  SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
    if (T.getTypePtr()->hasTrailingReturn())
      return SourceLocation(); // avoid recursing into the suffix of declarator.
    return VisitTypeLoc(T);
  }

private:
  template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
    auto L = Visit(T.getPointeeLoc());
    if (L.isValid())
      return L;
    return T.getLocalSourceRange().getBegin();
  }
};
} // namespace

static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
  switch (E.getOperator()) {
  // Comparison
  case OO_EqualEqual:
  case OO_ExclaimEqual:
  case OO_Greater:
  case OO_GreaterEqual:
  case OO_Less:
  case OO_LessEqual:
  case OO_Spaceship:
  // Assignment
  case OO_Equal:
  case OO_SlashEqual:
  case OO_PercentEqual:
  case OO_CaretEqual:
  case OO_PipeEqual:
  case OO_LessLessEqual:
  case OO_GreaterGreaterEqual:
  case OO_PlusEqual:
  case OO_MinusEqual:
  case OO_StarEqual:
  case OO_AmpEqual:
  // Binary computation
  case OO_Slash:
  case OO_Percent:
  case OO_Caret:
  case OO_Pipe:
  case OO_LessLess:
  case OO_GreaterGreater:
  case OO_AmpAmp:
  case OO_PipePipe:
  case OO_ArrowStar:
  case OO_Comma:
    return syntax::NodeKind::BinaryOperatorExpression;
  case OO_Tilde:
  case OO_Exclaim:
    return syntax::NodeKind::PrefixUnaryOperatorExpression;
  // Prefix/Postfix increment/decrement
  case OO_PlusPlus:
  case OO_MinusMinus:
    switch (E.getNumArgs()) {
    case 1:
      return syntax::NodeKind::PrefixUnaryOperatorExpression;
    case 2:
      return syntax::NodeKind::PostfixUnaryOperatorExpression;
    default:
      llvm_unreachable("Invalid number of arguments for operator");
    }
  // Operators that can be unary or binary
  case OO_Plus:
  case OO_Minus:
  case OO_Star:
  case OO_Amp:
    switch (E.getNumArgs()) {
    case 1:
      return syntax::NodeKind::PrefixUnaryOperatorExpression;
    case 2:
      return syntax::NodeKind::BinaryOperatorExpression;
    default:
      llvm_unreachable("Invalid number of arguments for operator");
    }
    return syntax::NodeKind::BinaryOperatorExpression;
  // Not yet supported by SyntaxTree
  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
  case OO_Coawait:
  case OO_Call:
  case OO_Subscript:
  case OO_Arrow:
    return syntax::NodeKind::UnknownExpression;
  case OO_Conditional: // not overloadable
  case NUM_OVERLOADED_OPERATORS:
  case OO_None:
    llvm_unreachable("Not an overloadable operator");
  }
  llvm_unreachable("Unknown OverloadedOperatorKind enum");
}

/// Gets the range of declarator as defined by the C++ grammar. E.g.
///     `int a;` -> range of `a`,
///     `int *a;` -> range of `*a`,
///     `int a[10];` -> range of `a[10]`,
///     `int a[1][2][3];` -> range of `a[1][2][3]`,
///     `int *a = nullptr` -> range of `*a = nullptr`.
/// FIMXE: \p Name must be a source range, e.g. for `operator+`.
static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
                                      SourceLocation Name,
                                      SourceRange Initializer) {
  SourceLocation Start = GetStartLoc().Visit(T);
  SourceLocation End = T.getSourceRange().getEnd();
  assert(End.isValid());
  if (Name.isValid()) {
    if (Start.isInvalid())
      Start = Name;
    if (SM.isBeforeInTranslationUnit(End, Name))
      End = Name;
  }
  if (Initializer.isValid()) {
    auto InitializerEnd = Initializer.getEnd();
    assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
           End == InitializerEnd);
    End = InitializerEnd;
  }
  return SourceRange(Start, End);
}

namespace {
/// All AST hierarchy roots that can be represented as pointers.
using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
/// Maintains a mapping from AST to syntax tree nodes. This class will get more
/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
/// FIXME: expose this as public API.
class ASTToSyntaxMapping {
public:
  void add(ASTPtr From, syntax::Tree *To) {
    assert(To != nullptr);
    assert(!From.isNull());

    bool Added = Nodes.insert({From, To}).second;
    (void)Added;
    assert(Added && "mapping added twice");
  }

  syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }

private:
  llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
};
} // namespace

