ASTDiff.cpp 32.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitons for the AST differencing interface.
//
//===----------------------------------------------------------------------===//

#include "clang/Tooling/ASTDiff/ASTDiff.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/PriorityQueue.h"

#include <limits>
#include <memory>
#include <unordered_set>

using namespace llvm;
using namespace clang;

namespace clang {
namespace diff {

namespace {
/// Maps nodes of the left tree to ones on the right, and vice versa.
class Mapping {
public:
  Mapping() = default;
  Mapping(Mapping &&Other) = default;
  Mapping &operator=(Mapping &&Other) = default;

  Mapping(size_t Size) {
    SrcToDst = std::make_unique<NodeId[]>(Size);
    DstToSrc = std::make_unique<NodeId[]>(Size);
  }

  void link(NodeId Src, NodeId Dst) {
    SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
  }

  NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
  NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
  bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
  bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }

private:
  std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
};
} // end anonymous namespace

class ASTDiff::Impl {
public:
  SyntaxTree::Impl &T1, &T2;
  Mapping TheMapping;

  Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
       const ComparisonOptions &Options);

  /// Matches nodes one-by-one based on their similarity.
  void computeMapping();

  // Compute Change for each node based on similarity.
  void computeChangeKinds(Mapping &M);

  NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
                   NodeId Id) const {
    if (&*Tree == &T1)
      return TheMapping.getDst(Id);
    assert(&*Tree == &T2 && "Invalid tree.");
    return TheMapping.getSrc(Id);
  }

private:
  // Returns true if the two subtrees are identical.
  bool identical(NodeId Id1, NodeId Id2) const;

  // Returns false if the nodes must not be mached.
  bool isMatchingPossible(NodeId Id1, NodeId Id2) const;

  // Returns true if the nodes' parents are matched.
  bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;

  // Uses an optimal albeit slow algorithm to compute a mapping between two
  // subtrees, but only if both have fewer nodes than MaxSize.
  void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;

  // Computes the ratio of common descendants between the two nodes.
  // Descendants are only considered to be equal when they are mapped in M.
  double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;

  // Returns the node that has the highest degree of similarity.
  NodeId findCandidate(const Mapping &M, NodeId Id1) const;

  // Returns a mapping of identical subtrees.
  Mapping matchTopDown() const;

  // Tries to match any yet unmapped nodes, in a bottom-up fashion.
  void matchBottomUp(Mapping &M) const;

  const ComparisonOptions &Options;

  friend class ZhangShashaMatcher;
};

/// Represents the AST of a TranslationUnit.
class SyntaxTree::Impl {
public:
  Impl(SyntaxTree *Parent, ASTContext &AST);
  /// Constructs a tree from an AST node.
  Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
  Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
  template <class T>
  Impl(SyntaxTree *Parent,
       std::enable_if_t<std::is_base_of<Stmt, T>::value, T> *Node,
       ASTContext &AST)
      : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
  template <class T>
  Impl(SyntaxTree *Parent,
       std::enable_if_t<std::is_base_of<Decl, T>::value, T> *Node,
       ASTContext &AST)
      : Impl(Parent, dyn_cast<Decl>(Node), AST) {}

  SyntaxTree *Parent;
  ASTContext &AST;
  PrintingPolicy TypePP;
  /// Nodes in preorder.
  std::vector<Node> Nodes;
  std::vector<NodeId> Leaves;
  // Maps preorder indices to postorder ones.
  std::vector<int> PostorderIds;
  std::vector<NodeId> NodesBfs;

  int getSize() const { return Nodes.size(); }
  NodeId getRootId() const { return 0; }
  PreorderIterator begin() const { return getRootId(); }
  PreorderIterator end() const { return getSize(); }

  const Node &getNode(NodeId Id) const { return Nodes[Id]; }
  Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
  bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
  void addNode(Node &N) { Nodes.push_back(N); }
  int getNumberOfDescendants(NodeId Id) const;
  bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
  int findPositionInParent(NodeId Id, bool Shifted = false) const;

  std::string getRelativeName(const NamedDecl *ND,
                              const DeclContext *Context) const;
  std::string getRelativeName(const NamedDecl *ND) const;

