StdLibraryFunctionsChecker.cpp
74.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
//=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker improves modeling of a few simple library functions.
//
// This checker provides a specification format - `Summary' - and
// contains descriptions of some library functions in this format. Each
// specification contains a list of branches for splitting the program state
// upon call, and range constraints on argument and return-value symbols that
// are satisfied on each branch. This spec can be expanded to include more
// items, like external effects of the function.
//
// The main difference between this approach and the body farms technique is
// in more explicit control over how many branches are produced. For example,
// consider standard C function `ispunct(int x)', which returns a non-zero value
// iff `x' is a punctuation character, that is, when `x' is in range
// ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~'].
// `Summary' provides only two branches for this function. However,
// any attempt to describe this range with if-statements in the body farm
// would result in many more branches. Because each branch needs to be analyzed
// independently, this significantly reduces performance. Additionally,
// once we consider a branch on which `x' is in range, say, ['!', '/'],
// we assume that such branch is an important separate path through the program,
// which may lead to false positives because considering this particular path
// was not consciously intended, and therefore it might have been unreachable.
//
// This checker uses eval::Call for modeling pure functions (functions without
// side effets), for which their `Summary' is a precise model. This avoids
// unnecessary invalidation passes. Conflicts with other checkers are unlikely
// because if the function has no other effects, other checkers would probably
// never want to improve upon the modeling done by this checker.
//
// Non-pure functions, for which only partial improvement over the default
// behavior is expected, are modeled via check::PostCall, non-intrusively.
//
// The following standard C functions are currently supported:
//
// fgetc getline isdigit isupper
// fread isalnum isgraph isxdigit
// fwrite isalpha islower read
// getc isascii isprint write
// getchar isblank ispunct
// getdelim iscntrl isspace
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
using namespace clang;
using namespace clang::ento;
namespace {
class StdLibraryFunctionsChecker
: public Checker<check::PreCall, check::PostCall, eval::Call> {
class Summary;
/// Specify how much the analyzer engine should entrust modeling this function
/// to us. If he doesn't, he performs additional invalidations.
enum InvalidationKind { NoEvalCall, EvalCallAsPure };
// The universal integral type to use in value range descriptions.
// Unsigned to make sure overflows are well-defined.
typedef uint64_t RangeInt;
/// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
/// a non-negative integer, which less than 5 and not equal to 2. For
/// `ComparesToArgument', holds information about how exactly to compare to
/// the argument.
typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
/// A reference to an argument or return value by its number.
/// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
/// obviously uint32_t should be enough for all practical purposes.
typedef uint32_t ArgNo;
static const ArgNo Ret;
class ValueConstraint;
// Pointer to the ValueConstraint. We need a copyable, polymorphic and
// default initialize able type (vector needs that). A raw pointer was good,
// however, we cannot default initialize that. unique_ptr makes the Summary
// class non-copyable, therefore not an option. Releasing the copyability
// requirement would render the initialization of the Summary map infeasible.
using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;
/// Polymorphic base class that represents a constraint on a given argument
/// (or return value) of a function. Derived classes implement different kind
/// of constraints, e.g range constraints or correlation between two
/// arguments.
class ValueConstraint {
public:
ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
virtual ~ValueConstraint() {}
/// Apply the effects of the constraint on the given program state. If null
/// is returned then the constraint is not feasible.
virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
const Summary &Summary,
CheckerContext &C) const = 0;
virtual ValueConstraintPtr negate() const {
llvm_unreachable("Not implemented");
};
// Check whether the constraint is malformed or not. It is malformed if the
// specified argument has a mismatch with the given FunctionDecl (e.g. the
// arg number is out-of-range of the function's argument list).
bool checkValidity(const FunctionDecl *FD) const {
const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams();
assert(ValidArg && "Arg out of range!");
if (!ValidArg)
return false;
// Subclasses may further refine the validation.
return checkSpecificValidity(FD);
}
ArgNo getArgNo() const { return ArgN; }
protected:
ArgNo ArgN; // Argument to which we apply the constraint.
/// Do polymorphic sanity check on the constraint.
virtual bool checkSpecificValidity(const FunctionDecl *FD) const {
return true;
}
};
/// Given a range, should the argument stay inside or outside this range?
enum RangeKind { OutOfRange, WithinRange };
/// Encapsulates a single range on a single symbol within a branch.
class RangeConstraint : public ValueConstraint {
RangeKind Kind; // Kind of range definition.
IntRangeVector Args; // Polymorphic arguments.
public:
RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args)
: ValueConstraint(ArgN), Kind(Kind), Args(Args) {}
const IntRangeVector &getRanges() const {
return Args;
}
private:
ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
const CallEvent &Call,
const Summary &Summary) const;
ProgramStateRef applyAsWithinRange(ProgramStateRef State,
const CallEvent &Call,
const Summary &Summary) const;
public:
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
const Summary &Summary,
CheckerContext &C) const override {
switch (Kind) {
case OutOfRange:
return applyAsOutOfRange(State, Call, Summary);
case WithinRange:
return applyAsWithinRange(State, Call, Summary);
}
llvm_unreachable("Unknown range kind!");
}
ValueConstraintPtr negate() const override {
RangeConstraint Tmp(*this);
switch (Kind) {
case OutOfRange:
Tmp.Kind = WithinRange;
break;
case WithinRange:
Tmp.Kind = OutOfRange;
break;
}
return std::make_shared<RangeConstraint>(Tmp);
}
bool checkSpecificValidity(const FunctionDecl *FD) const override {
const bool ValidArg =
getArgType(FD, ArgN)->isIntegralType(FD->getASTContext());
assert(ValidArg &&
"This constraint should be applied on an integral type");
return ValidArg;
}
};
class ComparisonConstraint : public ValueConstraint {
BinaryOperator::Opcode Opcode;
ArgNo OtherArgN;
public:
ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
ArgNo OtherArgN)
: ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
ArgNo getOtherArgNo() const { return OtherArgN; }
BinaryOperator::Opcode getOpcode() const { return Opcode; }
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
const Summary &Summary,
CheckerContext &C) const override;
};
class NotNullConstraint : public ValueConstraint {
using ValueConstraint::ValueConstraint;
// This variable has a role when we negate the constraint.
bool CannotBeNull = true;
public:
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
const Summary &Summary,
CheckerContext &C) const override {
SVal V = getArgSVal(Call, getArgNo());
if (V.isUndef())
return State;
DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
if (!L.getAs<Loc>())
return State;
return State->assume(L, CannotBeNull);
}
ValueConstraintPtr negate() const override {
NotNullConstraint Tmp(*this);
Tmp.CannotBeNull = !this->CannotBeNull;
return std::make_shared<NotNullConstraint>(Tmp);
}
bool checkSpecificValidity(const FunctionDecl *FD) const override {
const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
assert(ValidArg &&
"This constraint should be applied only on a pointer type");
return ValidArg;
}
};
// Represents a buffer argument with an additional size argument.