/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
///   - create a corresponding syntax node,
///   - assign roles to all pending child nodes with 'markChild' and
///     'markChildToken',
///   - replace the child nodes with the new syntax node in the pending list
///     with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
  TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
    for (const auto &T : Arena.tokenBuffer().expandedTokens())
      LocationToToken.insert({T.location().getRawEncoding(), &T});
  }

  llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
  const SourceManager &sourceManager() const { return Arena.sourceManager(); }

  /// Populate children for \p New node, assuming it covers tokens from \p
  /// Range.
  void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
                ASTPtr From) {
    assert(New);
    Pending.foldChildren(Arena, Range, New);
    if (From)
      Mapping.add(From, New);
  }
  void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
                TypeLoc L) {
    // FIXME: add mapping for TypeLocs
    foldNode(Range, New, nullptr);
  }

  /// Notifies that we should not consume trailing semicolon when computing
  /// token range of \p D.
  void noticeDeclWithoutSemicolon(Decl *D);

  /// Mark the \p Child node with a corresponding \p Role. All marked children
  /// should be consumed by foldNode.
  /// When called on expressions (clang::Expr is derived from clang::Stmt),
  /// wraps expressions into expression statement.
  void markStmtChild(Stmt *Child, NodeRole Role);
  /// Should be called for expressions in non-statement position to avoid
  /// wrapping into expression statement.
  void markExprChild(Expr *Child, NodeRole Role);
  /// Set role for a token starting at \p Loc.
  void markChildToken(SourceLocation Loc, NodeRole R);
  /// Set role for \p T.
  void markChildToken(const syntax::Token *T, NodeRole R);

  /// Set role for \p N.
  void markChild(syntax::Node *N, NodeRole R);
  /// Set role for the syntax node matching \p N.
  void markChild(ASTPtr N, NodeRole R);

  /// Finish building the tree and consume the root node.
  syntax::TranslationUnit *finalize() && {
    auto Tokens = Arena.tokenBuffer().expandedTokens();
    assert(!Tokens.empty());
    assert(Tokens.back().kind() == tok::eof);

    // Build the root of the tree, consuming all the children.
    Pending.foldChildren(Arena, Tokens.drop_back(),
                         new (Arena.allocator()) syntax::TranslationUnit);

    auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
    TU->assertInvariantsRecursive();
    return TU;
  }

  /// Finds a token starting at \p L. The token must exist if \p L is valid.
  const syntax::Token *findToken(SourceLocation L) const;

  /// Finds the syntax tokens corresponding to the \p SourceRange.
  llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const {
    assert(Range.isValid());
    return getRange(Range.getBegin(), Range.getEnd());
  }

  /// Finds the syntax tokens corresponding to the passed source locations.
  /// \p First is the start position of the first token and \p Last is the start
  /// position of the last token.
  llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
                                         SourceLocation Last) const {
    assert(First.isValid());
    assert(Last.isValid());
    assert(First == Last ||
           Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
    return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
  }

  llvm::ArrayRef<syntax::Token>
  getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
    auto Tokens = getRange(D->getSourceRange());
    return maybeAppendSemicolon(Tokens, D);
  }

  /// Returns true if \p D is the last declarator in a chain and is thus
  /// reponsible for creating SimpleDeclaration for the whole chain.
  template <class T>
  bool isResponsibleForCreatingDeclaration(const T *D) const {
    static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
                   std::is_base_of<TypedefNameDecl, T>::value),
                  "only DeclaratorDecl and TypedefNameDecl are supported.");

    const Decl *Next = D->getNextDeclInContext();

    // There's no next sibling, this one is responsible.
    if (Next == nullptr) {
      return true;
    }
    const auto *NextT = llvm::dyn_cast<T>(Next);

    // Next sibling is not the same type, this one is responsible.
    if (NextT == nullptr) {
      return true;
    }
    // Next sibling doesn't begin at the same loc, it must be a different
    // declaration, so this declarator is responsible.
    if (NextT->getBeginLoc() != D->getBeginLoc()) {
      return true;
    }