  std::string getNodeValue(NodeId Id) const;
  std::string getNodeValue(const Node &Node) const;
  std::string getDeclValue(const Decl *D) const;
  std::string getStmtValue(const Stmt *S) const;

private:
  void initTree();
  void setLeftMostDescendants();
};

static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
  return !I->isWritten();
}

template <class T>
static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
  if (!N)
    return true;
  SourceLocation SLoc = N->getSourceRange().getBegin();
  if (SLoc.isValid()) {
    // Ignore everything from other files.
    if (!SrcMgr.isInMainFile(SLoc))
      return true;
    // Ignore macros.
    if (SLoc != SrcMgr.getSpellingLoc(SLoc))
      return true;
  }
  return isSpecializedNodeExcluded(N);
}

namespace {
// Sets Height, Parent and Children for each node.
struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
  int Id = 0, Depth = 0;
  NodeId Parent;
  SyntaxTree::Impl &Tree;

  PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}

  template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
    NodeId MyId = Id;
    Tree.Nodes.emplace_back();
    Node &N = Tree.getMutableNode(MyId);
    N.Parent = Parent;
    N.Depth = Depth;
    N.ASTNode = DynTypedNode::create(*ASTNode);
    assert(!N.ASTNode.getNodeKind().isNone() &&
           "Expected nodes to have a valid kind.");
    if (Parent.isValid()) {
      Node &P = Tree.getMutableNode(Parent);
      P.Children.push_back(MyId);
    }
    Parent = MyId;
    ++Id;
    ++Depth;
    return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
  }
  void PostTraverse(std::tuple<NodeId, NodeId> State) {
    NodeId MyId, PreviousParent;
    std::tie(MyId, PreviousParent) = State;
    assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
    Parent = PreviousParent;
    --Depth;
    Node &N = Tree.getMutableNode(MyId);
    N.RightMostDescendant = Id - 1;
    assert(N.RightMostDescendant >= 0 &&
           N.RightMostDescendant < Tree.getSize() &&
           "Rightmost descendant must be a valid tree node.");
    if (N.isLeaf())
      Tree.Leaves.push_back(MyId);
    N.Height = 1;
    for (NodeId Child : N.Children)
      N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
  }
  bool TraverseDecl(Decl *D) {
    if (isNodeExcluded(Tree.AST.getSourceManager(), D))
      return true;
    auto SavedState = PreTraverse(D);
    RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
    PostTraverse(SavedState);
    return true;
  }
  bool TraverseStmt(Stmt *S) {
    if (auto *E = dyn_cast_or_null<Expr>(S))
      S = E->IgnoreImplicit();
    if (isNodeExcluded(Tree.AST.getSourceManager(), S))
      return true;
    auto SavedState = PreTraverse(S);
    RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
    PostTraverse(SavedState);
    return true;
  }
  bool TraverseType(QualType T) { return true; }
  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
    if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
      return true;
    auto SavedState = PreTraverse(Init);
    RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
    PostTraverse(SavedState);
    return true;
  }
};
} // end anonymous namespace

SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
    : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
  TypePP.AnonymousTagLocations = false;
}

SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
    : Impl(Parent, AST) {
  PreorderVisitor PreorderWalker(*this);
  PreorderWalker.TraverseDecl(N);
  initTree();
}

SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
    : Impl(Parent, AST) {
  PreorderVisitor PreorderWalker(*this);
  PreorderWalker.TraverseStmt(N);
  initTree();
}

static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
                                               NodeId Root) {
  std::vector<NodeId> Postorder;
  std::function<void(NodeId)> Traverse = [&](NodeId Id) {
    const Node &N = Tree.getNode(Id);
    for (NodeId Child : N.Children)
      Traverse(Child);
    Postorder.push_back(Id);
  };
  Traverse(Root);
  return Postorder;
}

static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
                                         NodeId Root) {
  std::vector<NodeId> Ids;
  size_t Expanded = 0;
  Ids.push_back(Root);
  while (Expanded < Ids.size())
    for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
      Ids.push_back(Child);
  return Ids;
}

