CallEvent.cpp 50.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines CallEvent and its subclasses, which represent path-
/// sensitive instances of different kinds of function and method calls
/// (C, C++, and Objective-C).
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/CrossTU/CrossTranslationUnit.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <utility>

#define DEBUG_TYPE "static-analyzer-call-event"

using namespace clang;
using namespace ento;

QualType CallEvent::getResultType() const {
  ASTContext &Ctx = getState()->getStateManager().getContext();
  const Expr *E = getOriginExpr();
  if (!E)
    return Ctx.VoidTy;
  assert(E);

  QualType ResultTy = E->getType();

  // A function that returns a reference to 'int' will have a result type
  // of simply 'int'. Check the origin expr's value kind to recover the
  // proper type.
  switch (E->getValueKind()) {
  case VK_LValue:
    ResultTy = Ctx.getLValueReferenceType(ResultTy);
    break;
  case VK_XValue:
    ResultTy = Ctx.getRValueReferenceType(ResultTy);
    break;
  case VK_RValue:
    // No adjustment is necessary.
    break;
  }

  return ResultTy;
}

static bool isCallback(QualType T) {
  // If a parameter is a block or a callback, assume it can modify pointer.
  if (T->isBlockPointerType() ||
      T->isFunctionPointerType() ||
      T->isObjCSelType())
    return true;

  // Check if a callback is passed inside a struct (for both, struct passed by
  // reference and by value). Dig just one level into the struct for now.

  if (T->isAnyPointerType() || T->isReferenceType())
    T = T->getPointeeType();

  if (const RecordType *RT = T->getAsStructureType()) {
    const RecordDecl *RD = RT->getDecl();
    for (const auto *I : RD->fields()) {
      QualType FieldT = I->getType();
      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
        return true;
    }
  }
  return false;
}

static bool isVoidPointerToNonConst(QualType T) {
  if (const auto *PT = T->getAs<PointerType>()) {
    QualType PointeeTy = PT->getPointeeType();
    if (PointeeTy.isConstQualified())
      return false;
    return PointeeTy->isVoidType();
  } else
    return false;
}

bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
  unsigned NumOfArgs = getNumArgs();

  // If calling using a function pointer, assume the function does not
  // satisfy the callback.
  // TODO: We could check the types of the arguments here.
  if (!getDecl())
    return false;

  unsigned Idx = 0;
  for (CallEvent::param_type_iterator I = param_type_begin(),
                                      E = param_type_end();
       I != E && Idx < NumOfArgs; ++I, ++Idx) {
    // If the parameter is 0, it's harmless.
    if (getArgSVal(Idx).isZeroConstant())
      continue;

    if (Condition(*I))
      return true;
  }
  return false;
}

bool CallEvent::hasNonZeroCallbackArg() const {
  return hasNonNullArgumentsWithType(isCallback);
}

bool CallEvent::hasVoidPointerToNonConstArg() const {
  return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
}

bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
  const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
  if (!FD)
    return false;

  return CheckerContext::isCLibraryFunction(FD, FunctionName);
}

AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
  const Decl *D = getDecl();
  if (!D)
    return nullptr;

  AnalysisDeclContext *ADC =
      LCtx->getAnalysisDeclContext()->getManager()->getContext(D);

  return ADC;
}

const StackFrameContext *
CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
  AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
  if (!ADC)
    return nullptr;

  const Expr *E = getOriginExpr();
  if (!E)
    return nullptr;

  // Recover CFG block via reverse lookup.
  // TODO: If we were to keep CFG element information as part of the CallEvent
  // instead of doing this reverse lookup, we would be able to build the stack
  // frame for non-expression-based calls, and also we wouldn't need the reverse
  // lookup.
  CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
  const CFGBlock *B = Map->getBlock(E);
  assert(B);

  // Also recover CFG index by scanning the CFG block.
  unsigned Idx = 0, Sz = B->size();
  for (; Idx < Sz; ++Idx)
    if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
      if (StmtElem->getStmt() == E)
        break;
  assert(Idx < Sz);

  return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
}

const ParamVarRegion
*CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
  const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
  // We cannot construct a VarRegion without a stack frame.
  if (!SFC)
    return nullptr;

  const ParamVarRegion *PVR =
    State->getStateManager().getRegionManager().getParamVarRegion(
        getOriginExpr(), Index, SFC);
  return PVR;
}

/// Returns true if a type is a pointer-to-const or reference-to-const
/// with no further indirection.
static bool isPointerToConst(QualType Ty) {
  QualType PointeeTy = Ty->getPointeeType();
  if (PointeeTy == QualType())
    return false;
  if (!PointeeTy.isConstQualified())
    return false;
  if (PointeeTy->isAnyPointerType())
    return false;
  return true;
}

