ASTDiff.cpp
32.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitons for the AST differencing interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/ASTDiff/ASTDiff.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/PriorityQueue.h"
#include <limits>
#include <memory>
#include <unordered_set>
using namespace llvm;
using namespace clang;
namespace clang {
namespace diff {
namespace {
/// Maps nodes of the left tree to ones on the right, and vice versa.
class Mapping {
public:
Mapping() = default;
Mapping(Mapping &&Other) = default;
Mapping &operator=(Mapping &&Other) = default;
Mapping(size_t Size) {
SrcToDst = std::make_unique<NodeId[]>(Size);
DstToSrc = std::make_unique<NodeId[]>(Size);
}
void link(NodeId Src, NodeId Dst) {
SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
}
NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
private:
std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
};
} // end anonymous namespace
class ASTDiff::Impl {
public:
SyntaxTree::Impl &T1, &T2;
Mapping TheMapping;
Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
const ComparisonOptions &Options);
/// Matches nodes one-by-one based on their similarity.
void computeMapping();
// Compute Change for each node based on similarity.
void computeChangeKinds(Mapping &M);
NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
NodeId Id) const {
if (&*Tree == &T1)
return TheMapping.getDst(Id);
assert(&*Tree == &T2 && "Invalid tree.");
return TheMapping.getSrc(Id);
}
private:
// Returns true if the two subtrees are identical.
bool identical(NodeId Id1, NodeId Id2) const;
// Returns false if the nodes must not be mached.
bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
// Returns true if the nodes' parents are matched.
bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
// Uses an optimal albeit slow algorithm to compute a mapping between two
// subtrees, but only if both have fewer nodes than MaxSize.
void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
// Computes the ratio of common descendants between the two nodes.
// Descendants are only considered to be equal when they are mapped in M.
double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
// Returns the node that has the highest degree of similarity.
NodeId findCandidate(const Mapping &M, NodeId Id1) const;
// Returns a mapping of identical subtrees.
Mapping matchTopDown() const;
// Tries to match any yet unmapped nodes, in a bottom-up fashion.
void matchBottomUp(Mapping &M) const;
const ComparisonOptions &Options;
friend class ZhangShashaMatcher;
};
/// Represents the AST of a TranslationUnit.
class SyntaxTree::Impl {
public:
Impl(SyntaxTree *Parent, ASTContext &AST);
/// Constructs a tree from an AST node.
Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
template <class T>
Impl(SyntaxTree *Parent,
std::enable_if_t<std::is_base_of<Stmt, T>::value, T> *Node,
ASTContext &AST)
: Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
template <class T>
Impl(SyntaxTree *Parent,
std::enable_if_t<std::is_base_of<Decl, T>::value, T> *Node,
ASTContext &AST)
: Impl(Parent, dyn_cast<Decl>(Node), AST) {}
SyntaxTree *Parent;
ASTContext &AST;
PrintingPolicy TypePP;
/// Nodes in preorder.
std::vector<Node> Nodes;
std::vector<NodeId> Leaves;
// Maps preorder indices to postorder ones.
std::vector<int> PostorderIds;
std::vector<NodeId> NodesBfs;
int getSize() const { return Nodes.size(); }
NodeId getRootId() const { return 0; }
PreorderIterator begin() const { return getRootId(); }
PreorderIterator end() const { return getSize(); }
const Node &getNode(NodeId Id) const { return Nodes[Id]; }
Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
void addNode(Node &N) { Nodes.push_back(N); }
int getNumberOfDescendants(NodeId Id) const;
bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
int findPositionInParent(NodeId Id, bool Shifted = false) const;
std::string getRelativeName(const NamedDecl *ND,
const DeclContext *Context) const;
std::string getRelativeName(const NamedDecl *ND) const;
std::string getNodeValue(NodeId Id) const;
std::string getNodeValue(const Node &Node) const;
std::string getDeclValue(const Decl *D) const;
std::string getStmtValue(const Stmt *S) const;
private:
void initTree();
void setLeftMostDescendants();
};
static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
return !I->isWritten();
}
template <class T>
static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
if (!N)
return true;
SourceLocation SLoc = N->getSourceRange().getBegin();
if (SLoc.isValid()) {
// Ignore everything from other files.
if (!SrcMgr.isInMainFile(SLoc))
return true;
// Ignore macros.