void SyntaxTree::Impl::initTree() {
  setLeftMostDescendants();
  int PostorderId = 0;
  PostorderIds.resize(getSize());
  std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
    for (NodeId Child : getNode(Id).Children)
      PostorderTraverse(Child);
    PostorderIds[Id] = PostorderId;
    ++PostorderId;
  };
  PostorderTraverse(getRootId());
  NodesBfs = getSubtreeBfs(*this, getRootId());
}

void SyntaxTree::Impl::setLeftMostDescendants() {
  for (NodeId Leaf : Leaves) {
    getMutableNode(Leaf).LeftMostDescendant = Leaf;
    NodeId Parent, Cur = Leaf;
    while ((Parent = getNode(Cur).Parent).isValid() &&
           getNode(Parent).Children[0] == Cur) {
      Cur = Parent;
      getMutableNode(Cur).LeftMostDescendant = Leaf;
    }
  }
}

int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
  return getNode(Id).RightMostDescendant - Id + 1;
}

bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
  return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
}

int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
  NodeId Parent = getNode(Id).Parent;
  if (Parent.isInvalid())
    return 0;
  const auto &Siblings = getNode(Parent).Children;
  int Position = 0;
  for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
    if (Shifted)
      Position += getNode(Siblings[I]).Shift;
    if (Siblings[I] == Id) {
      Position += I;
      return Position;
    }
  }
  llvm_unreachable("Node not found in parent's children.");
}

// Returns the qualified name of ND. If it is subordinate to Context,
// then the prefix of the latter is removed from the returned value.
std::string
SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
                                  const DeclContext *Context) const {
  std::string Val = ND->getQualifiedNameAsString();
  std::string ContextPrefix;
  if (!Context)
    return Val;
  if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
    ContextPrefix = Namespace->getQualifiedNameAsString();
  else if (auto *Record = dyn_cast<RecordDecl>(Context))
    ContextPrefix = Record->getQualifiedNameAsString();
  else if (AST.getLangOpts().CPlusPlus11)
    if (auto *Tag = dyn_cast<TagDecl>(Context))
      ContextPrefix = Tag->getQualifiedNameAsString();
  // Strip the qualifier, if Val refers to something in the current scope.
  // But leave one leading ':' in place, so that we know that this is a
  // relative path.
  if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
    Val = Val.substr(ContextPrefix.size() + 1);
  return Val;
}

std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
  return getRelativeName(ND, ND->getDeclContext());
}

static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
                                                  const Stmt *S) {
  while (S) {
    const auto &Parents = AST.getParents(*S);
    if (Parents.empty())
      return nullptr;
    const auto &P = Parents[0];
    if (const auto *D = P.get<Decl>())
      return D->getDeclContext();
    S = P.get<Stmt>();
  }
  return nullptr;
}

static std::string getInitializerValue(const CXXCtorInitializer *Init,
                                       const PrintingPolicy &TypePP) {
  if (Init->isAnyMemberInitializer())
    return std::string(Init->getAnyMember()->getName());
  if (Init->isBaseInitializer())
    return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
  if (Init->isDelegatingInitializer())
    return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
  llvm_unreachable("Unknown initializer type");
}

std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
  return getNodeValue(getNode(Id));
}

std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
  const DynTypedNode &DTN = N.ASTNode;
  if (auto *S = DTN.get<Stmt>())
    return getStmtValue(S);
  if (auto *D = DTN.get<Decl>())
    return getDeclValue(D);
  if (auto *Init = DTN.get<CXXCtorInitializer>())
    return getInitializerValue(Init, TypePP);
  llvm_unreachable("Fatal: unhandled AST node.\n");
}

std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
  std::string Value;
  if (auto *V = dyn_cast<ValueDecl>(D))
    return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
  if (auto *N = dyn_cast<NamedDecl>(D))
    Value += getRelativeName(N) + ";";
  if (auto *T = dyn_cast<TypedefNameDecl>(D))
    return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
  if (auto *T = dyn_cast<TypeDecl>(D))
    if (T->getTypeForDecl())
      Value +=
          T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
          ";";
  if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
    return std::string(U->getNominatedNamespace()->getName());
  if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
    CharSourceRange Range(A->getSourceRange(), false);
    return std::string(
        Lexer::getSourceText(Range, AST.getSourceManager(), AST.getLangOpts()));
  }
  return Value;
}