// Try to retrieve the function declaration and find the function parameter
// types which are pointers/references to a non-pointer const.
// We will not invalidate the corresponding argument regions.
static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
                                 const CallEvent &Call) {
  unsigned Idx = 0;
  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
                                      E = Call.param_type_end();
       I != E; ++I, ++Idx) {
    if (isPointerToConst(*I))
      PreserveArgs.insert(Idx);
  }
}

ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
                                             ProgramStateRef Orig) const {
  ProgramStateRef Result = (Orig ? Orig : getState());

  // Don't invalidate anything if the callee is marked pure/const.
  if (const Decl *callee = getDecl())
    if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
      return Result;

  SmallVector<SVal, 8> ValuesToInvalidate;
  RegionAndSymbolInvalidationTraits ETraits;

  getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);

  // Indexes of arguments whose values will be preserved by the call.
  llvm::SmallSet<unsigned, 4> PreserveArgs;
  if (!argumentsMayEscape())
    findPtrToConstParams(PreserveArgs, *this);

  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
    // Mark this region for invalidation.  We batch invalidate regions
    // below for efficiency.
    if (PreserveArgs.count(Idx))
      if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
        ETraits.setTrait(MR->getBaseRegion(),
                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
        // TODO: Factor this out + handle the lower level const pointers.

    ValuesToInvalidate.push_back(getArgSVal(Idx));

    // If a function accepts an object by argument (which would of course be a
    // temporary that isn't lifetime-extended), invalidate the object itself,
    // not only other objects reachable from it. This is necessary because the
    // destructor has access to the temporary object after the call.
    // TODO: Support placement arguments once we start
    // constructing them directly.
    // TODO: This is unnecessary when there's no destructor, but that's
    // currently hard to figure out.
    if (getKind() != CE_CXXAllocator)
      if (isArgumentConstructedDirectly(Idx))
        if (auto AdjIdx = getAdjustedParameterIndex(Idx))
          if (const TypedValueRegion *TVR =
                  getParameterLocation(*AdjIdx, BlockCount))
            ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
  }

  // Invalidate designated regions using the batch invalidation API.
  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
  //  global variables.
  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
                                   BlockCount, getLocationContext(),
                                   /*CausedByPointerEscape*/ true,
                                   /*Symbols=*/nullptr, this, &ETraits);
}

ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
                                        const ProgramPointTag *Tag) const {
  if (const Expr *E = getOriginExpr()) {
    if (IsPreVisit)
      return PreStmt(E, getLocationContext(), Tag);
    return PostStmt(E, getLocationContext(), Tag);
  }

  const Decl *D = getDecl();
  assert(D && "Cannot get a program point without a statement or decl");

  SourceLocation Loc = getSourceRange().getBegin();
  if (IsPreVisit)
    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
}

bool CallEvent::isCalled(const CallDescription &CD) const {
  // FIXME: Add ObjC Message support.
  if (getKind() == CE_ObjCMessage)
    return false;

  const IdentifierInfo *II = getCalleeIdentifier();
  if (!II)
    return false;
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
  if (!FD)
    return false;

  if (CD.Flags & CDF_MaybeBuiltin) {
    return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
           (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
           (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
  }

  if (!CD.IsLookupDone) {
    CD.IsLookupDone = true;
    CD.II = &getState()->getStateManager().getContext().Idents.get(
        CD.getFunctionName());
  }

  if (II != CD.II)
    return false;

  // If CallDescription provides prefix names, use them to improve matching
  // accuracy.
  if (CD.QualifiedName.size() > 1 && FD) {
    const DeclContext *Ctx = FD->getDeclContext();
    // See if we'll be able to match them all.
    size_t NumUnmatched = CD.QualifiedName.size() - 1;
    for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
      if (NumUnmatched == 0)
        break;

      if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
        if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
          --NumUnmatched;
        continue;
      }

      if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
        if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
          --NumUnmatched;
        continue;
      }
    }

    if (NumUnmatched > 0)
      return false;
  }

  return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
         (!CD.RequiredParams || CD.RequiredParams == parameters().size());
}

SVal CallEvent::getArgSVal(unsigned Index) const {
  const Expr *ArgE = getArgExpr(Index);
  if (!ArgE)
    return UnknownVal();
  return getSVal(ArgE);
}

SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
  const Expr *ArgE = getArgExpr(Index);
  if (!ArgE)
    return {};
  return ArgE->getSourceRange();
}

SVal CallEvent::getReturnValue() const {
  const Expr *E = getOriginExpr();
  if (!E)
    return UndefinedVal();
  return getSVal(E);
}

LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }

void CallEvent::dump(raw_ostream &Out) const {
  ASTContext &Ctx = getState()->getStateManager().getContext();
  if (const Expr *E = getOriginExpr()) {
    E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
    Out << "\n";
    return;
  }

  if (const Decl *D = getDecl()) {
    Out << "Call to ";
    D->print(Out, Ctx.getPrintingPolicy());
    return;
  }

  Out << "Unknown call (type " << getKindAsString() << ")";
}

bool CallEvent::isCallStmt(const Stmt *S) {
  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
                          || isa<CXXConstructExpr>(S)
                          || isa<CXXNewExpr>(S);
}

QualType CallEvent::getDeclaredResultType(const Decl *D) {
  assert(D);
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
    return FD->getReturnType();
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
    return MD->getReturnType();
  if (const auto *BD = dyn_cast<BlockDecl>(D)) {
    // Blocks are difficult because the return type may not be stored in the
    // BlockDecl itself. The AST should probably be enhanced, but for now we
    // just do what we can.
    // If the block is declared without an explicit argument list, the
    // signature-as-written just includes the return type, not the entire
    // function type.
    // FIXME: All blocks should have signatures-as-written, even if the return
    // type is inferred. (That's signified with a dependent result type.)
    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
      QualType Ty = TSI->getType();
      if (const FunctionType *FT = Ty->getAs<FunctionType>())
        Ty = FT->getReturnType();
      if (!Ty->isDependentType())
        return Ty;
    }

    return {};
  }

  llvm_unreachable("unknown callable kind");
}

bool CallEvent::isVariadic(const Decl *D) {
  assert(D);

  if (const auto *FD = dyn_cast<FunctionDecl>(D))
    return FD->isVariadic();
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
    return MD->isVariadic();
  if (const auto *BD = dyn_cast<BlockDecl>(D))
    return BD->isVariadic();

  llvm_unreachable("unknown callable kind");
}

static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
                                         CallEvent::BindingsTy &Bindings,
                                         SValBuilder &SVB,
                                         const CallEvent &Call,
                                         ArrayRef<ParmVarDecl*> parameters) {
  MemRegionManager &MRMgr = SVB.getRegionManager();

  // If the function has fewer parameters than the call has arguments, we simply
  // do not bind any values to them.
  unsigned NumArgs = Call.getNumArgs();
  unsigned Idx = 0;
  ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
  for (; I != E && Idx < NumArgs; ++I, ++Idx) {
    assert(*I && "Formal parameter has no decl?");

    // TODO: Support allocator calls.
    if (Call.getKind() != CE_CXXAllocator)
      if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
        continue;

    // TODO: Allocators should receive the correct size and possibly alignment,
    // determined in compile-time but not represented as arg-expressions,
    // which makes getArgSVal() fail and return UnknownVal.
    SVal ArgVal = Call.getArgSVal(Idx);
    if (!ArgVal.isUnknown()) {
      Loc ParamLoc = SVB.makeLoc(
          MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
    }
  }

  // FIXME: Variadic arguments are not handled at all right now.
}

const ConstructionContext *CallEvent::getConstructionContext() const {
  const StackFrameContext *StackFrame = getCalleeStackFrame(0);
  if (!StackFrame)
    return nullptr;

  const CFGElement Element = StackFrame->getCallSiteCFGElement();
  if (const auto Ctor = Element.getAs<CFGConstructor>()) {
    return Ctor->getConstructionContext();
  }

  if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
    return RecCall->getConstructionContext();
  }

  return nullptr;
}

Optional<SVal>
CallEvent::getReturnValueUnderConstruction() const {
  const auto *CC = getConstructionContext();
  if (!CC)
    return None;

  EvalCallOptions CallOpts;
  ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
  SVal RetVal =
    Engine.computeObjectUnderConstruction(getOriginExpr(), getState(),
                                          getLocationContext(), CC, CallOpts);
  return RetVal;
}

ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
  const FunctionDecl *D = getDecl();
  if (!D)
    return None;
  return D->parameters();
}

RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
  const FunctionDecl *FD = getDecl();
  if (!FD)
    return {};

  // Note that the AnalysisDeclContext will have the FunctionDecl with
  // the definition (if one exists).
  AnalysisDeclContext *AD =
    getLocationContext()->getAnalysisDeclContext()->
    getManager()->getContext(FD);
  bool IsAutosynthesized;
  Stmt* Body = AD->getBody(IsAutosynthesized);
  LLVM_DEBUG({
    if (IsAutosynthesized)
      llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
                   << "\n";
  });
  if (Body) {
    const Decl* Decl = AD->getDecl();
    return RuntimeDefinition(Decl);
  }

  ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
  AnalyzerOptions &Opts = Engine.getAnalysisManager().options;

  // Try to get CTU definition only if CTUDir is provided.
  if (!Opts.IsNaiveCTUEnabled)
    return {};

  cross_tu::CrossTranslationUnitContext &CTUCtx =
      *Engine.getCrossTranslationUnitContext();
  llvm::Expected<const FunctionDecl *> CTUDeclOrError =
      CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
                                  Opts.DisplayCTUProgress);

  if (!CTUDeclOrError) {
    handleAllErrors(CTUDeclOrError.takeError(),
                    [&](const cross_tu::IndexError &IE) {
                      CTUCtx.emitCrossTUDiagnostics(IE);
                    });
    return {};
  }

  return RuntimeDefinition(*CTUDeclOrError);
}

void AnyFunctionCall::getInitialStackFrameContents(
                                        const StackFrameContext *CalleeCtx,
                                        BindingsTy &Bindings) const {
  const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               D->parameters());
}

bool AnyFunctionCall::argumentsMayEscape() const {
  if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
    return true;

  const FunctionDecl *D = getDecl();
  if (!D)
    return true;

  const IdentifierInfo *II = D->getIdentifier();
  if (!II)
    return false;

  // This set of "escaping" APIs is

  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
  //   value into thread local storage. The value can later be retrieved with
  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
  //   parameter is 'const void *', the region escapes through the call.
  if (II->isStr("pthread_setspecific"))
    return true;

  // - xpc_connection_set_context stores a value which can be retrieved later
  //   with xpc_connection_get_context.
  if (II->isStr("xpc_connection_set_context"))
    return true;

  // - funopen - sets a buffer for future IO calls.
  if (II->isStr("funopen"))
    return true;

  // - __cxa_demangle - can reallocate memory and can return the pointer to
  // the input buffer.
  if (II->isStr("__cxa_demangle"))
    return true;

  StringRef FName = II->getName();

  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
  //   buffer even if it is const.
  if (FName.endswith("NoCopy"))
    return true;

  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
  //   be deallocated by NSMapRemove.
  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
    return true;

  // - Many CF containers allow objects to escape through custom
  //   allocators/deallocators upon container construction. (PR12101)
  if (FName.startswith("CF") || FName.startswith("CG")) {
    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
  }

  return false;
}

const FunctionDecl *SimpleFunctionCall::getDecl() const {
  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
  if (D)
    return D;

  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
}

const FunctionDecl *CXXInstanceCall::getDecl() const {
  const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
  if (!CE)
    return AnyFunctionCall::getDecl();

  const FunctionDecl *D = CE->getDirectCallee();
  if (D)
    return D;

  return getSVal(CE->getCallee()).getAsFunctionDecl();
}

void CXXInstanceCall::getExtraInvalidatedValues(
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
  SVal ThisVal = getCXXThisVal();
  Values.push_back(ThisVal);

  // Don't invalidate if the method is const and there are no mutable fields.
  if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
    if (!D->isConst())
      return;
    // Get the record decl for the class of 'This'. D->getParent() may return a
    // base class decl, rather than the class of the instance which needs to be
    // checked for mutable fields.
    // TODO: We might as well look at the dynamic type of the object.
    const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
    QualType T = Ex->getType();
    if (T->isPointerType()) // Arrow or implicit-this syntax?
      T = T->getPointeeType();
    const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
    assert(ParentRecord);
    if (ParentRecord->hasMutableFields())
      return;
    // Preserve CXXThis.
    const MemRegion *ThisRegion = ThisVal.getAsRegion();
    if (!ThisRegion)
      return;

    ETraits->setTrait(ThisRegion->getBaseRegion(),
                      RegionAndSymbolInvalidationTraits::TK_PreserveContents);
  }
}

SVal CXXInstanceCall::getCXXThisVal() const {
  const Expr *Base = getCXXThisExpr();
  // FIXME: This doesn't handle an overloaded ->* operator.
  if (!Base)
    return UnknownVal();

  SVal ThisVal = getSVal(Base);
  assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
  return ThisVal;
}

RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
  // Do we have a decl at all?
  const Decl *D = getDecl();
  if (!D)
    return {};

  // If the method is non-virtual, we know we can inline it.
  const auto *MD = cast<CXXMethodDecl>(D);
  if (!MD->isVirtual())
    return AnyFunctionCall::getRuntimeDefinition();

  // Do we know the implicit 'this' object being called?
  const MemRegion *R = getCXXThisVal().getAsRegion();
  if (!R)
    return {};