    // NextT is a member of the same declaration, and we need the last member to
    // create declaration. This one is not responsible.
    return false;
  }

  llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
    llvm::ArrayRef<clang::syntax::Token> Tokens;
    // We want to drop the template parameters for specializations.
    if (const auto *S = llvm::dyn_cast<TagDecl>(D))
      Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
    else
      Tokens = getRange(D->getSourceRange());
    return maybeAppendSemicolon(Tokens, D);
  }

  llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
    return getRange(E->getSourceRange());
  }

  /// Find the adjusted range for the statement, consuming the trailing
  /// semicolon when needed.
  llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
    auto Tokens = getRange(S->getSourceRange());
    if (isa<CompoundStmt>(S))
      return Tokens;

    // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
    // all statements that end with those. Consume this semicolon here.
    if (Tokens.back().kind() == tok::semi)
      return Tokens;
    return withTrailingSemicolon(Tokens);
  }

private:
  llvm::ArrayRef<syntax::Token>
  maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens,
                       const Decl *D) const {
    if (llvm::isa<NamespaceDecl>(D))
      return Tokens;
    if (DeclsWithoutSemicolons.count(D))
      return Tokens;
    // FIXME: do not consume trailing semicolon on function definitions.
    // Most declarations own a semicolon in syntax trees, but not in clang AST.
    return withTrailingSemicolon(Tokens);
  }

  llvm::ArrayRef<syntax::Token>
  withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
    assert(!Tokens.empty());
    assert(Tokens.back().kind() != tok::eof);
    // We never consume 'eof', so looking at the next token is ok.
    if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
      return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
    return Tokens;
  }

  void setRole(syntax::Node *N, NodeRole R) {
    assert(N->role() == NodeRole::Detached);
    N->setRole(R);
  }

  /// A collection of trees covering the input tokens.
  /// When created, each tree corresponds to a single token in the file.
  /// Clients call 'foldChildren' to attach one or more subtrees to a parent
  /// node and update the list of trees accordingly.
  ///
  /// Ensures that added nodes properly nest and cover the whole token stream.
  struct Forest {
    Forest(syntax::Arena &A) {
      assert(!A.tokenBuffer().expandedTokens().empty());
      assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
      // Create all leaf nodes.
      // Note that we do not have 'eof' in the tree.
      for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
        auto *L = new (A.allocator()) syntax::Leaf(&T);
        L->Original = true;
        L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
        Trees.insert(Trees.end(), {&T, L});
      }
    }

    void assignRole(llvm::ArrayRef<syntax::Token> Range,
                    syntax::NodeRole Role) {
      assert(!Range.empty());
      auto It = Trees.lower_bound(Range.begin());
      assert(It != Trees.end() && "no node found");
      assert(It->first == Range.begin() && "no child with the specified range");
      assert((std::next(It) == Trees.end() ||
              std::next(It)->first == Range.end()) &&
             "no child with the specified range");
      assert(It->second->role() == NodeRole::Detached &&
             "re-assigning role for a child");
      It->second->setRole(Role);
    }

    /// Add \p Node to the forest and attach child nodes based on \p Tokens.
    void foldChildren(const syntax::Arena &A,
                      llvm::ArrayRef<syntax::Token> Tokens,
                      syntax::Tree *Node) {
      // Attach children to `Node`.
      assert(Node->firstChild() == nullptr && "node already has children");

      auto *FirstToken = Tokens.begin();
      auto BeginChildren = Trees.lower_bound(FirstToken);

      assert((BeginChildren == Trees.end() ||
              BeginChildren->first == FirstToken) &&
             "fold crosses boundaries of existing subtrees");
      auto EndChildren = Trees.lower_bound(Tokens.end());
      assert(
          (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
          "fold crosses boundaries of existing subtrees");

      // We need to go in reverse order, because we can only prepend.
      for (auto It = EndChildren; It != BeginChildren; --It) {
        auto *C = std::prev(It)->second;
        if (C->role() == NodeRole::Detached)
          C->setRole(NodeRole::Unknown);
        Node->prependChildLowLevel(C);
      }

      // Mark that this node came from the AST and is backed by the source code.
      Node->Original = true;
      Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();

      Trees.erase(BeginChildren, EndChildren);
      Trees.insert({FirstToken, Node});
    }