// E.g. the first two arguments here:
// ctime_s(char *buffer, rsize_t bufsz, const time_t *time);
// Another example:
// size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
// // Here, ptr is the buffer, and its minimum size is `size * nmemb`.
class BufferSizeConstraint : public ValueConstraint {
// The argument which holds the size of the buffer.
ArgNo SizeArgN;
// The argument which is a multiplier to size. This is set in case of
// `fread` like functions where the size is computed as a multiplication of
// two arguments.
llvm::Optional<ArgNo> SizeMultiplierArgN;
// The operator we use in apply. This is negated in negate().
BinaryOperator::Opcode Op = BO_LE;
public:
BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize)
: ValueConstraint(Buffer), SizeArgN(BufSize) {}
BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier)
: ValueConstraint(Buffer), SizeArgN(BufSize),
SizeMultiplierArgN(BufSizeMultiplier) {}
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
const Summary &Summary,
CheckerContext &C) const override {
SValBuilder &SvalBuilder = C.getSValBuilder();
// The buffer argument.
SVal BufV = getArgSVal(Call, getArgNo());
// The size argument.
SVal SizeV = getArgSVal(Call, SizeArgN);
// Multiply with another argument if given.
if (SizeMultiplierArgN) {
SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN);
SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV,
Summary.getArgType(SizeArgN));
}
// The dynamic size of the buffer argument, got from the analyzer engine.
SVal BufDynSize = getDynamicSizeWithOffset(State, BufV);
SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize,
SvalBuilder.getContext().BoolTy);
if (auto F = Feasible.getAs<DefinedOrUnknownSVal>())
return State->assume(*F, true);
// We can get here only if the size argument or the dynamic size is
// undefined. But the dynamic size should never be undefined, only
// unknown. So, here, the size of the argument is undefined, i.e. we
// cannot apply the constraint. Actually, other checkers like
// CallAndMessage should catch this situation earlier, because we call a
// function with an uninitialized argument.
llvm_unreachable("Size argument or the dynamic size is Undefined");
}
ValueConstraintPtr negate() const override {
BufferSizeConstraint Tmp(*this);
Tmp.Op = BinaryOperator::negateComparisonOp(Op);
return std::make_shared<BufferSizeConstraint>(Tmp);
}
};
/// The complete list of constraints that defines a single branch.
typedef std::vector<ValueConstraintPtr> ConstraintSet;
using ArgTypes = std::vector<QualType>;
// A placeholder type, we use it whenever we do not care about the concrete
// type in a Signature.
const QualType Irrelevant{};
bool static isIrrelevant(QualType T) { return T.isNull(); }
// The signature of a function we want to describe with a summary. This is a
// concessive signature, meaning there may be irrelevant types in the
// signature which we do not check against a function with concrete types.
struct Signature {
const ArgTypes ArgTys;
const QualType RetTy;
Signature(ArgTypes ArgTys, QualType RetTy) : ArgTys(ArgTys), RetTy(RetTy) {
assertRetTypeSuitableForSignature(RetTy);
for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
QualType ArgTy = ArgTys[I];
assertArgTypeSuitableForSignature(ArgTy);
}
}
bool matches(const FunctionDecl *FD) const;
private:
static void assertArgTypeSuitableForSignature(QualType T) {
assert((T.isNull() || !T->isVoidType()) &&
"We should have no void types in the spec");
assert((T.isNull() || T.isCanonical()) &&
"We should only have canonical types in the spec");
}
static void assertRetTypeSuitableForSignature(QualType T) {
assert((T.isNull() || T.isCanonical()) &&
"We should only have canonical types in the spec");
}
};
static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) {
assert(FD && "Function must be set");
QualType T = (ArgN == Ret)
? FD->getReturnType().getCanonicalType()
: FD->getParamDecl(ArgN)->getType().getCanonicalType();
return T;
}
using Cases = std::vector<ConstraintSet>;
/// A summary includes information about
/// * function prototype (signature)
/// * approach to invalidation,
/// * a list of branches - a list of list of ranges -
/// A branch represents a path in the exploded graph of a function (which
/// is a tree). So, a branch is a series of assumptions. In other words,
/// branches represent split states and additional assumptions on top of
/// the splitting assumption.
/// For example, consider the branches in `isalpha(x)`
/// Branch 1)
/// x is in range ['A', 'Z'] or in ['a', 'z']
/// then the return value is not 0. (I.e. out-of-range [0, 0])
/// Branch 2)
/// x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
/// then the return value is 0.
/// * a list of argument constraints, that must be true on every branch.
/// If these constraints are not satisfied that means a fatal error
/// usually resulting in undefined behaviour.
///
/// Application of a summary:
/// The signature and argument constraints together contain information
/// about which functions are handled by the summary. The signature can use
/// "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in
/// a signature means that type is not compared to the type of the parameter
/// in the found FunctionDecl. Argument constraints may specify additional
/// rules for the given parameter's type, those rules are checked once the
/// signature is matched.
class Summary {
const Signature Sign;
const InvalidationKind InvalidationKd;
Cases CaseConstraints;
ConstraintSet ArgConstraints;
// The function to which the summary applies. This is set after lookup and
// match to the signature.
const FunctionDecl *FD = nullptr;
public:
Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
: Sign(ArgTys, RetTy), InvalidationKd(InvalidationKd) {}
Summary &Case(ConstraintSet&& CS) {
CaseConstraints.push_back(std::move(CS));
return *this;
}
Summary &ArgConstraint(ValueConstraintPtr VC) {
ArgConstraints.push_back(VC);
return *this;
}
InvalidationKind getInvalidationKd() const { return InvalidationKd; }
const Cases &getCaseConstraints() const { return CaseConstraints; }
const ConstraintSet &getArgConstraints() const { return ArgConstraints; }
QualType getArgType(ArgNo ArgN) const {
return StdLibraryFunctionsChecker::getArgType(FD, ArgN);
}
// Returns true if the summary should be applied to the given function.