std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
  if (auto *U = dyn_cast<UnaryOperator>(S))
    return std::string(UnaryOperator::getOpcodeStr(U->getOpcode()));
  if (auto *B = dyn_cast<BinaryOperator>(S))
    return std::string(B->getOpcodeStr());
  if (auto *M = dyn_cast<MemberExpr>(S))
    return getRelativeName(M->getMemberDecl());
  if (auto *I = dyn_cast<IntegerLiteral>(S)) {
    SmallString<256> Str;
    I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
    return std::string(Str.str());
  }
  if (auto *F = dyn_cast<FloatingLiteral>(S)) {
    SmallString<256> Str;
    F->getValue().toString(Str);
    return std::string(Str.str());
  }
  if (auto *D = dyn_cast<DeclRefExpr>(S))
    return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
  if (auto *String = dyn_cast<StringLiteral>(S))
    return std::string(String->getString());
  if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
    return B->getValue() ? "true" : "false";
  return "";
}

/// Identifies a node in a subtree by its postorder offset, starting at 1.
struct SNodeId {
  int Id = 0;

  explicit SNodeId(int Id) : Id(Id) {}
  explicit SNodeId() = default;

  operator int() const { return Id; }
  SNodeId &operator++() { return ++Id, *this; }
  SNodeId &operator--() { return --Id, *this; }
  SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
};

class Subtree {
private:
  /// The parent tree.
  const SyntaxTree::Impl &Tree;
  /// Maps SNodeIds to original ids.
  std::vector<NodeId> RootIds;
  /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
  std::vector<SNodeId> LeftMostDescendants;

public:
  std::vector<SNodeId> KeyRoots;

  Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
    RootIds = getSubtreePostorder(Tree, SubtreeRoot);
    int NumLeaves = setLeftMostDescendants();
    computeKeyRoots(NumLeaves);
  }
  int getSize() const { return RootIds.size(); }
  NodeId getIdInRoot(SNodeId Id) const {
    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
    return RootIds[Id - 1];
  }
  const Node &getNode(SNodeId Id) const {
    return Tree.getNode(getIdInRoot(Id));
  }
  SNodeId getLeftMostDescendant(SNodeId Id) const {
    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
    return LeftMostDescendants[Id - 1];
  }
  /// Returns the postorder index of the leftmost descendant in the subtree.
  NodeId getPostorderOffset() const {
    return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
  }
  std::string getNodeValue(SNodeId Id) const {
    return Tree.getNodeValue(getIdInRoot(Id));
  }

private:
  /// Returns the number of leafs in the subtree.
  int setLeftMostDescendants() {
    int NumLeaves = 0;
    LeftMostDescendants.resize(getSize());
    for (int I = 0; I < getSize(); ++I) {
      SNodeId SI(I + 1);
      const Node &N = getNode(SI);
      NumLeaves += N.isLeaf();
      assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
             "Postorder traversal in subtree should correspond to traversal in "
             "the root tree by a constant offset.");
      LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
                                       getPostorderOffset());
    }
    return NumLeaves;
  }
  void computeKeyRoots(int Leaves) {
    KeyRoots.resize(Leaves);
    std::unordered_set<int> Visited;
    int K = Leaves - 1;
    for (SNodeId I(getSize()); I > 0; --I) {
      SNodeId LeftDesc = getLeftMostDescendant(I);
      if (Visited.count(LeftDesc))
        continue;
      assert(K >= 0 && "K should be non-negative");
      KeyRoots[K] = I;
      Visited.insert(LeftDesc);
      --K;
    }
  }
};