  // Do we know anything about the type of 'this'?
  DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
  if (!DynType.isValid())
    return {};

  // Is the type a C++ class? (This is mostly a defensive check.)
  QualType RegionType = DynType.getType()->getPointeeType();
  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");

  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
  if (!RD || !RD->hasDefinition())
    return {};

  // Find the decl for this method in that class.
  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
  if (!Result) {
    // We might not even get the original statically-resolved method due to
    // some particularly nasty casting (e.g. casts to sister classes).
    // However, we should at least be able to search up and down our own class
    // hierarchy, and some real bugs have been caught by checking this.
    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");

    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
    // the static type. However, because we currently don't update
    // DynamicTypeInfo when an object is cast, we can't actually be sure the
    // DynamicTypeInfo is up to date. This assert should be re-enabled once
    // this is fixed. <rdar://problem/12287087>
    //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");

    return {};
  }

  // Does the decl that we found have an implementation?
  const FunctionDecl *Definition;
  if (!Result->hasBody(Definition)) {
    if (!DynType.canBeASubClass())
      return AnyFunctionCall::getRuntimeDefinition();
    return {};
  }

  // We found a definition. If we're not sure that this devirtualization is
  // actually what will happen at runtime, make sure to provide the region so
  // that ExprEngine can decide what to do with it.
  if (DynType.canBeASubClass())
    return RuntimeDefinition(Definition, R->StripCasts());
  return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
}

void CXXInstanceCall::getInitialStackFrameContents(
                                            const StackFrameContext *CalleeCtx,
                                            BindingsTy &Bindings) const {
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);

  // Handle the binding of 'this' in the new stack frame.
  SVal ThisVal = getCXXThisVal();
  if (!ThisVal.isUnknown()) {
    ProgramStateManager &StateMgr = getState()->getStateManager();
    SValBuilder &SVB = StateMgr.getSValBuilder();

    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);

    // If we devirtualized to a different member function, we need to make sure
    // we have the proper layering of CXXBaseObjectRegions.
    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
      ASTContext &Ctx = SVB.getContext();
      const CXXRecordDecl *Class = MD->getParent();
      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));

      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
      bool Failed;
      ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
      if (Failed) {
        // We might have suffered some sort of placement new earlier, so
        // we're constructing in a completely unexpected storage.
        // Fall back to a generic pointer cast for this-value.
        const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
        const CXXRecordDecl *StaticClass = StaticMD->getParent();
        QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
        ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
      }
    }

    if (!ThisVal.isUnknown())
      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  }
}

const Expr *CXXMemberCall::getCXXThisExpr() const {
  return getOriginExpr()->getImplicitObjectArgument();
}

RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
  // id-expression in the class member access expression is a qualified-id,
  // that function is called. Otherwise, its final overrider in the dynamic type
  // of the object expression is called.
  if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
    if (ME->hasQualifier())
      return AnyFunctionCall::getRuntimeDefinition();

  return CXXInstanceCall::getRuntimeDefinition();
}

const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
  return getOriginExpr()->getArg(0);
}

const BlockDataRegion *BlockCall::getBlockRegion() const {
  const Expr *Callee = getOriginExpr()->getCallee();
  const MemRegion *DataReg = getSVal(Callee).getAsRegion();

  return dyn_cast_or_null<BlockDataRegion>(DataReg);
}

ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
  const BlockDecl *D = getDecl();
  if (!D)
    return None;
  return D->parameters();
}

void BlockCall::getExtraInvalidatedValues(ValueList &Values,
                  RegionAndSymbolInvalidationTraits *ETraits) const {
  // FIXME: This also needs to invalidate captured globals.
  if (const MemRegion *R = getBlockRegion())
    Values.push_back(loc::MemRegionVal(R));
}

void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  ArrayRef<ParmVarDecl*> Params;
  if (isConversionFromLambda()) {
    auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Params = LambdaOperatorDecl->parameters();

    // For blocks converted from a C++ lambda, the callee declaration is the
    // operator() method on the lambda so we bind "this" to
    // the lambda captured by the block.
    const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
    SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
    Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  } else {
    Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
  }

  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               Params);
}

SVal AnyCXXConstructorCall::getCXXThisVal() const {
  if (Data)
    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
  return UnknownVal();
}

void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
                           RegionAndSymbolInvalidationTraits *ETraits) const {
  SVal V = getCXXThisVal();
  if (SymbolRef Sym = V.getAsSymbol(true))
    ETraits->setTrait(Sym,
                      RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
  Values.push_back(V);
}

void AnyCXXConstructorCall::getInitialStackFrameContents(
                                             const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);