if (SLoc != SrcMgr.getSpellingLoc(SLoc))
return true;
}
return isSpecializedNodeExcluded(N);
}
namespace {
// Sets Height, Parent and Children for each node.
struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
int Id = 0, Depth = 0;
NodeId Parent;
SyntaxTree::Impl &Tree;
PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
NodeId MyId = Id;
Tree.Nodes.emplace_back();
Node &N = Tree.getMutableNode(MyId);
N.Parent = Parent;
N.Depth = Depth;
N.ASTNode = DynTypedNode::create(*ASTNode);
assert(!N.ASTNode.getNodeKind().isNone() &&
"Expected nodes to have a valid kind.");
if (Parent.isValid()) {
Node &P = Tree.getMutableNode(Parent);
P.Children.push_back(MyId);
}
Parent = MyId;
++Id;
++Depth;
return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
}
void PostTraverse(std::tuple<NodeId, NodeId> State) {
NodeId MyId, PreviousParent;
std::tie(MyId, PreviousParent) = State;
assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
Parent = PreviousParent;
--Depth;
Node &N = Tree.getMutableNode(MyId);
N.RightMostDescendant = Id - 1;
assert(N.RightMostDescendant >= 0 &&
N.RightMostDescendant < Tree.getSize() &&
"Rightmost descendant must be a valid tree node.");
if (N.isLeaf())
Tree.Leaves.push_back(MyId);
N.Height = 1;
for (NodeId Child : N.Children)
N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
}
bool TraverseDecl(Decl *D) {
if (isNodeExcluded(Tree.AST.getSourceManager(), D))
return true;
auto SavedState = PreTraverse(D);
RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
PostTraverse(SavedState);
return true;
}
bool TraverseStmt(Stmt *S) {
if (auto *E = dyn_cast_or_null<Expr>(S))
S = E->IgnoreImplicit();
if (isNodeExcluded(Tree.AST.getSourceManager(), S))
return true;
auto SavedState = PreTraverse(S);
RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
PostTraverse(SavedState);
return true;
}
bool TraverseType(QualType T) { return true; }
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
return true;
auto SavedState = PreTraverse(Init);
RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
PostTraverse(SavedState);
return true;
}
};
} // end anonymous namespace
SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
: Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
TypePP.AnonymousTagLocations = false;
}
SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
: Impl(Parent, AST) {
PreorderVisitor PreorderWalker(*this);
PreorderWalker.TraverseDecl(N);
initTree();
}
SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
: Impl(Parent, AST) {
PreorderVisitor PreorderWalker(*this);
PreorderWalker.TraverseStmt(N);
initTree();
}
static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
NodeId Root) {
std::vector<NodeId> Postorder;
std::function<void(NodeId)> Traverse = [&](NodeId Id) {
const Node &N = Tree.getNode(Id);
for (NodeId Child : N.Children)
Traverse(Child);
Postorder.push_back(Id);
};
Traverse(Root);
return Postorder;
}
static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
NodeId Root) {
std::vector<NodeId> Ids;
size_t Expanded = 0;
Ids.push_back(Root);
while (Expanded < Ids.size())
for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
Ids.push_back(Child);
return Ids;
}
void SyntaxTree::Impl::initTree() {
setLeftMostDescendants();
int PostorderId = 0;
PostorderIds.resize(getSize());
std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
for (NodeId Child : getNode(Id).Children)
PostorderTraverse(Child);
PostorderIds[Id] = PostorderId;
++PostorderId;
};
PostorderTraverse(getRootId());
NodesBfs = getSubtreeBfs(*this, getRootId());
}
void SyntaxTree::Impl::setLeftMostDescendants() {
for (NodeId Leaf : Leaves) {
getMutableNode(Leaf).LeftMostDescendant = Leaf;
NodeId Parent, Cur = Leaf;
while ((Parent = getNode(Cur).Parent).isValid() &&
getNode(Parent).Children[0] == Cur) {
Cur = Parent;
getMutableNode(Cur).LeftMostDescendant = Leaf;
}
}
}
int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
return getNode(Id).RightMostDescendant - Id + 1;
}
bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
}
int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
NodeId Parent = getNode(Id).Parent;
if (Parent.isInvalid())
return 0;
const auto &Siblings = getNode(Parent).Children;
int Position = 0;
for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
if (Shifted)
Position += getNode(Siblings[I]).Shift;
if (Siblings[I] == Id) {
Position += I;
return Position;
}
}
llvm_unreachable("Node not found in parent's children.");
}
// Returns the qualified name of ND. If it is subordinate to Context,
// then the prefix of the latter is removed from the returned value.