    // EXPECTS: all tokens were consumed and are owned by a single root node.
    syntax::Node *finalize() && {
      assert(Trees.size() == 1);
      auto *Root = Trees.begin()->second;
      Trees = {};
      return Root;
    }

    std::string str(const syntax::Arena &A) const {
      std::string R;
      for (auto It = Trees.begin(); It != Trees.end(); ++It) {
        unsigned CoveredTokens =
            It != Trees.end()
                ? (std::next(It)->first - It->first)
                : A.tokenBuffer().expandedTokens().end() - It->first;

        R += std::string(llvm::formatv(
            "- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(),
            It->first->text(A.sourceManager()), CoveredTokens));
        R += It->second->dump(A);
      }
      return R;
    }

  private:
    /// Maps from the start token to a subtree starting at that token.
    /// Keys in the map are pointers into the array of expanded tokens, so
    /// pointer order corresponds to the order of preprocessor tokens.
    std::map<const syntax::Token *, syntax::Node *> Trees;
  };

  /// For debugging purposes.
  std::string str() { return Pending.str(Arena); }

  syntax::Arena &Arena;
  /// To quickly find tokens by their start location.
  llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
      LocationToToken;
  Forest Pending;
  llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
  ASTToSyntaxMapping Mapping;
};

namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
  explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
      : Builder(Builder), Context(Context) {}

  bool shouldTraversePostOrder() const { return true; }

  bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
    return processDeclaratorAndDeclaration(DD);
  }

  bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
    return processDeclaratorAndDeclaration(TD);
  }

  bool VisitDecl(Decl *D) {
    assert(!D->isImplicit());
    Builder.foldNode(Builder.getDeclarationRange(D),
                     new (allocator()) syntax::UnknownDeclaration(), D);
    return true;
  }

  // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
  // override Traverse.
  // FIXME: make RAV call WalkUpFrom* instead.
  bool
  TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
    if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
      return false;
    if (C->isExplicitSpecialization())
      return true; // we are only interested in explicit instantiations.
    auto *Declaration =
        cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
    foldExplicitTemplateInstantiation(
        Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
        Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
    return true;
  }

  bool WalkUpFromTemplateDecl(TemplateDecl *S) {
    foldTemplateDeclaration(
        Builder.getDeclarationRange(S),
        Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
        Builder.getDeclarationRange(S->getTemplatedDecl()), S);
    return true;
  }

  bool WalkUpFromTagDecl(TagDecl *C) {
    // FIXME: build the ClassSpecifier node.
    if (!C->isFreeStanding()) {
      assert(C->getNumTemplateParameterLists() == 0);
      return true;
    }
    handleFreeStandingTagDecl(C);
    return true;
  }

  syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
    assert(C->isFreeStanding());
    // Class is a declaration specifier and needs a spanning declaration node.
    auto DeclarationRange = Builder.getDeclarationRange(C);
    syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
    Builder.foldNode(DeclarationRange, Result, nullptr);

    // Build TemplateDeclaration nodes if we had template parameters.
    auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
      const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
      auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
      Result =
          foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
      DeclarationRange = R;
    };
    if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
      ConsumeTemplateParameters(*S->getTemplateParameters());
    for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
      ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
    return Result;
  }

  bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
    // We do not want to call VisitDecl(), the declaration for translation
    // unit is built by finalize().
    return true;
  }

  bool WalkUpFromCompoundStmt(CompoundStmt *S) {
    using NodeRole = syntax::NodeRole;

    Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
    for (auto *Child : S->body())
      Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
    Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);

    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CompoundStatement, S);
    return true;
  }

  // Some statements are not yet handled by syntax trees.
  bool WalkUpFromStmt(Stmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::UnknownStatement, S);
    return true;
  }

  bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
    // We override to traverse range initializer as VarDecl.
    // RAV traverses it as a statement, we produce invalid node kinds in that
    // case.
    // FIXME: should do this in RAV instead?
    bool Result = [&, this]() {
      if (S->getInit() && !TraverseStmt(S->getInit()))
        return false;
      if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
        return false;
      if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
        return false;
      if (S->getBody() && !TraverseStmt(S->getBody()))
        return false;
      return true;
    }();
    WalkUpFromCXXForRangeStmt(S);
    return Result;
  }

  bool TraverseStmt(Stmt *S) {
    if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
      // We want to consume the semicolon, make sure SimpleDeclaration does not.
      for (auto *D : DS->decls())
        Builder.noticeDeclWithoutSemicolon(D);
    } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
      return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit());
    }
    return RecursiveASTVisitor::TraverseStmt(S);
  }