// And if yes then store the function declaration.
bool matchesAndSet(const FunctionDecl *FD) {
bool Result = Sign.matches(FD) && validateByConstraints(FD);
if (Result) {
assert(!this->FD && "FD must not be set more than once");
this->FD = FD;
}
return Result;
}
private:
// Once we know the exact type of the function then do sanity check on all
// the given constraints.
bool validateByConstraints(const FunctionDecl *FD) const {
for (const ConstraintSet &Case : CaseConstraints)
for (const ValueConstraintPtr &Constraint : Case)
if (!Constraint->checkValidity(FD))
return false;
for (const ValueConstraintPtr &Constraint : ArgConstraints)
if (!Constraint->checkValidity(FD))
return false;
return true;
}
};
// The map of all functions supported by the checker. It is initialized
// lazily, and it doesn't change after initialization.
using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
mutable FunctionSummaryMapType FunctionSummaryMap;
mutable std::unique_ptr<BugType> BT_InvalidArg;
static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
}
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
enum CheckKind {
CK_StdCLibraryFunctionArgsChecker,
CK_StdCLibraryFunctionsTesterChecker,
CK_NumCheckKinds
};
DefaultBool ChecksEnabled[CK_NumCheckKinds];
CheckerNameRef CheckNames[CK_NumCheckKinds];
bool DisplayLoadedSummaries = false;
bool ModelPOSIX = false;
private:
Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
CheckerContext &C) const;
Optional<Summary> findFunctionSummary(const CallEvent &Call,
CheckerContext &C) const;
void initFunctionSummaries(CheckerContext &C) const;
void reportBug(const CallEvent &Call, ExplodedNode *N,
CheckerContext &C) const {
if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
return;
// TODO Add detailed diagnostic.
StringRef Msg = "Function argument constraint is not satisfied";
if (!BT_InvalidArg)
BT_InvalidArg = std::make_unique<BugType>(
CheckNames[CK_StdCLibraryFunctionArgsChecker],
"Unsatisfied argument constraints", categories::LogicError);
auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R);
C.emitReport(std::move(R));
}
};
const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
std::numeric_limits<ArgNo>::max();
} // end of anonymous namespace
ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
ProgramStateRef State, const CallEvent &Call,
const Summary &Summary) const {
ProgramStateManager &Mgr = State->getStateManager();
SValBuilder &SVB = Mgr.getSValBuilder();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
ConstraintManager &CM = Mgr.getConstraintManager();
QualType T = Summary.getArgType(getArgNo());
SVal V = getArgSVal(Call, getArgNo());
if (auto N = V.getAs<NonLoc>()) {
const IntRangeVector &R = getRanges();
size_t E = R.size();
for (size_t I = 0; I != E; ++I) {
const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
assert(Min <= Max);
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
if (!State)
break;
}
}
return State;
}
ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
ProgramStateRef State, const CallEvent &Call,
const Summary &Summary) const {
ProgramStateManager &Mgr = State->getStateManager();
SValBuilder &SVB = Mgr.getSValBuilder();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
ConstraintManager &CM = Mgr.getConstraintManager();
QualType T = Summary.getArgType(getArgNo());
SVal V = getArgSVal(Call, getArgNo());
// "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
// We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
// and then cut away all holes in R one by one.
//
// E.g. consider a range list R as [A, B] and [C, D]
// -------+--------+------------------+------------+----------->
// A B C D
// Then we assume that the value is not in [-inf, A - 1],
// then not in [D + 1, +inf], then not in [B + 1, C - 1]
if (auto N = V.getAs<NonLoc>()) {
const IntRangeVector &R = getRanges();
size_t E = R.size();
const llvm::APSInt &MinusInf = BVF.getMinValue(T);
const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
if (Left != PlusInf) {
assert(MinusInf <= Left);
State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
if (!State)
return nullptr;
}
const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
if (Right != MinusInf) {
assert(Right <= PlusInf);
State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
if (!State)
return nullptr;
}
for (size_t I = 1; I != E; ++I) {
const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
if (Min <= Max) {
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
if (!State)
return nullptr;
}
}
}
return State;
}
ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
ProgramStateRef State, const CallEvent &Call, const Summary &Summary,
CheckerContext &C) const {
ProgramStateManager &Mgr = State->getStateManager();
SValBuilder &SVB = Mgr.getSValBuilder();
QualType CondT = SVB.getConditionType();
QualType T = Summary.getArgType(getArgNo());
SVal V = getArgSVal(Call, getArgNo());
BinaryOperator::Opcode Op = getOpcode();
ArgNo OtherArg = getOtherArgNo();
SVal OtherV = getArgSVal(Call, OtherArg);
QualType OtherT = Summary.getArgType(OtherArg);
// Note: we avoid integral promotion for comparison.