std::string
SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
const DeclContext *Context) const {
std::string Val = ND->getQualifiedNameAsString();
std::string ContextPrefix;
if (!Context)
return Val;
if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
ContextPrefix = Namespace->getQualifiedNameAsString();
else if (auto *Record = dyn_cast<RecordDecl>(Context))
ContextPrefix = Record->getQualifiedNameAsString();
else if (AST.getLangOpts().CPlusPlus11)
if (auto *Tag = dyn_cast<TagDecl>(Context))
ContextPrefix = Tag->getQualifiedNameAsString();
// Strip the qualifier, if Val refers to something in the current scope.
// But leave one leading ':' in place, so that we know that this is a
// relative path.
if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
Val = Val.substr(ContextPrefix.size() + 1);
return Val;
}
std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
return getRelativeName(ND, ND->getDeclContext());
}
static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
const Stmt *S) {
while (S) {
const auto &Parents = AST.getParents(*S);
if (Parents.empty())
return nullptr;
const auto &P = Parents[0];
if (const auto *D = P.get<Decl>())
return D->getDeclContext();
S = P.get<Stmt>();
}
return nullptr;
}
static std::string getInitializerValue(const CXXCtorInitializer *Init,
const PrintingPolicy &TypePP) {
if (Init->isAnyMemberInitializer())
return std::string(Init->getAnyMember()->getName());
if (Init->isBaseInitializer())
return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
if (Init->isDelegatingInitializer())
return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
llvm_unreachable("Unknown initializer type");
}
std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
return getNodeValue(getNode(Id));
}
std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
const DynTypedNode &DTN = N.ASTNode;
if (auto *S = DTN.get<Stmt>())
return getStmtValue(S);
if (auto *D = DTN.get<Decl>())
return getDeclValue(D);
if (auto *Init = DTN.get<CXXCtorInitializer>())
return getInitializerValue(Init, TypePP);
llvm_unreachable("Fatal: unhandled AST node.\n");
}
std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
std::string Value;
if (auto *V = dyn_cast<ValueDecl>(D))
return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
if (auto *N = dyn_cast<NamedDecl>(D))
Value += getRelativeName(N) + ";";
if (auto *T = dyn_cast<TypedefNameDecl>(D))
return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
if (auto *T = dyn_cast<TypeDecl>(D))
if (T->getTypeForDecl())
Value +=
T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
";";
if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
return std::string(U->getNominatedNamespace()->getName());
if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
CharSourceRange Range(A->getSourceRange(), false);
return std::string(
Lexer::getSourceText(Range, AST.getSourceManager(), AST.getLangOpts()));
}
return Value;
}
std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
if (auto *U = dyn_cast<UnaryOperator>(S))
return std::string(UnaryOperator::getOpcodeStr(U->getOpcode()));
if (auto *B = dyn_cast<BinaryOperator>(S))
return std::string(B->getOpcodeStr());
if (auto *M = dyn_cast<MemberExpr>(S))
return getRelativeName(M->getMemberDecl());
if (auto *I = dyn_cast<IntegerLiteral>(S)) {
SmallString<256> Str;
I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
return std::string(Str.str());
}
if (auto *F = dyn_cast<FloatingLiteral>(S)) {
SmallString<256> Str;
F->getValue().toString(Str);
return std::string(Str.str());
}
if (auto *D = dyn_cast<DeclRefExpr>(S))
return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
if (auto *String = dyn_cast<StringLiteral>(S))
return std::string(String->getString());
if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
return B->getValue() ? "true" : "false";
return "";
}
/// Identifies a node in a subtree by its postorder offset, starting at 1.
struct SNodeId {
int Id = 0;
explicit SNodeId(int Id) : Id(Id) {}
explicit SNodeId() = default;
operator int() const { return Id; }
SNodeId &operator++() { return ++Id, *this; }
SNodeId &operator--() { return --Id, *this; }
SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
};
class Subtree {
private:
/// The parent tree.
const SyntaxTree::Impl &Tree;
/// Maps SNodeIds to original ids.
std::vector<NodeId> RootIds;
/// Maps subtree nodes to their leftmost descendants wtihin the subtree.
std::vector<SNodeId> LeftMostDescendants;
public:
std::vector<SNodeId> KeyRoots;
Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
RootIds = getSubtreePostorder(Tree, SubtreeRoot);
int NumLeaves = setLeftMostDescendants();
computeKeyRoots(NumLeaves);
}
int getSize() const { return RootIds.size(); }
NodeId getIdInRoot(SNodeId Id) const {
assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
return RootIds[Id - 1];
}
const Node &getNode(SNodeId Id) const {
return Tree.getNode(getIdInRoot(Id));
}
SNodeId getLeftMostDescendant(SNodeId Id) const {
assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
return LeftMostDescendants[Id - 1];
}
/// Returns the postorder index of the leftmost descendant in the subtree.