  // Some expressions are not yet handled by syntax trees.
  bool WalkUpFromExpr(Expr *E) {
    assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
    Builder.foldNode(Builder.getExprRange(E),
                     new (allocator()) syntax::UnknownExpression, E);
    return true;
  }

  syntax::NestedNameSpecifier *
  BuildNestedNameSpecifier(NestedNameSpecifierLoc QualifierLoc) {
    if (!QualifierLoc)
      return nullptr;
    for (auto it = QualifierLoc; it; it = it.getPrefix()) {
      auto *NS = new (allocator()) syntax::NameSpecifier;
      Builder.foldNode(Builder.getRange(it.getLocalSourceRange()), NS, nullptr);
      Builder.markChild(NS, syntax::NodeRole::NestedNameSpecifier_specifier);
    }
    auto *NNS = new (allocator()) syntax::NestedNameSpecifier;
    Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), NNS,
                     nullptr);
    return NNS;
  }

  bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
    // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
    // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
    // UDL suffix location does not point to the beginning of a token, so we
    // can't represent the UDL suffix as a separate syntax tree node.

    return WalkUpFromUserDefinedLiteral(S);
  }

  syntax::UserDefinedLiteralExpression *
  buildUserDefinedLiteral(UserDefinedLiteral *S) {
    switch (S->getLiteralOperatorKind()) {
    case clang::UserDefinedLiteral::LOK_Integer:
      return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_Floating:
      return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_Character:
      return new (allocator()) syntax::CharUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_String:
      return new (allocator()) syntax::StringUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_Raw:
    case clang::UserDefinedLiteral::LOK_Template:
      // For raw literal operator and numeric literal operator template we
      // cannot get the type of the operand in the semantic AST. We get this
      // information from the token. As integer and floating point have the same
      // token kind, we run `NumericLiteralParser` again to distinguish them.
      auto TokLoc = S->getBeginLoc();
      auto TokSpelling =
          Builder.findToken(TokLoc)->text(Context.getSourceManager());
      auto Literal =
          NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
                               Context.getLangOpts(), Context.getTargetInfo(),
                               Context.getDiagnostics());
      if (Literal.isIntegerLiteral())
        return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
      else {
        assert(Literal.isFloatingLiteral());
        return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
      }
    }
    llvm_unreachable("Unknown literal operator kind.");
  }

  bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
    Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
    return true;
  }

  bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
    if (auto *NNS = BuildNestedNameSpecifier(S->getQualifierLoc()))
      Builder.markChild(NNS, syntax::NodeRole::IdExpression_qualifier);

    auto *unqualifiedId = new (allocator()) syntax::UnqualifiedId;
    // Get `UnqualifiedId` from `DeclRefExpr`.
    // FIXME: Extract this logic so that it can be used by `MemberExpr`,
    // and other semantic constructs, now it is tied to `DeclRefExpr`.
    if (!S->hasExplicitTemplateArgs()) {
      Builder.foldNode(Builder.getRange(S->getNameInfo().getSourceRange()),
                       unqualifiedId, nullptr);
    } else {
      auto templateIdSourceRange =
          SourceRange(S->getNameInfo().getBeginLoc(), S->getRAngleLoc());
      Builder.foldNode(Builder.getRange(templateIdSourceRange), unqualifiedId,
                       nullptr);
    }
    Builder.markChild(unqualifiedId, syntax::NodeRole::IdExpression_id);