OtherV = SVB.evalCast(OtherV, T, OtherT);
if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
.getAs<DefinedOrUnknownSVal>())
State = State->assume(*CompV, true);
return State;
}
void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
if (!FoundSummary)
return;
const Summary &Summary = *FoundSummary;
ProgramStateRef State = C.getState();
ProgramStateRef NewState = State;
for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) {
ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C);
ProgramStateRef FailureSt =
Constraint->negate()->apply(NewState, Call, Summary, C);
// The argument constraint is not satisfied.
if (FailureSt && !SuccessSt) {
if (ExplodedNode *N = C.generateErrorNode(NewState))
reportBug(Call, N, C);
break;
} else {
// We will apply the constraint even if we cannot reason about the
// argument. This means both SuccessSt and FailureSt can be true. If we
// weren't applying the constraint that would mean that symbolic
// execution continues on a code whose behaviour is undefined.
assert(SuccessSt);
NewState = SuccessSt;
}
}
if (NewState && NewState != State)
C.addTransition(NewState);
}
void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
if (!FoundSummary)
return;
// Now apply the constraints.
const Summary &Summary = *FoundSummary;
ProgramStateRef State = C.getState();
// Apply case/branch specifications.
for (const ConstraintSet &Case : Summary.getCaseConstraints()) {
ProgramStateRef NewState = State;
for (const ValueConstraintPtr &Constraint : Case) {
NewState = Constraint->apply(NewState, Call, Summary, C);
if (!NewState)
break;
}
if (NewState && NewState != State)
C.addTransition(NewState);
}
}
bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
CheckerContext &C) const {
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
if (!FoundSummary)
return false;
const Summary &Summary = *FoundSummary;
switch (Summary.getInvalidationKd()) {
case EvalCallAsPure: {
ProgramStateRef State = C.getState();
const LocationContext *LC = C.getLocationContext();
const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
SVal V = C.getSValBuilder().conjureSymbolVal(
CE, LC, CE->getType().getCanonicalType(), C.blockCount());
State = State->BindExpr(CE, LC, V);
C.addTransition(State);
return true;
}
case NoEvalCall:
// Summary tells us to avoid performing eval::Call. The function is possibly
// evaluated by another checker, or evaluated conservatively.
return false;
}
llvm_unreachable("Unknown invalidation kind!");
}
bool StdLibraryFunctionsChecker::Signature::matches(
const FunctionDecl *FD) const {
// Check number of arguments:
if (FD->param_size() != ArgTys.size())
return false;
// Check return type.
if (!isIrrelevant(RetTy))
if (RetTy != FD->getReturnType().getCanonicalType())
return false;
// Check argument types.
for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
QualType ArgTy = ArgTys[I];
if (isIrrelevant(ArgTy))
continue;
if (ArgTy != FD->getParamDecl(I)->getType().getCanonicalType())
return false;
}
return true;
}
Optional<StdLibraryFunctionsChecker::Summary>
StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
CheckerContext &C) const {
if (!FD)
return None;
initFunctionSummaries(C);
auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
if (FSMI == FunctionSummaryMap.end())
return None;
return FSMI->second;
}
Optional<StdLibraryFunctionsChecker::Summary>
StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
CheckerContext &C) const {
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!FD)
return None;
return findFunctionSummary(FD, C);
}
static llvm::Optional<QualType> lookupType(StringRef Name,
const ASTContext &ACtx) {
IdentifierInfo &II = ACtx.Idents.get(Name);
auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
if (LookupRes.size() == 0)
return None;
// Prioritze typedef declarations.
// This is needed in case of C struct typedefs. E.g.:
// typedef struct FILE FILE;
// In this case, we have a RecordDecl 'struct FILE' with the name 'FILE' and
// we have a TypedefDecl with the name 'FILE'.
for (Decl *D : LookupRes)
if (auto *TD = dyn_cast<TypedefNameDecl>(D))
return ACtx.getTypeDeclType(TD).getCanonicalType();
// Find the first TypeDecl.
// There maybe cases when a function has the same name as a struct.
// E.g. in POSIX: `struct stat` and the function `stat()`:
// int stat(const char *restrict path, struct stat *restrict buf);
for (Decl *D : LookupRes)
if (auto *TD = dyn_cast<TypeDecl>(D))
return ACtx.getTypeDeclType(TD).getCanonicalType();
return None;
}
void StdLibraryFunctionsChecker::initFunctionSummaries(
CheckerContext &C) const {
if (!FunctionSummaryMap.empty())
return;
SValBuilder &SVB = C.getSValBuilder();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
const ASTContext &ACtx = BVF.getContext();
// These types are useful for writing specifications quickly,
// New specifications should probably introduce more types.
// Some types are hard to obtain from the AST, eg. "ssize_t".
// In such cases it should be possible to provide multiple variants
// of function summary for common cases (eg. ssize_t could be int or long
// or long long, so three summary variants would be enough).
// Of course, function variants are also useful for C++ overloads.
const QualType VoidTy = ACtx.VoidTy;
const QualType IntTy = ACtx.IntTy;
const QualType UnsignedIntTy = ACtx.UnsignedIntTy;
const QualType LongTy = ACtx.LongTy;
const QualType LongLongTy = ACtx.LongLongTy;
const QualType SizeTy = ACtx.getSizeType();
const QualType VoidPtrTy = ACtx.VoidPtrTy; // void *
const QualType IntPtrTy = ACtx.getPointerType(IntTy); // int *
const QualType UnsignedIntPtrTy =
ACtx.getPointerType(UnsignedIntTy); // unsigned int *
const QualType VoidPtrRestrictTy =
ACtx.getLangOpts().C99 ? ACtx.getRestrictType(VoidPtrTy) // void *restrict
: VoidPtrTy;
const QualType ConstVoidPtrTy =
ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void *
const QualType CharPtrTy = ACtx.getPointerType(ACtx.CharTy); // char *
const QualType CharPtrRestrictTy =
ACtx.getLangOpts().C99 ? ACtx.getRestrictType(CharPtrTy) // char *restrict
: CharPtrTy;
const QualType ConstCharPtrTy =
ACtx.getPointerType(ACtx.CharTy.withConst()); // const char *
const QualType ConstCharPtrRestrictTy =
ACtx.getLangOpts().C99
? ACtx.getRestrictType(ConstCharPtrTy) // const char *restrict
: ConstCharPtrTy;
const QualType Wchar_tPtrTy = ACtx.getPointerType(ACtx.WCharTy); // wchar_t *
const QualType ConstWchar_tPtrTy =
ACtx.getPointerType(ACtx.WCharTy.withConst()); // const wchar_t *
const QualType ConstVoidPtrRestrictTy =
ACtx.getLangOpts().C99
? ACtx.getRestrictType(ConstVoidPtrTy) // const void *restrict
: ConstVoidPtrTy;
const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
const RangeInt UnsignedIntMax =
BVF.getMaxValue(UnsignedIntTy).getLimitedValue();
const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
const RangeInt SizeMax = BVF.getMaxValue(SizeTy).getLimitedValue();
// Set UCharRangeMax to min of int or uchar maximum value.