  SVal ThisVal = getCXXThisVal();
  if (!ThisVal.isUnknown()) {
    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  }
}

const StackFrameContext *
CXXInheritedConstructorCall::getInheritingStackFrame() const {
  const StackFrameContext *SFC = getLocationContext()->getStackFrame();
  while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
    SFC = SFC->getParent()->getStackFrame();
  return SFC;
}

SVal CXXDestructorCall::getCXXThisVal() const {
  if (Data)
    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
  return UnknownVal();
}

RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
  // Base destructors are always called non-virtually.
  // Skip CXXInstanceCall's devirtualization logic in this case.
  if (isBaseDestructor())
    return AnyFunctionCall::getRuntimeDefinition();

  return CXXInstanceCall::getRuntimeDefinition();
}

ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
  const ObjCMethodDecl *D = getDecl();
  if (!D)
    return None;
  return D->parameters();
}

void ObjCMethodCall::getExtraInvalidatedValues(
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {

  // If the method call is a setter for property known to be backed by
  // an instance variable, don't invalidate the entire receiver, just
  // the storage for that instance variable.
  if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
    if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
      SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
      if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
        ETraits->setTrait(
          IvarRegion,
          RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
        ETraits->setTrait(
          IvarRegion,
          RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
        Values.push_back(IvarLVal);
      }
      return;
    }
  }

  Values.push_back(getReceiverSVal());
}

SVal ObjCMethodCall::getReceiverSVal() const {
  // FIXME: Is this the best way to handle class receivers?
  if (!isInstanceMessage())
    return UnknownVal();

  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
    return getSVal(RecE);

  // An instance message with no expression means we are sending to super.
  // In this case the object reference is the same as 'self'.
  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
  SVal SelfVal = getState()->getSelfSVal(getLocationContext());
  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
  return SelfVal;
}

bool ObjCMethodCall::isReceiverSelfOrSuper() const {
  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
      return true;

  if (!isInstanceMessage())
    return false;

  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
  SVal SelfVal = getState()->getSelfSVal(getLocationContext());

  return (RecVal == SelfVal);
}

SourceRange ObjCMethodCall::getSourceRange() const {
  switch (getMessageKind()) {
  case OCM_Message:
    return getOriginExpr()->getSourceRange();
  case OCM_PropertyAccess:
  case OCM_Subscript:
    return getContainingPseudoObjectExpr()->getSourceRange();
  }
  llvm_unreachable("unknown message kind");
}

using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;

const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
  assert(Data && "Lazy lookup not yet performed.");
  assert(getMessageKind() != OCM_Message && "Explicit message send.");
  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
}

static const Expr *
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
  const Expr *Syntactic = POE->getSyntacticForm();

  // This handles the funny case of assigning to the result of a getter.
  // This can happen if the getter returns a non-const reference.
  if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
    Syntactic = BO->getLHS();

  return Syntactic;
}

ObjCMessageKind ObjCMethodCall::getMessageKind() const {
  if (!Data) {
    // Find the parent, ignoring implicit casts.
    const ParentMap &PM = getLocationContext()->getParentMap();
    const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());

    // Check if parent is a PseudoObjectExpr.
    if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
      const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);

      ObjCMessageKind K;
      switch (Syntactic->getStmtClass()) {
      case Stmt::ObjCPropertyRefExprClass:
        K = OCM_PropertyAccess;
        break;
      case Stmt::ObjCSubscriptRefExprClass:
        K = OCM_Subscript;
        break;
      default:
        // FIXME: Can this ever happen?
        K = OCM_Message;
        break;
      }

      if (K != OCM_Message) {
        const_cast<ObjCMethodCall *>(this)->Data
          = ObjCMessageDataTy(POE, K).getOpaqueValue();
        assert(getMessageKind() == K);
        return K;
      }
    }

    const_cast<ObjCMethodCall *>(this)->Data
      = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
    assert(getMessageKind() == OCM_Message);
    return OCM_Message;
  }

  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
  if (!Info.getPointer())
    return OCM_Message;
  return static_cast<ObjCMessageKind>(Info.getInt());
}

const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
  // Look for properties accessed with property syntax (foo.bar = ...)
  if (getMessageKind() == OCM_PropertyAccess) {
    const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
    assert(POE && "Property access without PseudoObjectExpr?");

    const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
    auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);

    if (RefExpr->isExplicitProperty())
      return RefExpr->getExplicitProperty();
  }

  // Look for properties accessed with method syntax ([foo setBar:...]).
  const ObjCMethodDecl *MD = getDecl();
  if (!MD || !MD->isPropertyAccessor())
    return nullptr;

  // Note: This is potentially quite slow.
  return MD->findPropertyDecl();
}

bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
                                             Selector Sel) const {
  assert(IDecl);
  AnalysisManager &AMgr =
      getState()->getStateManager().getOwningEngine().getAnalysisManager();
  // If the class interface is declared inside the main file, assume it is not
  // subcassed.
  // TODO: It could actually be subclassed if the subclass is private as well.
  // This is probably very rare.
  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
  if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
    return false;

  // Assume that property accessors are not overridden.
  if (getMessageKind() == OCM_PropertyAccess)
    return false;

  // We assume that if the method is public (declared outside of main file) or
  // has a parent which publicly declares the method, the method could be
  // overridden in a subclass.