NodeId getPostorderOffset() const {
return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
}
std::string getNodeValue(SNodeId Id) const {
return Tree.getNodeValue(getIdInRoot(Id));
}
private:
/// Returns the number of leafs in the subtree.
int setLeftMostDescendants() {
int NumLeaves = 0;
LeftMostDescendants.resize(getSize());
for (int I = 0; I < getSize(); ++I) {
SNodeId SI(I + 1);
const Node &N = getNode(SI);
NumLeaves += N.isLeaf();
assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
"Postorder traversal in subtree should correspond to traversal in "
"the root tree by a constant offset.");
LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
getPostorderOffset());
}
return NumLeaves;
}
void computeKeyRoots(int Leaves) {
KeyRoots.resize(Leaves);
std::unordered_set<int> Visited;
int K = Leaves - 1;
for (SNodeId I(getSize()); I > 0; --I) {
SNodeId LeftDesc = getLeftMostDescendant(I);
if (Visited.count(LeftDesc))
continue;
assert(K >= 0 && "K should be non-negative");
KeyRoots[K] = I;
Visited.insert(LeftDesc);
--K;
}
}
};
/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
/// Computes an optimal mapping between two trees using only insertion,
/// deletion and update as edit actions (similar to the Levenshtein distance).
class ZhangShashaMatcher {
const ASTDiff::Impl &DiffImpl;
Subtree S1;
Subtree S2;
std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
public:
ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
: DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
size_t(S1.getSize()) + 1);
ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
size_t(S1.getSize()) + 1);
for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
}
}
std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
std::vector<std::pair<NodeId, NodeId>> Matches;
std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
computeTreeDist();
bool RootNodePair = true;
TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
while (!TreePairs.empty()) {
SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
std::tie(LastRow, LastCol) = TreePairs.back();
TreePairs.pop_back();
if (!RootNodePair) {
computeForestDist(LastRow, LastCol);
}
RootNodePair = false;
FirstRow = S1.getLeftMostDescendant(LastRow);
FirstCol = S2.getLeftMostDescendant(LastCol);
Row = LastRow;
Col = LastCol;
while (Row > FirstRow || Col > FirstCol) {
if (Row > FirstRow &&
ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
--Row;
} else if (Col > FirstCol &&
ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
--Col;
} else {
SNodeId LMD1 = S1.getLeftMostDescendant(Row);
SNodeId LMD2 = S2.getLeftMostDescendant(Col);
if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
LMD2 == S2.getLeftMostDescendant(LastCol)) {
NodeId Id1 = S1.getIdInRoot(Row);
NodeId Id2 = S2.getIdInRoot(Col);
assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
"These nodes must not be matched.");
Matches.emplace_back(Id1, Id2);
--Row;
--Col;
} else {
TreePairs.emplace_back(Row, Col);
Row = LMD1;
Col = LMD2;
}
}
}
}
return Matches;
}
private:
/// We use a simple cost model for edit actions, which seems good enough.
/// Simple cost model for edit actions. This seems to make the matching
/// algorithm perform reasonably well.
/// The values range between 0 and 1, or infinity if this edit action should
/// always be avoided.