// The C standard states that the arguments of functions like isalpha must
// be representable as an unsigned char. Their type is 'int', so the max
// value of the argument should be min(UCharMax, IntMax). This just happen
// to be true for commonly used and well tested instruction set
// architectures, but not for others.
const RangeInt UCharRangeMax =
std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);
// The platform dependent value of EOF.
// Try our best to parse this from the Preprocessor, otherwise fallback to -1.
const auto EOFv = [&C]() -> RangeInt {
if (const llvm::Optional<int> OptInt =
tryExpandAsInteger("EOF", C.getPreprocessor()))
return *OptInt;
return -1;
}();
// Auxiliary class to aid adding summaries to the summary map.
struct AddToFunctionSummaryMap {
const ASTContext &ACtx;
FunctionSummaryMapType ⤅
bool DisplayLoadedSummaries;
AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM,
bool DisplayLoadedSummaries)
: ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) {
}
// Add a summary to a FunctionDecl found by lookup. The lookup is performed
// by the given Name, and in the global scope. The summary will be attached
// to the found FunctionDecl only if the signatures match.
void operator()(StringRef Name, Summary S) {
IdentifierInfo &II = ACtx.Idents.get(Name);
auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
if (LookupRes.size() == 0)
return;
for (Decl *D : LookupRes) {
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
if (S.matchesAndSet(FD)) {
auto Res = Map.insert({FD->getCanonicalDecl(), S});
assert(Res.second && "Function already has a summary set!");
(void)Res;
if (DisplayLoadedSummaries) {
llvm::errs() << "Loaded summary for: ";
FD->print(llvm::errs());
llvm::errs() << "\n";
}
return;
}
}
}
}
// Add several summaries for the given name.
void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
for (const Summary &S : Summaries)
operator()(Name, S);
}
} addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries);
// We are finally ready to define specifications for all supported functions.
//
// The signature needs to have the correct number of arguments.
// However, we insert `Irrelevant' when the type is insignificant.
//
// Argument ranges should always cover all variants. If return value
// is completely unknown, omit it from the respective range set.
//
// All types in the spec need to be canonical.
//
// Every item in the list of range sets represents a particular
// execution path the analyzer would need to explore once
// the call is modeled - a new program state is constructed
// for every range set, and each range line in the range set
// corresponds to a specific constraint within this state.
//
// Upon comparing to another argument, the other argument is casted
// to the current argument's type. This avoids proper promotion but
// seems useful. For example, read() receives size_t argument,
// and its return value, which is of type ssize_t, cannot be greater
// than this argument. If we made a promotion, and the size argument
// is equal to, say, 10, then we'd impose a range of [0, 10] on the
// return value, however the correct range is [-1, 10].
//
// Please update the list of functions in the header after editing!
// Below are helpers functions to create the summaries.
auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
IntRangeVector Ranges) {
return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
};
auto BufferSize = [](auto... Args) {
return std::make_shared<BufferSizeConstraint>(Args...);
};
struct {
auto operator()(RangeKind Kind, IntRangeVector Ranges) {
return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
}
auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
}
} ReturnValueCondition;
auto Range = [](RangeInt b, RangeInt e) {
return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
};
auto SingleValue = [](RangeInt v) {
return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
};
auto LessThanOrEq = BO_LE;
auto NotNull = [&](ArgNo ArgN) {
return std::make_shared<NotNullConstraint>(ArgN);
};
Optional<QualType> FileTy = lookupType("FILE", ACtx);
Optional<QualType> FilePtrTy, FilePtrRestrictTy;
if (FileTy) {
// FILE *
FilePtrTy = ACtx.getPointerType(*FileTy);
// FILE *restrict
FilePtrRestrictTy =
ACtx.getLangOpts().C99 ? ACtx.getRestrictType(*FilePtrTy) : *FilePtrTy;
}
using RetType = QualType;
// Templates for summaries that are reused by many functions.
auto Getc = [&]() {
return Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
.Case({ReturnValueCondition(WithinRange,
{{EOFv, EOFv}, {0, UCharRangeMax}})});
};
auto Read = [&](RetType R, RangeInt Max) {
return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
NoEvalCall)
.Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
ReturnValueCondition(WithinRange, Range(-1, Max))});
};
auto Fread = [&]() {
return Summary(
ArgTypes{VoidPtrRestrictTy, SizeTy, SizeTy, *FilePtrRestrictTy},
RetType{SizeTy}, NoEvalCall)
.Case({
ReturnValueCondition(LessThanOrEq, ArgNo(2)),
})
.ArgConstraint(NotNull(ArgNo(0)));
};
auto Fwrite = [&]() {
return Summary(ArgTypes{ConstVoidPtrRestrictTy, SizeTy, SizeTy,
*FilePtrRestrictTy},
RetType{SizeTy}, NoEvalCall)
.Case({
ReturnValueCondition(LessThanOrEq, ArgNo(2)),
})
.ArgConstraint(NotNull(ArgNo(0)));
};
auto Getline = [&](RetType R, RangeInt Max) {
return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
NoEvalCall)
.Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
};
// The isascii() family of functions.
// The behavior is undefined if the value of the argument is not
// representable as unsigned char or is not equal to EOF. See e.g. C99
// 7.4.1.2 The isalpha function (p: 181-182).
addToFunctionSummaryMap(
"isalnum",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
// Boils down to isupper() or islower() or isdigit().
.Case({ArgumentCondition(0U, WithinRange,
{{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
ReturnValueCondition(OutOfRange, SingleValue(0))})
// The locale-specific range.
// No post-condition. We are completely unaware of
// locale-specific return values.
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
.Case(
{ArgumentCondition(
0U, OutOfRange,
{{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
ReturnValueCondition(WithinRange, SingleValue(0))})
.ArgConstraint(ArgumentCondition(
0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
addToFunctionSummaryMap(
"isalpha",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
ReturnValueCondition(OutOfRange, SingleValue(0))})
// The locale-specific range.
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
.Case({ArgumentCondition(
0U, OutOfRange,
{{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isascii",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isblank",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"iscntrl",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isdigit",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isgraph",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"islower",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
// Is certainly lowercase.
.Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
ReturnValueCondition(OutOfRange, SingleValue(0))})
// Is ascii but not lowercase.
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
ReturnValueCondition(WithinRange, SingleValue(0))})
// The locale-specific range.
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
// Is not an unsigned char.
.Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isprint",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"ispunct",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(
0U, WithinRange,
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(
0U, OutOfRange,
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isspace",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
// Space, '\f', '\n', '\r', '\t', '\v'.
.Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
ReturnValueCondition(OutOfRange, SingleValue(0))})
// The locale-specific range.
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
.Case({ArgumentCondition(0U, OutOfRange,
{{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isupper",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
// Is certainly uppercase.
.Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
ReturnValueCondition(OutOfRange, SingleValue(0))})
// The locale-specific range.
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
// Other.
.Case({ArgumentCondition(0U, OutOfRange,
{{'A', 'Z'}, {128, UCharRangeMax}}),
ReturnValueCondition(WithinRange, SingleValue(0))}));
addToFunctionSummaryMap(
"isxdigit",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.Case({ArgumentCondition(0U, WithinRange,
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
ReturnValueCondition(OutOfRange, SingleValue(0))})
.Case({ArgumentCondition(0U, OutOfRange,
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
ReturnValueCondition(WithinRange, SingleValue(0))}));
// The getc() family of functions that returns either a char or an EOF.
if (FilePtrTy) {
addToFunctionSummaryMap("getc", Getc());
addToFunctionSummaryMap("fgetc", Getc());
}
addToFunctionSummaryMap(
"getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
.Case({ReturnValueCondition(
WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));
// read()-like functions that never return more than buffer size.
if (FilePtrRestrictTy) {
addToFunctionSummaryMap("fread", Fread());
addToFunctionSummaryMap("fwrite", Fwrite());
}
// We are not sure how ssize_t is defined on every platform, so we
// provide three variants that should cover common cases.
// FIXME these are actually defined by POSIX and not by the C standard, we
// should handle them together with the rest of the POSIX functions.
addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
Read(LongLongTy, LongLongMax)});
addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
Read(LongLongTy, LongLongMax)});
// getline()-like functions either fail or read at least the delimiter.
// FIXME these are actually defined by POSIX and not by the C standard, we
// should handle them together with the rest of the POSIX functions.
addToFunctionSummaryMap("getline",
{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
Getline(LongLongTy, LongLongMax)});
addToFunctionSummaryMap("getdelim",
{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
Getline(LongLongTy, LongLongMax)});
if (ModelPOSIX) {
// long a64l(const char *str64);
addToFunctionSummaryMap(
"a64l", Summary(ArgTypes{ConstCharPtrTy}, RetType{LongTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// char *l64a(long value);
addToFunctionSummaryMap(
"l64a", Summary(ArgTypes{LongTy}, RetType{CharPtrTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, LongMax))));
// int access(const char *pathname, int amode);
addToFunctionSummaryMap("access", Summary(ArgTypes{ConstCharPtrTy, IntTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int faccessat(int dirfd, const char *pathname, int mode, int flags);
addToFunctionSummaryMap(
"faccessat", Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, IntTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(1))));
// int dup(int fildes);
addToFunctionSummaryMap(
"dup", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
// int dup2(int fildes1, int filedes2);
addToFunctionSummaryMap(
"dup2",
Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
.ArgConstraint(
ArgumentCondition(1, WithinRange, Range(0, IntMax))));
// int fdatasync(int fildes);
addToFunctionSummaryMap(
"fdatasync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange,
Range(0, IntMax))));
// int fnmatch(const char *pattern, const char *string, int flags);
addToFunctionSummaryMap(
"fnmatch", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, IntTy},
RetType{IntTy}, EvalCallAsPure)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
// int fsync(int fildes);
addToFunctionSummaryMap(
"fsync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
Optional<QualType> Off_tTy = lookupType("off_t", ACtx);
if (Off_tTy)
// int truncate(const char *path, off_t length);
addToFunctionSummaryMap("truncate",
Summary(ArgTypes{ConstCharPtrTy, *Off_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int symlink(const char *oldpath, const char *newpath);
addToFunctionSummaryMap("symlink",
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
// int symlinkat(const char *oldpath, int newdirfd, const char *newpath);
addToFunctionSummaryMap(
"symlinkat",
Summary(ArgTypes{ConstCharPtrTy, IntTy, ConstCharPtrTy}, RetType{IntTy},
NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(ArgumentCondition(1, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(2))));
if (Off_tTy)
// int lockf(int fd, int cmd, off_t len);
addToFunctionSummaryMap(
"lockf",
Summary(ArgTypes{IntTy, IntTy, *Off_tTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
Optional<QualType> Mode_tTy = lookupType("mode_t", ACtx);
if (Mode_tTy)
// int creat(const char *pathname, mode_t mode);
addToFunctionSummaryMap("creat",
Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// unsigned int sleep(unsigned int seconds);
addToFunctionSummaryMap(
"sleep",
Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));
Optional<QualType> DirTy = lookupType("DIR", ACtx);
Optional<QualType> DirPtrTy;
if (DirTy)
DirPtrTy = ACtx.getPointerType(*DirTy);
if (DirPtrTy)
// int dirfd(DIR *dirp);
addToFunctionSummaryMap(
"dirfd", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// unsigned int alarm(unsigned int seconds);
addToFunctionSummaryMap(
"alarm",
Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));
if (DirPtrTy)
// int closedir(DIR *dir);
addToFunctionSummaryMap(
"closedir", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// char *strdup(const char *s);
addToFunctionSummaryMap("strdup", Summary(ArgTypes{ConstCharPtrTy},
RetType{CharPtrTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// char *strndup(const char *s, size_t n);
addToFunctionSummaryMap(
"strndup", Summary(ArgTypes{ConstCharPtrTy, SizeTy}, RetType{CharPtrTy},
NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(ArgumentCondition(1, WithinRange,
Range(0, SizeMax))));
// wchar_t *wcsdup(const wchar_t *s);
addToFunctionSummaryMap("wcsdup", Summary(ArgTypes{ConstWchar_tPtrTy},
RetType{Wchar_tPtrTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int mkstemp(char *template);
addToFunctionSummaryMap(
"mkstemp", Summary(ArgTypes{CharPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// char *mkdtemp(char *template);
addToFunctionSummaryMap(
"mkdtemp", Summary(ArgTypes{CharPtrTy}, RetType{CharPtrTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// char *getcwd(char *buf, size_t size);
addToFunctionSummaryMap(
"getcwd",
Summary(ArgTypes{CharPtrTy, SizeTy}, RetType{CharPtrTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(1, WithinRange, Range(0, SizeMax))));
if (Mode_tTy) {
// int mkdir(const char *pathname, mode_t mode);
addToFunctionSummaryMap("mkdir",
Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int mkdirat(int dirfd, const char *pathname, mode_t mode);
addToFunctionSummaryMap(
"mkdirat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(1))));
}
Optional<QualType> Dev_tTy = lookupType("dev_t", ACtx);
if (Mode_tTy && Dev_tTy) {
// int mknod(const char *pathname, mode_t mode, dev_t dev);
addToFunctionSummaryMap(
"mknod", Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy, *Dev_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int mknodat(int dirfd, const char *pathname, mode_t mode, dev_t dev);
addToFunctionSummaryMap("mknodat", Summary(ArgTypes{IntTy, ConstCharPtrTy,
*Mode_tTy, *Dev_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(1))));
}
if (Mode_tTy) {
// int chmod(const char *path, mode_t mode);
addToFunctionSummaryMap("chmod",
Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags);
addToFunctionSummaryMap(
"fchmodat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy, IntTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange,
Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1))));
// int fchmod(int fildes, mode_t mode);
addToFunctionSummaryMap(
"fchmod",
Summary(ArgTypes{IntTy, *Mode_tTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
}
Optional<QualType> Uid_tTy = lookupType("uid_t", ACtx);
Optional<QualType> Gid_tTy = lookupType("gid_t", ACtx);
if (Uid_tTy && Gid_tTy) {
// int fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group,
// int flags);
addToFunctionSummaryMap(
"fchownat",
Summary(ArgTypes{IntTy, ConstCharPtrTy, *Uid_tTy, *Gid_tTy, IntTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1))));
// int chown(const char *path, uid_t owner, gid_t group);
addToFunctionSummaryMap(
"chown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int lchown(const char *path, uid_t owner, gid_t group);
addToFunctionSummaryMap(
"lchown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int fchown(int fildes, uid_t owner, gid_t group);
addToFunctionSummaryMap(
"fchown", Summary(ArgTypes{IntTy, *Uid_tTy, *Gid_tTy}, RetType{IntTy},
NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange,
Range(0, IntMax))));
}
// int rmdir(const char *pathname);
addToFunctionSummaryMap(
"rmdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int chdir(const char *path);
addToFunctionSummaryMap(
"chdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int link(const char *oldpath, const char *newpath);
addToFunctionSummaryMap("link",
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
// int linkat(int fd1, const char *path1, int fd2, const char *path2,
// int flag);
addToFunctionSummaryMap(
"linkat",
Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, ConstCharPtrTy, IntTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1)))
.ArgConstraint(ArgumentCondition(2, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(3))));
// int unlink(const char *pathname);
addToFunctionSummaryMap(
"unlink", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int unlinkat(int fd, const char *path, int flag);
addToFunctionSummaryMap(
"unlinkat",
Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy}, RetType{IntTy},
NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1))));
Optional<QualType> StructStatTy = lookupType("stat", ACtx);
Optional<QualType> StructStatPtrTy, StructStatPtrRestrictTy;
if (StructStatTy) {
StructStatPtrTy = ACtx.getPointerType(*StructStatTy);
StructStatPtrRestrictTy = ACtx.getLangOpts().C99
? ACtx.getRestrictType(*StructStatPtrTy)
: *StructStatPtrTy;
}
if (StructStatPtrTy)
// int fstat(int fd, struct stat *statbuf);
addToFunctionSummaryMap(
"fstat",
Summary(ArgTypes{IntTy, *StructStatPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1))));
if (StructStatPtrRestrictTy) {
// int stat(const char *restrict path, struct stat *restrict buf);
addToFunctionSummaryMap(
"stat",
Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
// int lstat(const char *restrict path, struct stat *restrict buf);
addToFunctionSummaryMap(
"lstat",
Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
// int fstatat(int fd, const char *restrict path,
// struct stat *restrict buf, int flag);
addToFunctionSummaryMap(
"fstatat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy,
*StructStatPtrRestrictTy, IntTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange,
Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1)))
.ArgConstraint(NotNull(ArgNo(2))));
}
if (DirPtrTy) {
// DIR *opendir(const char *name);
addToFunctionSummaryMap("opendir", Summary(ArgTypes{ConstCharPtrTy},
RetType{*DirPtrTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// DIR *fdopendir(int fd);
addToFunctionSummaryMap(
"fdopendir", Summary(ArgTypes{IntTy}, RetType{*DirPtrTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange,
Range(0, IntMax))));
}
// int isatty(int fildes);
addToFunctionSummaryMap(
"isatty", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
if (FilePtrTy) {
// FILE *popen(const char *command, const char *type);
addToFunctionSummaryMap("popen",
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
RetType{*FilePtrTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
// int pclose(FILE *stream);
addToFunctionSummaryMap(
"pclose", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
}
// int close(int fildes);
addToFunctionSummaryMap(
"close", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
// long fpathconf(int fildes, int name);
addToFunctionSummaryMap(
"fpathconf",
Summary(ArgTypes{IntTy, IntTy}, RetType{LongTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
// long pathconf(const char *path, int name);
addToFunctionSummaryMap("pathconf", Summary(ArgTypes{ConstCharPtrTy, IntTy},
RetType{LongTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
if (FilePtrTy)
// FILE *fdopen(int fd, const char *mode);
addToFunctionSummaryMap(
"fdopen", Summary(ArgTypes{IntTy, ConstCharPtrTy},
RetType{*FilePtrTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1))));
if (DirPtrTy) {
// void rewinddir(DIR *dir);
addToFunctionSummaryMap(
"rewinddir", Summary(ArgTypes{*DirPtrTy}, RetType{VoidTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// void seekdir(DIR *dirp, long loc);