/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
/// Computes an optimal mapping between two trees using only insertion,
/// deletion and update as edit actions (similar to the Levenshtein distance).
class ZhangShashaMatcher {
  const ASTDiff::Impl &DiffImpl;
  Subtree S1;
  Subtree S2;
  std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;

public:
  ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
                     const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
      : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
    TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
        size_t(S1.getSize()) + 1);
    ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
        size_t(S1.getSize()) + 1);
    for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
      TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
      ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
    }
  }

  std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
    std::vector<std::pair<NodeId, NodeId>> Matches;
    std::vector<std::pair<SNodeId, SNodeId>> TreePairs;

    computeTreeDist();

    bool RootNodePair = true;

    TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));

    while (!TreePairs.empty()) {
      SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
      std::tie(LastRow, LastCol) = TreePairs.back();
      TreePairs.pop_back();

      if (!RootNodePair) {
        computeForestDist(LastRow, LastCol);
      }

      RootNodePair = false;

      FirstRow = S1.getLeftMostDescendant(LastRow);
      FirstCol = S2.getLeftMostDescendant(LastCol);

      Row = LastRow;
      Col = LastCol;

      while (Row > FirstRow || Col > FirstCol) {
        if (Row > FirstRow &&
            ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
          --Row;
        } else if (Col > FirstCol &&
                   ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
          --Col;
        } else {
          SNodeId LMD1 = S1.getLeftMostDescendant(Row);
          SNodeId LMD2 = S2.getLeftMostDescendant(Col);
          if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
              LMD2 == S2.getLeftMostDescendant(LastCol)) {
            NodeId Id1 = S1.getIdInRoot(Row);
            NodeId Id2 = S2.getIdInRoot(Col);
            assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
                   "These nodes must not be matched.");
            Matches.emplace_back(Id1, Id2);
            --Row;
            --Col;
          } else {
            TreePairs.emplace_back(Row, Col);
            Row = LMD1;
            Col = LMD2;
          }
        }
      }
    }
    return Matches;
  }

private:
  /// We use a simple cost model for edit actions, which seems good enough.
  /// Simple cost model for edit actions. This seems to make the matching
  /// algorithm perform reasonably well.
  /// The values range between 0 and 1, or infinity if this edit action should
  /// always be avoided.
  static constexpr double DeletionCost = 1;
  static constexpr double InsertionCost = 1;

  double getUpdateCost(SNodeId Id1, SNodeId Id2) {
    if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
      return std::numeric_limits<double>::max();
    return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
  }

  void computeTreeDist() {
    for (SNodeId Id1 : S1.KeyRoots)
      for (SNodeId Id2 : S2.KeyRoots)
        computeForestDist(Id1, Id2);
  }

  void computeForestDist(SNodeId Id1, SNodeId Id2) {
    assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
    SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
    SNodeId LMD2 = S2.getLeftMostDescendant(Id2);

    ForestDist[LMD1][LMD2] = 0;
    for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
      ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
      for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
        ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
        SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
        SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
        if (DLMD1 == LMD1 && DLMD2 == LMD2) {
          double UpdateCost = getUpdateCost(D1, D2);
          ForestDist[D1][D2] =
              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
                        ForestDist[D1][D2 - 1] + InsertionCost,
                        ForestDist[D1 - 1][D2 - 1] + UpdateCost});
          TreeDist[D1][D2] = ForestDist[D1][D2];
        } else {
          ForestDist[D1][D2] =
              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
                        ForestDist[D1][D2 - 1] + InsertionCost,
                        ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
        }
      }
    }
  }
};

ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); }

StringRef Node::getTypeLabel() const { return getType().asStringRef(); }

llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
  if (auto *ND = ASTNode.get<NamedDecl>()) {
    if (ND->getDeclName().isIdentifier())
      return ND->getQualifiedNameAsString();
  }
  return llvm::None;
}

llvm::Optional<StringRef> Node::getIdentifier() const {
  if (auto *ND = ASTNode.get<NamedDecl>()) {
    if (ND->getDeclName().isIdentifier())
      return ND->getName();
  }
  return llvm::None;
}

namespace {
// Compares nodes by their depth.
struct HeightLess {
  const SyntaxTree::Impl &Tree;
  HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
  bool operator()(NodeId Id1, NodeId Id2) const {
    return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
  }
};
} // end anonymous namespace