static constexpr double DeletionCost = 1;
static constexpr double InsertionCost = 1;
double getUpdateCost(SNodeId Id1, SNodeId Id2) {
if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
return std::numeric_limits<double>::max();
return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
}
void computeTreeDist() {
for (SNodeId Id1 : S1.KeyRoots)
for (SNodeId Id2 : S2.KeyRoots)
computeForestDist(Id1, Id2);
}
void computeForestDist(SNodeId Id1, SNodeId Id2) {
assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
ForestDist[LMD1][LMD2] = 0;
for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
if (DLMD1 == LMD1 && DLMD2 == LMD2) {
double UpdateCost = getUpdateCost(D1, D2);
ForestDist[D1][D2] =
std::min({ForestDist[D1 - 1][D2] + DeletionCost,
ForestDist[D1][D2 - 1] + InsertionCost,
ForestDist[D1 - 1][D2 - 1] + UpdateCost});
TreeDist[D1][D2] = ForestDist[D1][D2];
} else {
ForestDist[D1][D2] =
std::min({ForestDist[D1 - 1][D2] + DeletionCost,
ForestDist[D1][D2 - 1] + InsertionCost,
ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
}
}
}
}
};
ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); }
StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
if (auto *ND = ASTNode.get<NamedDecl>()) {
if (ND->getDeclName().isIdentifier())
return ND->getQualifiedNameAsString();
}
return llvm::None;
}
llvm::Optional<StringRef> Node::getIdentifier() const {
if (auto *ND = ASTNode.get<NamedDecl>()) {
if (ND->getDeclName().isIdentifier())
return ND->getName();
}
return llvm::None;
}
namespace {
// Compares nodes by their depth.
struct HeightLess {
const SyntaxTree::Impl &Tree;
HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
bool operator()(NodeId Id1, NodeId Id2) const {
return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
}
};
} // end anonymous namespace
namespace {
// Priority queue for nodes, sorted descendingly by their height.
class PriorityList {
const SyntaxTree::Impl &Tree;
HeightLess Cmp;
std::vector<NodeId> Container;
PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
public:
PriorityList(const SyntaxTree::Impl &Tree)
: Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
void push(NodeId id) { List.push(id); }
std::vector<NodeId> pop() {
int Max = peekMax();
std::vector<NodeId> Result;
if (Max == 0)
return Result;
while (peekMax() == Max) {
Result.push_back(List.top());
List.pop();
}
// TODO this is here to get a stable output, not a good heuristic
llvm::sort(Result);
return Result;
}
int peekMax() const {
if (List.empty())
return 0;
return Tree.getNode(List.top()).Height;
}
void open(NodeId Id) {
for (NodeId Child : Tree.getNode(Id).Children)
push(Child);
}
};
} // end anonymous namespace
bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
const Node &N1 = T1.getNode(Id1);
const Node &N2 = T2.getNode(Id2);
if (N1.Children.size() != N2.Children.size() ||
!isMatchingPossible(Id1, Id2) ||
T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
return false;
for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
if (!identical(N1.Children[Id], N2.Children[Id]))
return false;
return true;
}
bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
}
bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
NodeId Id2) const {
NodeId P1 = T1.getNode(Id1).Parent;
NodeId P2 = T2.getNode(Id2).Parent;
return (P1.isInvalid() && P2.isInvalid()) ||
(P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
}
void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
NodeId Id2) const {
if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
Options.MaxSize)
return;
ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
for (const auto &Tuple : R) {
NodeId Src = Tuple.first;
NodeId Dst = Tuple.second;
if (!M.hasSrc(Src) && !M.hasDst(Dst))
M.link(Src, Dst);
}
}
double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
NodeId Id2) const {
int CommonDescendants = 0;
const Node &N1 = T1.getNode(Id1);
// Count the common descendants, excluding the subtree root.
for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
NodeId Dst = M.getDst(Src);
CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
}
// We need to subtract 1 to get the number of descendants excluding the root.
double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
// CommonDescendants is less than the size of one subtree.