    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::IdExpression, S);
    return true;
  }

  bool WalkUpFromParenExpr(ParenExpr *S) {
    Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
    Builder.markExprChild(S->getSubExpr(),
                          syntax::NodeRole::ParenExpression_subExpression);
    Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::ParenExpression, S);
    return true;
  }

  bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::IntegerLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::CharacterLiteralExpression, S);
    return true;
  }

  bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::FloatingLiteralExpression, S);
    return true;
  }

  bool WalkUpFromStringLiteral(StringLiteral *S) {
    Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::StringLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::BoolLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::CxxNullPtrExpression, S);
    return true;
  }

  bool WalkUpFromUnaryOperator(UnaryOperator *S) {
    Builder.markChildToken(S->getOperatorLoc(),
                           syntax::NodeRole::OperatorExpression_operatorToken);
    Builder.markExprChild(S->getSubExpr(),
                          syntax::NodeRole::UnaryOperatorExpression_operand);

    if (S->isPostfix())
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PostfixUnaryOperatorExpression,
                       S);
    else
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PrefixUnaryOperatorExpression,
                       S);

    return true;
  }

  bool WalkUpFromBinaryOperator(BinaryOperator *S) {
    Builder.markExprChild(
        S->getLHS(), syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
    Builder.markChildToken(S->getOperatorLoc(),
                           syntax::NodeRole::OperatorExpression_operatorToken);
    Builder.markExprChild(
        S->getRHS(), syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::BinaryOperatorExpression, S);
    return true;
  }

  bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
    if (getOperatorNodeKind(*S) ==
        syntax::NodeKind::PostfixUnaryOperatorExpression) {
      // A postfix unary operator is declared as taking two operands. The
      // second operand is used to distinguish from its prefix counterpart. In
      // the semantic AST this "phantom" operand is represented as a
      // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
      // operand because it does not correspond to anything written in source
      // code
      for (auto *child : S->children()) {
        if (child->getSourceRange().isInvalid())
          continue;
        if (!TraverseStmt(child))
          return false;
      }
      return WalkUpFromCXXOperatorCallExpr(S);
    } else
      return RecursiveASTVisitor::TraverseCXXOperatorCallExpr(S);
  }

  bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
    switch (getOperatorNodeKind(*S)) {
    case syntax::NodeKind::BinaryOperatorExpression:
      Builder.markExprChild(
          S->getArg(0),
          syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
      Builder.markChildToken(
          S->getOperatorLoc(),
          syntax::NodeRole::OperatorExpression_operatorToken);
      Builder.markExprChild(
          S->getArg(1),
          syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::BinaryOperatorExpression, S);
      return true;
    case syntax::NodeKind::PrefixUnaryOperatorExpression:
      Builder.markChildToken(
          S->getOperatorLoc(),
          syntax::NodeRole::OperatorExpression_operatorToken);
      Builder.markExprChild(S->getArg(0),
                            syntax::NodeRole::UnaryOperatorExpression_operand);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PrefixUnaryOperatorExpression,
                       S);
      return true;
    case syntax::NodeKind::PostfixUnaryOperatorExpression:
      Builder.markChildToken(
          S->getOperatorLoc(),
          syntax::NodeRole::OperatorExpression_operatorToken);
      Builder.markExprChild(S->getArg(0),
                            syntax::NodeRole::UnaryOperatorExpression_operand);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PostfixUnaryOperatorExpression,
                       S);
      return true;
    case syntax::NodeKind::UnknownExpression:
      return RecursiveASTVisitor::WalkUpFromCXXOperatorCallExpr(S);
    default:
      llvm_unreachable("getOperatorNodeKind() does not return this value");
    }
  }

  bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
    auto Tokens = Builder.getDeclarationRange(S);
    if (Tokens.front().kind() == tok::coloncolon) {
      // Handle nested namespace definitions. Those start at '::' token, e.g.
      // namespace a^::b {}
      // FIXME: build corresponding nodes for the name of this namespace.
      return true;
    }
    Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
    return true;
  }

  bool TraverseParenTypeLoc(ParenTypeLoc L) {
    // We reverse order of traversal to get the proper syntax structure.
    if (!WalkUpFromParenTypeLoc(L))
      return false;
    return TraverseTypeLoc(L.getInnerLoc());
  }

  bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
    Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
    Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
                     new (allocator()) syntax::ParenDeclarator, L);
    return true;
  }