namespace {
// Priority queue for nodes, sorted descendingly by their height.
class PriorityList {
  const SyntaxTree::Impl &Tree;
  HeightLess Cmp;
  std::vector<NodeId> Container;
  PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;

public:
  PriorityList(const SyntaxTree::Impl &Tree)
      : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}

  void push(NodeId id) { List.push(id); }

  std::vector<NodeId> pop() {
    int Max = peekMax();
    std::vector<NodeId> Result;
    if (Max == 0)
      return Result;
    while (peekMax() == Max) {
      Result.push_back(List.top());
      List.pop();
    }
    // TODO this is here to get a stable output, not a good heuristic
    llvm::sort(Result);
    return Result;
  }
  int peekMax() const {
    if (List.empty())
      return 0;
    return Tree.getNode(List.top()).Height;
  }
  void open(NodeId Id) {
    for (NodeId Child : Tree.getNode(Id).Children)
      push(Child);
  }
};
} // end anonymous namespace

bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
  const Node &N1 = T1.getNode(Id1);
  const Node &N2 = T2.getNode(Id2);
  if (N1.Children.size() != N2.Children.size() ||
      !isMatchingPossible(Id1, Id2) ||
      T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
    return false;
  for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
    if (!identical(N1.Children[Id], N2.Children[Id]))
      return false;
  return true;
}

bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
  return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
}

bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
                                    NodeId Id2) const {
  NodeId P1 = T1.getNode(Id1).Parent;
  NodeId P2 = T2.getNode(Id2).Parent;
  return (P1.isInvalid() && P2.isInvalid()) ||
         (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
}

void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
                                      NodeId Id2) const {
  if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
      Options.MaxSize)
    return;
  ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
  std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
  for (const auto &Tuple : R) {
    NodeId Src = Tuple.first;
    NodeId Dst = Tuple.second;
    if (!M.hasSrc(Src) && !M.hasDst(Dst))
      M.link(Src, Dst);
  }
}

double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
                                           NodeId Id2) const {
  int CommonDescendants = 0;
  const Node &N1 = T1.getNode(Id1);
  // Count the common descendants, excluding the subtree root.
  for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
    NodeId Dst = M.getDst(Src);
    CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
  }
  // We need to subtract 1 to get the number of descendants excluding the root.
  double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
                       T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
  // CommonDescendants is less than the size of one subtree.
  assert(Denominator >= 0 && "Expected non-negative denominator.");
  if (Denominator == 0)
    return 0;
  return CommonDescendants / Denominator;
}

NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
  NodeId Candidate;
  double HighestSimilarity = 0.0;
  for (NodeId Id2 : T2) {
    if (!isMatchingPossible(Id1, Id2))
      continue;
    if (M.hasDst(Id2))
      continue;
    double Similarity = getJaccardSimilarity(M, Id1, Id2);
    if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
      HighestSimilarity = Similarity;
      Candidate = Id2;
    }
  }
  return Candidate;
}

void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
  std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
  for (NodeId Id1 : Postorder) {
    if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
        !M.hasDst(T2.getRootId())) {
      if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
        M.link(T1.getRootId(), T2.getRootId());
        addOptimalMapping(M, T1.getRootId(), T2.getRootId());
      }
      break;
    }
    bool Matched = M.hasSrc(Id1);
    const Node &N1 = T1.getNode(Id1);
    bool MatchedChildren = llvm::any_of(
        N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
    if (Matched || !MatchedChildren)
      continue;
    NodeId Id2 = findCandidate(M, Id1);
    if (Id2.isValid()) {
      M.link(Id1, Id2);
      addOptimalMapping(M, Id1, Id2);
    }
  }
}

Mapping ASTDiff::Impl::matchTopDown() const {
  PriorityList L1(T1);
  PriorityList L2(T2);

  Mapping M(T1.getSize() + T2.getSize());