assert(Denominator >= 0 && "Expected non-negative denominator.");
if (Denominator == 0)
return 0;
return CommonDescendants / Denominator;
}
NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
NodeId Candidate;
double HighestSimilarity = 0.0;
for (NodeId Id2 : T2) {
if (!isMatchingPossible(Id1, Id2))
continue;
if (M.hasDst(Id2))
continue;
double Similarity = getJaccardSimilarity(M, Id1, Id2);
if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
HighestSimilarity = Similarity;
Candidate = Id2;
}
}
return Candidate;
}
void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
for (NodeId Id1 : Postorder) {
if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
!M.hasDst(T2.getRootId())) {
if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
M.link(T1.getRootId(), T2.getRootId());
addOptimalMapping(M, T1.getRootId(), T2.getRootId());
}
break;
}
bool Matched = M.hasSrc(Id1);
const Node &N1 = T1.getNode(Id1);
bool MatchedChildren = llvm::any_of(
N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
if (Matched || !MatchedChildren)
continue;
NodeId Id2 = findCandidate(M, Id1);
if (Id2.isValid()) {
M.link(Id1, Id2);
addOptimalMapping(M, Id1, Id2);
}
}
}
Mapping ASTDiff::Impl::matchTopDown() const {
PriorityList L1(T1);
PriorityList L2(T2);
Mapping M(T1.getSize() + T2.getSize());
L1.push(T1.getRootId());
L2.push(T2.getRootId());
int Max1, Max2;
while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
Options.MinHeight) {
if (Max1 > Max2) {
for (NodeId Id : L1.pop())
L1.open(Id);
continue;
}
if (Max2 > Max1) {
for (NodeId Id : L2.pop())
L2.open(Id);
continue;
}
std::vector<NodeId> H1, H2;
H1 = L1.pop();
H2 = L2.pop();
for (NodeId Id1 : H1) {
for (NodeId Id2 : H2) {
if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
M.link(Id1 + I, Id2 + I);
}
}
}
for (NodeId Id1 : H1) {
if (!M.hasSrc(Id1))
L1.open(Id1);
}
for (NodeId Id2 : H2) {
if (!M.hasDst(Id2))
L2.open(Id2);
}
}
return M;
}
ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
const ComparisonOptions &Options)
: T1(T1), T2(T2), Options(Options) {
computeMapping();
computeChangeKinds(TheMapping);
}
void ASTDiff::Impl::computeMapping() {
TheMapping = matchTopDown();
if (Options.StopAfterTopDown)
return;
matchBottomUp(TheMapping);
}
void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
for (NodeId Id1 : T1) {
if (!M.hasSrc(Id1)) {
T1.getMutableNode(Id1).Change = Delete;
T1.getMutableNode(Id1).Shift -= 1;
}
}
for (NodeId Id2 : T2) {
if (!M.hasDst(Id2)) {
T2.getMutableNode(Id2).Change = Insert;
T2.getMutableNode(Id2).Shift -= 1;
}
}
for (NodeId Id1 : T1.NodesBfs) {
NodeId Id2 = M.getDst(Id1);
if (Id2.isInvalid())
continue;
if (!haveSameParents(M, Id1, Id2) ||
T1.findPositionInParent(Id1, true) !=
T2.findPositionInParent(Id2, true)) {
T1.getMutableNode(Id1).Shift -= 1;
T2.getMutableNode(Id2).Shift -= 1;
}
}
for (NodeId Id2 : T2.NodesBfs) {
NodeId Id1 = M.getSrc(Id2);
if (Id1.isInvalid())
continue;
Node &N1 = T1.getMutableNode(Id1);
Node &N2 = T2.getMutableNode(Id2);
if (Id1.isInvalid())
continue;
if (!haveSameParents(M, Id1, Id2) ||
T1.findPositionInParent(Id1, true) !=
T2.findPositionInParent(Id2, true)) {
N1.Change = N2.Change = Move;
}
if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
}
}
}
ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
const ComparisonOptions &Options)
: DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
ASTDiff::~ASTDiff() = default;
NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
}
SyntaxTree::SyntaxTree(ASTContext &AST)
: TreeImpl(std::make_unique<SyntaxTree::Impl>(
this, AST.getTranslationUnitDecl(), AST)) {}
SyntaxTree::~SyntaxTree() = default;
const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
const Node &SyntaxTree::getNode(NodeId Id) const {
return TreeImpl->getNode(Id);
}
int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
SyntaxTree::PreorderIterator SyntaxTree::begin() const {
return TreeImpl->begin();
}
SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
int SyntaxTree::findPositionInParent(NodeId Id) const {
return TreeImpl->findPositionInParent(Id);
}
std::pair<unsigned, unsigned>
SyntaxTree::getSourceRangeOffsets(const Node &N) const {
const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
SourceRange Range = N.ASTNode.getSourceRange();
SourceLocation BeginLoc = Range.getBegin();
SourceLocation EndLoc = Lexer::getLocForEndOfToken(
Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
if (ThisExpr->isImplicit())
EndLoc = BeginLoc;
}
unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
return {Begin, End};
}
std::string SyntaxTree::getNodeValue(NodeId Id) const {
return TreeImpl->getNodeValue(Id);
}
std::string SyntaxTree::getNodeValue(const Node &N) const {
return TreeImpl->getNodeValue(N);
}
} // end namespace diff
} // end namespace clang