  // Declarator chunks, they are produced by type locs and some clang::Decls.
  bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
    Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
    Builder.markExprChild(L.getSizeExpr(),
                          syntax::NodeRole::ArraySubscript_sizeExpression);
    Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
                     new (allocator()) syntax::ArraySubscript, L);
    return true;
  }

  bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
    Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
    for (auto *P : L.getParams()) {
      Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter);
    }
    Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
                     new (allocator()) syntax::ParametersAndQualifiers, L);
    return true;
  }

  bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
    if (!L.getTypePtr()->hasTrailingReturn())
      return WalkUpFromFunctionTypeLoc(L);

    auto *TrailingReturnTokens = BuildTrailingReturn(L);
    // Finish building the node for parameters.
    Builder.markChild(TrailingReturnTokens,
                      syntax::NodeRole::ParametersAndQualifiers_trailingReturn);
    return WalkUpFromFunctionTypeLoc(L);
  }

  bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
    auto SR = L.getLocalSourceRange();
    Builder.foldNode(Builder.getRange(SR),
                     new (allocator()) syntax::MemberPointer, L);
    return true;
  }

  // The code below is very regular, it could even be generated with some
  // preprocessor magic. We merely assign roles to the corresponding children
  // and fold resulting nodes.
  bool WalkUpFromDeclStmt(DeclStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DeclarationStatement, S);
    return true;
  }

  bool WalkUpFromNullStmt(NullStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::EmptyStatement, S);
    return true;
  }

  bool WalkUpFromSwitchStmt(SwitchStmt *S) {
    Builder.markChildToken(S->getSwitchLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::SwitchStatement, S);
    return true;
  }

  bool WalkUpFromCaseStmt(CaseStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CaseStatement, S);
    return true;
  }

  bool WalkUpFromDefaultStmt(DefaultStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DefaultStatement, S);
    return true;
  }

  bool WalkUpFromIfStmt(IfStmt *S) {
    Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getThen(),
                          syntax::NodeRole::IfStatement_thenStatement);
    Builder.markChildToken(S->getElseLoc(),
                           syntax::NodeRole::IfStatement_elseKeyword);
    Builder.markStmtChild(S->getElse(),
                          syntax::NodeRole::IfStatement_elseStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::IfStatement, S);
    return true;
  }

  bool WalkUpFromForStmt(ForStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ForStatement, S);
    return true;
  }

  bool WalkUpFromWhileStmt(WhileStmt *S) {
    Builder.markChildToken(S->getWhileLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::WhileStatement, S);
    return true;
  }

  bool WalkUpFromContinueStmt(ContinueStmt *S) {
    Builder.markChildToken(S->getContinueLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ContinueStatement, S);
    return true;
  }

  bool WalkUpFromBreakStmt(BreakStmt *S) {
    Builder.markChildToken(S->getBreakLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::BreakStatement, S);
    return true;
  }

  bool WalkUpFromReturnStmt(ReturnStmt *S) {
    Builder.markChildToken(S->getReturnLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getRetValue(),
                          syntax::NodeRole::ReturnStatement_value);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ReturnStatement, S);
    return true;
  }

  bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::RangeBasedForStatement, S);
    return true;
  }

  bool WalkUpFromEmptyDecl(EmptyDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::EmptyDeclaration, S);
    return true;
  }

  bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
    Builder.markExprChild(S->getAssertExpr(),
                          syntax::NodeRole::StaticAssertDeclaration_condition);
    Builder.markExprChild(S->getMessage(),
                          syntax::NodeRole::StaticAssertDeclaration_message);
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::StaticAssertDeclaration, S);
    return true;
  }

  bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::LinkageSpecificationDeclaration,
                     S);
    return true;
  }

  bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::NamespaceAliasDefinition, S);
    return true;
  }

  bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingNamespaceDirective, S);
    return true;
  }

  bool WalkUpFromUsingDecl(UsingDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::TypeAliasDeclaration, S);
    return true;
  }

private:
  template <class T> SourceLocation getQualifiedNameStart(T *D) {
    static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
                   std::is_base_of<TypedefNameDecl, T>::value),
                  "only DeclaratorDecl and TypedefNameDecl are supported.");

    auto DN = D->getDeclName();
    bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
    if (IsAnonymous)
      return SourceLocation();

    if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) {
      if (DD->getQualifierLoc()) {
        return DD->getQualifierLoc().getBeginLoc();
      }
    }

    return D->getLocation();
  }

  SourceRange getInitializerRange(Decl *D) {
    if (auto *V = llvm::dyn_cast<VarDecl>(D)) {
      auto *I = V->getInit();
      // Initializers in range-based-for are not part of the declarator
      if (I && !V->isCXXForRangeDecl())
        return I->getSourceRange();
    }

    return SourceRange();
  }

  /// Folds SimpleDeclarator node (if present) and in case this is the last
  /// declarator in the chain it also folds SimpleDeclaration node.
  template <class T> bool processDeclaratorAndDeclaration(T *D) {
    SourceRange Initializer = getInitializerRange(D);
    auto Range = getDeclaratorRange(Builder.sourceManager(),
                                    D->getTypeSourceInfo()->getTypeLoc(),
                                    getQualifiedNameStart(D), Initializer);