addToFunctionSummaryMap("seekdir", Summary(ArgTypes{*DirPtrTy, LongTy},
RetType{VoidTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
}
// int rand_r(unsigned int *seedp);
addToFunctionSummaryMap("rand_r", Summary(ArgTypes{UnsignedIntPtrTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int strcasecmp(const char *s1, const char *s2);
addToFunctionSummaryMap("strcasecmp",
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
RetType{IntTy}, EvalCallAsPure)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
// int strncasecmp(const char *s1, const char *s2, size_t n);
addToFunctionSummaryMap(
"strncasecmp", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, SizeTy},
RetType{IntTy}, EvalCallAsPure)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1)))
.ArgConstraint(ArgumentCondition(
2, WithinRange, Range(0, SizeMax))));
if (FilePtrTy && Off_tTy) {
// int fileno(FILE *stream);
addToFunctionSummaryMap(
"fileno", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int fseeko(FILE *stream, off_t offset, int whence);
addToFunctionSummaryMap("fseeko",
Summary(ArgTypes{*FilePtrTy, *Off_tTy, IntTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// off_t ftello(FILE *stream);
addToFunctionSummaryMap(
"ftello", Summary(ArgTypes{*FilePtrTy}, RetType{*Off_tTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
}
if (Off_tTy) {
Optional<RangeInt> Off_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue();
// void *mmap(void *addr, size_t length, int prot, int flags, int fd,
// off_t offset);
addToFunctionSummaryMap(
"mmap",
Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off_tTy},
RetType{VoidPtrTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
.ArgConstraint(
ArgumentCondition(4, WithinRange, Range(0, *Off_tMax))));
}
Optional<QualType> Off64_tTy = lookupType("off64_t", ACtx);
Optional<RangeInt> Off64_tMax;
if (Off64_tTy) {
Off64_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue();
// void *mmap64(void *addr, size_t length, int prot, int flags, int fd,
// off64_t offset);
addToFunctionSummaryMap(
"mmap64",
Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off64_tTy},
RetType{VoidPtrTy}, NoEvalCall)
.ArgConstraint(
ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
.ArgConstraint(
ArgumentCondition(4, WithinRange, Range(0, *Off64_tMax))));
}
// int pipe(int fildes[2]);
addToFunctionSummaryMap(
"pipe", Summary(ArgTypes{IntPtrTy}, RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
if (Off_tTy)
// off_t lseek(int fildes, off_t offset, int whence);
addToFunctionSummaryMap(
"lseek", Summary(ArgTypes{IntTy, *Off_tTy, IntTy}, RetType{*Off_tTy},
NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange,
Range(0, IntMax))));
Optional<QualType> Ssize_tTy = lookupType("ssize_t", ACtx);
if (Ssize_tTy) {
// ssize_t readlink(const char *restrict path, char *restrict buf,
// size_t bufsize);
addToFunctionSummaryMap(
"readlink",
Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy},
RetType{*Ssize_tTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1)))
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
/*BufSize=*/ArgNo(2)))
.ArgConstraint(
ArgumentCondition(2, WithinRange, Range(0, SizeMax))));
// ssize_t readlinkat(int fd, const char *restrict path,
// char *restrict buf, size_t bufsize);
addToFunctionSummaryMap(
"readlinkat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy,
CharPtrRestrictTy, SizeTy},
RetType{*Ssize_tTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange,
Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1)))
.ArgConstraint(NotNull(ArgNo(2)))
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(2),
/*BufSize=*/ArgNo(3)))
.ArgConstraint(ArgumentCondition(
3, WithinRange, Range(0, SizeMax))));
}
// int renameat(int olddirfd, const char *oldpath, int newdirfd, const char
// *newpath);
addToFunctionSummaryMap("renameat", Summary(ArgTypes{IntTy, ConstCharPtrTy,
IntTy, ConstCharPtrTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(1)))
.ArgConstraint(NotNull(ArgNo(3))));
// char *realpath(const char *restrict file_name,
// char *restrict resolved_name);
addToFunctionSummaryMap(
"realpath", Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy},
RetType{CharPtrTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
QualType CharPtrConstPtr = ACtx.getPointerType(CharPtrTy.withConst());
// int execv(const char *path, char *const argv[]);
addToFunctionSummaryMap("execv",
Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int execvp(const char *file, char *const argv[]);
addToFunctionSummaryMap("execvp",
Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(NotNull(ArgNo(0))));
// int getopt(int argc, char * const argv[], const char *optstring);
addToFunctionSummaryMap(
"getopt",
Summary(ArgTypes{IntTy, CharPtrConstPtr, ConstCharPtrTy},
RetType{IntTy}, NoEvalCall)
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
.ArgConstraint(NotNull(ArgNo(1)))
.ArgConstraint(NotNull(ArgNo(2))));
}
// Functions for testing.
if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
addToFunctionSummaryMap(
"__two_constrained_args",
Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
.ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
.ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
addToFunctionSummaryMap(
"__arg_constrained_twice",
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
.ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
.ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
addToFunctionSummaryMap(
"__defaultparam",
Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
.ArgConstraint(NotNull(ArgNo(0))));
addToFunctionSummaryMap("__variadic",
Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
RetType{IntTy}, EvalCallAsPure)
.ArgConstraint(NotNull(ArgNo(0)))
.ArgConstraint(NotNull(ArgNo(1))));
addToFunctionSummaryMap(
"__buf_size_arg_constraint",
Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy},
EvalCallAsPure)
.ArgConstraint(
BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))));
addToFunctionSummaryMap(
"__buf_size_arg_constraint_mul",
Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy},
EvalCallAsPure)
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
/*BufSizeMultiplier=*/ArgNo(2))));
}
}
void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>();
Checker->DisplayLoadedSummaries =
mgr.getAnalyzerOptions().getCheckerBooleanOption(
Checker, "DisplayLoadedSummaries");
Checker->ModelPOSIX =
mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker, "ModelPOSIX");
}
bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) {
return true;
}
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &mgr) { \
StdLibraryFunctionsChecker *checker = \
mgr.getChecker<StdLibraryFunctionsChecker>(); \
checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true; \
checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] = \
mgr.getCurrentCheckerName(); \
} \
\
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)