  // Find the first declaration in the class hierarchy that declares
  // the selector.
  ObjCMethodDecl *D = nullptr;
  while (true) {
    D = IDecl->lookupMethod(Sel, true);

    // Cannot find a public definition.
    if (!D)
      return false;

    // If outside the main file,
    if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
      return true;

    if (D->isOverriding()) {
      // Search in the superclass on the next iteration.
      IDecl = D->getClassInterface();
      if (!IDecl)
        return false;

      IDecl = IDecl->getSuperClass();
      if (!IDecl)
        return false;

      continue;
    }

    return false;
  };

  llvm_unreachable("The while loop should always terminate.");
}

static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
  if (!MD)
    return MD;

  // Find the redeclaration that defines the method.
  if (!MD->hasBody()) {
    for (auto I : MD->redecls())
      if (I->hasBody())
        MD = cast<ObjCMethodDecl>(I);
  }
  return MD;
}

struct PrivateMethodKey {
  const ObjCInterfaceDecl *Interface;
  Selector LookupSelector;
  bool IsClassMethod;
};

namespace llvm {
template <> struct DenseMapInfo<PrivateMethodKey> {
  using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
  using SelectorInfo = DenseMapInfo<Selector>;

  static inline PrivateMethodKey getEmptyKey() {
    return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
  }

  static inline PrivateMethodKey getTombstoneKey() {
    return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
            true};
  }

  static unsigned getHashValue(const PrivateMethodKey &Key) {
    return llvm::hash_combine(
        llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
        llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
        Key.IsClassMethod);
  }

  static bool isEqual(const PrivateMethodKey &LHS,
                      const PrivateMethodKey &RHS) {
    return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
           SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
           LHS.IsClassMethod == RHS.IsClassMethod;
  }
};
} // end namespace llvm

static const ObjCMethodDecl *
lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
                        Selector LookupSelector, bool InstanceMethod) {
  // Repeatedly calling lookupPrivateMethod() is expensive, especially
  // when in many cases it returns null.  We cache the results so
  // that repeated queries on the same ObjCIntefaceDecl and Selector
  // don't incur the same cost.  On some test cases, we can see the
  // same query being issued thousands of times.
  //
  // NOTE: This cache is essentially a "global" variable, but it
  // only gets lazily created when we get here.  The value of the
  // cache probably comes from it being global across ExprEngines,
  // where the same queries may get issued.  If we are worried about
  // concurrency, or possibly loading/unloading ASTs, etc., we may
  // need to revisit this someday.  In terms of memory, this table
  // stays around until clang quits, which also may be bad if we
  // need to release memory.
  using PrivateMethodCache =
      llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;

  static PrivateMethodCache PMC;
  Optional<const ObjCMethodDecl *> &Val =
      PMC[{Interface, LookupSelector, InstanceMethod}];

  // Query lookupPrivateMethod() if the cache does not hit.
  if (!Val.hasValue()) {
    Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);

    if (!*Val) {
      // Query 'lookupMethod' as a backup.
      Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
    }
  }

  return Val.getValue();
}

RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
  const ObjCMessageExpr *E = getOriginExpr();
  assert(E);
  Selector Sel = E->getSelector();

  if (E->isInstanceMessage()) {
    // Find the receiver type.
    const ObjCObjectType *ReceiverT = nullptr;
    bool CanBeSubClassed = false;
    bool LookingForInstanceMethod = true;
    QualType SupersType = E->getSuperType();
    const MemRegion *Receiver = nullptr;

    if (!SupersType.isNull()) {
      // The receiver is guaranteed to be 'super' in this case.
      // Super always means the type of immediate predecessor to the method
      // where the call occurs.
      ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
    } else {
      Receiver = getReceiverSVal().getAsRegion();
      if (!Receiver)
        return {};

      DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
      if (!DTI.isValid()) {
        assert(isa<AllocaRegion>(Receiver) &&
               "Unhandled untyped region class!");
        return {};
      }