  L1.push(T1.getRootId());
  L2.push(T2.getRootId());

  int Max1, Max2;
  while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
         Options.MinHeight) {
    if (Max1 > Max2) {
      for (NodeId Id : L1.pop())
        L1.open(Id);
      continue;
    }
    if (Max2 > Max1) {
      for (NodeId Id : L2.pop())
        L2.open(Id);
      continue;
    }
    std::vector<NodeId> H1, H2;
    H1 = L1.pop();
    H2 = L2.pop();
    for (NodeId Id1 : H1) {
      for (NodeId Id2 : H2) {
        if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
          for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
            M.link(Id1 + I, Id2 + I);
        }
      }
    }
    for (NodeId Id1 : H1) {
      if (!M.hasSrc(Id1))
        L1.open(Id1);
    }
    for (NodeId Id2 : H2) {
      if (!M.hasDst(Id2))
        L2.open(Id2);
    }
  }
  return M;
}

ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
                    const ComparisonOptions &Options)
    : T1(T1), T2(T2), Options(Options) {
  computeMapping();
  computeChangeKinds(TheMapping);
}

void ASTDiff::Impl::computeMapping() {
  TheMapping = matchTopDown();
  if (Options.StopAfterTopDown)
    return;
  matchBottomUp(TheMapping);
}

void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
  for (NodeId Id1 : T1) {
    if (!M.hasSrc(Id1)) {
      T1.getMutableNode(Id1).Change = Delete;
      T1.getMutableNode(Id1).Shift -= 1;
    }
  }
  for (NodeId Id2 : T2) {
    if (!M.hasDst(Id2)) {
      T2.getMutableNode(Id2).Change = Insert;
      T2.getMutableNode(Id2).Shift -= 1;
    }
  }
  for (NodeId Id1 : T1.NodesBfs) {
    NodeId Id2 = M.getDst(Id1);
    if (Id2.isInvalid())
      continue;
    if (!haveSameParents(M, Id1, Id2) ||
        T1.findPositionInParent(Id1, true) !=
            T2.findPositionInParent(Id2, true)) {
      T1.getMutableNode(Id1).Shift -= 1;
      T2.getMutableNode(Id2).Shift -= 1;
    }
  }
  for (NodeId Id2 : T2.NodesBfs) {
    NodeId Id1 = M.getSrc(Id2);
    if (Id1.isInvalid())
      continue;
    Node &N1 = T1.getMutableNode(Id1);
    Node &N2 = T2.getMutableNode(Id2);
    if (Id1.isInvalid())
      continue;
    if (!haveSameParents(M, Id1, Id2) ||
        T1.findPositionInParent(Id1, true) !=
            T2.findPositionInParent(Id2, true)) {
      N1.Change = N2.Change = Move;
    }
    if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
      N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
    }
  }
}

ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
                 const ComparisonOptions &Options)
    : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}

ASTDiff::~ASTDiff() = default;

NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
  return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
}

SyntaxTree::SyntaxTree(ASTContext &AST)
    : TreeImpl(std::make_unique<SyntaxTree::Impl>(
          this, AST.getTranslationUnitDecl(), AST)) {}

SyntaxTree::~SyntaxTree() = default;

const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }

const Node &SyntaxTree::getNode(NodeId Id) const {
  return TreeImpl->getNode(Id);
}

int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
SyntaxTree::PreorderIterator SyntaxTree::begin() const {
  return TreeImpl->begin();
}
SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }

int SyntaxTree::findPositionInParent(NodeId Id) const {
  return TreeImpl->findPositionInParent(Id);
}

std::pair<unsigned, unsigned>
SyntaxTree::getSourceRangeOffsets(const Node &N) const {
  const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
  SourceRange Range = N.ASTNode.getSourceRange();
  SourceLocation BeginLoc = Range.getBegin();
  SourceLocation EndLoc = Lexer::getLocForEndOfToken(
      Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
  if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
    if (ThisExpr->isImplicit())
      EndLoc = BeginLoc;
  }
  unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
  unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
  return {Begin, End};
}

std::string SyntaxTree::getNodeValue(NodeId Id) const {
  return TreeImpl->getNodeValue(Id);
}

std::string SyntaxTree::getNodeValue(const Node &N) const {
  return TreeImpl->getNodeValue(N);
}

} // end namespace diff
} // end namespace clang