    // There doesn't have to be a declarator (e.g. `void foo(int)` only has
    // declaration, but no declarator).
    if (Range.getBegin().isValid()) {
      auto *N = new (allocator()) syntax::SimpleDeclarator;
      Builder.foldNode(Builder.getRange(Range), N, nullptr);
      Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator);
    }

    if (Builder.isResponsibleForCreatingDeclaration(D)) {
      Builder.foldNode(Builder.getDeclarationRange(D),
                       new (allocator()) syntax::SimpleDeclaration, D);
    }
    return true;
  }

  /// Returns the range of the built node.
  syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) {
    assert(L.getTypePtr()->hasTrailingReturn());

    auto ReturnedType = L.getReturnLoc();
    // Build node for the declarator, if any.
    auto ReturnDeclaratorRange =
        getDeclaratorRange(this->Builder.sourceManager(), ReturnedType,
                           /*Name=*/SourceLocation(),
                           /*Initializer=*/SourceLocation());
    syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
    if (ReturnDeclaratorRange.isValid()) {
      ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
      Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
                       ReturnDeclarator, nullptr);
    }

    // Build node for trailing return type.
    auto Return = Builder.getRange(ReturnedType.getSourceRange());
    const auto *Arrow = Return.begin() - 1;
    assert(Arrow->kind() == tok::arrow);
    auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
    Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
    if (ReturnDeclarator)
      Builder.markChild(ReturnDeclarator,
                        syntax::NodeRole::TrailingReturnType_declarator);
    auto *R = new (allocator()) syntax::TrailingReturnType;
    Builder.foldNode(Tokens, R, L);
    return R;
  }

  void foldExplicitTemplateInstantiation(
      ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
      const syntax::Token *TemplateKW,
      syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
    assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
    assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
    Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
    Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
    Builder.markChild(
        InnerDeclaration,
        syntax::NodeRole::ExplicitTemplateInstantiation_declaration);
    Builder.foldNode(
        Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
  }

  syntax::TemplateDeclaration *foldTemplateDeclaration(
      ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
      ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
    assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
    Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);

    auto *N = new (allocator()) syntax::TemplateDeclaration;
    Builder.foldNode(Range, N, From);
    Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration);
    return N;
  }

  /// A small helper to save some typing.
  llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }

  syntax::TreeBuilder &Builder;
  const ASTContext &Context;
};
} // namespace

void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
  DeclsWithoutSemicolons.insert(D);
}

void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
  if (Loc.isInvalid())
    return;
  Pending.assignRole(*findToken(Loc), Role);
}

void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
  if (!T)
    return;
  Pending.assignRole(*T, R);
}

void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
  assert(N);
  setRole(N, R);
}

void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
  auto *SN = Mapping.find(N);
  assert(SN != nullptr);
  setRole(SN, R);
}

void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
  if (!Child)
    return;

  syntax::Tree *ChildNode;
  if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
    // This is an expression in a statement position, consume the trailing
    // semicolon and form an 'ExpressionStatement' node.
    markExprChild(ChildExpr, NodeRole::ExpressionStatement_expression);
    ChildNode = new (allocator()) syntax::ExpressionStatement;
    // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
    Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
  } else {
    ChildNode = Mapping.find(Child);
  }
  assert(ChildNode != nullptr);
  setRole(ChildNode, Role);
}

void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
  if (!Child)
    return;
  Child = Child->IgnoreImplicit();

  syntax::Tree *ChildNode = Mapping.find(Child);
  assert(ChildNode != nullptr);
  setRole(ChildNode, Role);
}

const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
  if (L.isInvalid())
    return nullptr;
  auto It = LocationToToken.find(L.getRawEncoding());
  assert(It != LocationToToken.end());
  return It->second;
}

syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
  TreeBuilder Builder(A);
  BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
  return std::move(Builder).finalize();
}