      QualType DynType = DTI.getType();
      CanBeSubClassed = DTI.canBeASubClass();

      const auto *ReceiverDynT =
          dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());

      if (ReceiverDynT) {
        ReceiverT = ReceiverDynT->getObjectType();

        // It can be actually class methods called with Class object as a
        // receiver. This type of messages is treated by the compiler as
        // instance (not class).
        if (ReceiverT->isObjCClass()) {

          SVal SelfVal = getState()->getSelfSVal(getLocationContext());
          // For [self classMethod], return compiler visible declaration.
          if (Receiver == SelfVal.getAsRegion()) {
            return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
          }

          // Otherwise, let's check if we know something about the type
          // inside of this class object.
          if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
            DynamicTypeInfo DTI =
                getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
            if (DTI.isValid()) {
              // Let's use this type for lookup.
              ReceiverT =
                  cast<ObjCObjectType>(DTI.getType().getCanonicalType());

              CanBeSubClassed = DTI.canBeASubClass();
              // And it should be a class method instead.
              LookingForInstanceMethod = false;
            }
          }
        }

        if (CanBeSubClassed)
          if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
            // Even if `DynamicTypeInfo` told us that it can be
            // not necessarily this type, but its descendants, we still want
            // to check again if this selector can be actually overridden.
            CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
      }
    }

    // Lookup the instance method implementation.
    if (ReceiverT)
      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
        const ObjCMethodDecl *MD =
            lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);

        if (MD && !MD->hasBody())
          MD = MD->getCanonicalDecl();

        if (CanBeSubClassed)
          return RuntimeDefinition(MD, Receiver);
        else
          return RuntimeDefinition(MD, nullptr);
      }
  } else {
    // This is a class method.
    // If we have type info for the receiver class, we are calling via
    // class name.
    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
      // Find/Return the method implementation.
      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
    }
  }

  return {};
}

bool ObjCMethodCall::argumentsMayEscape() const {
  if (isInSystemHeader() && !isInstanceMessage()) {
    Selector Sel = getSelector();
    if (Sel.getNumArgs() == 1 &&
        Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
      return true;
  }

  return CallEvent::argumentsMayEscape();
}

void ObjCMethodCall::getInitialStackFrameContents(
                                             const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               D->parameters());

  SVal SelfVal = getReceiverSVal();
  if (!SelfVal.isUnknown()) {
    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
    MemRegionManager &MRMgr = SVB.getRegionManager();
    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
  }
}

CallEventRef<>
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
                                const LocationContext *LCtx) {
  if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
    return create<CXXMemberCall>(MCE, State, LCtx);

  if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
    if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
      if (MD->isInstance())
        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);

  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
    return create<BlockCall>(CE, State, LCtx);
  }

  // Otherwise, it's a normal function call, static member function call, or
  // something we can't reason about.
  return create<SimpleFunctionCall>(CE, State, LCtx);
}

CallEventRef<>
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
                            ProgramStateRef State) {
  const LocationContext *ParentCtx = CalleeCtx->getParent();
  const LocationContext *CallerCtx = ParentCtx->getStackFrame();
  assert(CallerCtx && "This should not be used for top-level stack frames");

  const Stmt *CallSite = CalleeCtx->getCallSite();

  if (CallSite) {
    if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
      return Out;

    SValBuilder &SVB = State->getStateManager().getSValBuilder();
    const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
    SVal ThisVal = State->getSVal(ThisPtr);

    if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
      return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
    else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
      return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
                                            CallerCtx);
    else {
      // All other cases are handled by getCall.
      llvm_unreachable("This is not an inlineable statement");
    }
  }

  // Fall back to the CFG. The only thing we haven't handled yet is
  // destructors, though this could change in the future.
  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
  CFGElement E = (*B)[CalleeCtx->getIndex()];
  assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
         "All other CFG elements should have exprs");

  SValBuilder &SVB = State->getStateManager().getSValBuilder();
  const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
  SVal ThisVal = State->getSVal(ThisPtr);

  const Stmt *Trigger;
  if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
    Trigger = AutoDtor->getTriggerStmt();
  else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
    Trigger = DeleteDtor->getDeleteExpr();
  else
    Trigger = Dtor->getBody();

  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
                              E.getAs<CFGBaseDtor>().hasValue(), State,
                              CallerCtx);
}

CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
                                         const LocationContext *LC) {
  if (const auto *CE = dyn_cast<CallExpr>(S)) {
    return getSimpleCall(CE, State, LC);
  } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
    return getCXXAllocatorCall(NE, State, LC);
  } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
    return getObjCMethodCall(ME, State, LC);
  } else {
    return nullptr;
  }
}