StdLibraryFunctionsChecker.cpp 74.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
//=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker improves modeling of a few simple library functions.
//
// This checker provides a specification format - `Summary' - and
// contains descriptions of some library functions in this format. Each
// specification contains a list of branches for splitting the program state
// upon call, and range constraints on argument and return-value symbols that
// are satisfied on each branch. This spec can be expanded to include more
// items, like external effects of the function.
//
// The main difference between this approach and the body farms technique is
// in more explicit control over how many branches are produced. For example,
// consider standard C function `ispunct(int x)', which returns a non-zero value
// iff `x' is a punctuation character, that is, when `x' is in range
//   ['!', '/']   [':', '@']  U  ['[', '\`']  U  ['{', '~'].
// `Summary' provides only two branches for this function. However,
// any attempt to describe this range with if-statements in the body farm
// would result in many more branches. Because each branch needs to be analyzed
// independently, this significantly reduces performance. Additionally,
// once we consider a branch on which `x' is in range, say, ['!', '/'],
// we assume that such branch is an important separate path through the program,
// which may lead to false positives because considering this particular path
// was not consciously intended, and therefore it might have been unreachable.
//
// This checker uses eval::Call for modeling pure functions (functions without
// side effets), for which their `Summary' is a precise model. This avoids
// unnecessary invalidation passes. Conflicts with other checkers are unlikely
// because if the function has no other effects, other checkers would probably
// never want to improve upon the modeling done by this checker.
//
// Non-pure functions, for which only partial improvement over the default
// behavior is expected, are modeled via check::PostCall, non-intrusively.
//
// The following standard C functions are currently supported:
//
//   fgetc      getline   isdigit   isupper
//   fread      isalnum   isgraph   isxdigit
//   fwrite     isalpha   islower   read
//   getc       isascii   isprint   write
//   getchar    isblank   ispunct
//   getdelim   iscntrl   isspace
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"

using namespace clang;
using namespace clang::ento;

namespace {
class StdLibraryFunctionsChecker
    : public Checker<check::PreCall, check::PostCall, eval::Call> {

  class Summary;

  /// Specify how much the analyzer engine should entrust modeling this function
  /// to us. If he doesn't, he performs additional invalidations.
  enum InvalidationKind { NoEvalCall, EvalCallAsPure };

  // The universal integral type to use in value range descriptions.
  // Unsigned to make sure overflows are well-defined.
  typedef uint64_t RangeInt;

  /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
  /// a non-negative integer, which less than 5 and not equal to 2. For
  /// `ComparesToArgument', holds information about how exactly to compare to
  /// the argument.
  typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;

  /// A reference to an argument or return value by its number.
  /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
  /// obviously uint32_t should be enough for all practical purposes.
  typedef uint32_t ArgNo;
  static const ArgNo Ret;

  class ValueConstraint;

  // Pointer to the ValueConstraint. We need a copyable, polymorphic and
  // default initialize able type (vector needs that). A raw pointer was good,
  // however, we cannot default initialize that. unique_ptr makes the Summary
  // class non-copyable, therefore not an option. Releasing the copyability
  // requirement would render the initialization of the Summary map infeasible.
  using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;

  /// Polymorphic base class that represents a constraint on a given argument
  /// (or return value) of a function. Derived classes implement different kind
  /// of constraints, e.g range constraints or correlation between two
  /// arguments.
  class ValueConstraint {
  public:
    ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
    virtual ~ValueConstraint() {}
    /// Apply the effects of the constraint on the given program state. If null
    /// is returned then the constraint is not feasible.
    virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
                                  const Summary &Summary,
                                  CheckerContext &C) const = 0;
    virtual ValueConstraintPtr negate() const {
      llvm_unreachable("Not implemented");
    };

    // Check whether the constraint is malformed or not. It is malformed if the
    // specified argument has a mismatch with the given FunctionDecl (e.g. the
    // arg number is out-of-range of the function's argument list).
    bool checkValidity(const FunctionDecl *FD) const {
      const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams();
      assert(ValidArg && "Arg out of range!");
      if (!ValidArg)
        return false;
      // Subclasses may further refine the validation.
      return checkSpecificValidity(FD);
    }
    ArgNo getArgNo() const { return ArgN; }

  protected:
    ArgNo ArgN; // Argument to which we apply the constraint.

    /// Do polymorphic sanity check on the constraint.
    virtual bool checkSpecificValidity(const FunctionDecl *FD) const {
      return true;
    }
  };

  /// Given a range, should the argument stay inside or outside this range?
  enum RangeKind { OutOfRange, WithinRange };

  /// Encapsulates a single range on a single symbol within a branch.
  class RangeConstraint : public ValueConstraint {
    RangeKind Kind;      // Kind of range definition.
    IntRangeVector Args; // Polymorphic arguments.

  public:
    RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args)
        : ValueConstraint(ArgN), Kind(Kind), Args(Args) {}

    const IntRangeVector &getRanges() const {
      return Args;
    }

  private:
    ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
                                      const CallEvent &Call,
                                      const Summary &Summary) const;
    ProgramStateRef applyAsWithinRange(ProgramStateRef State,
                                       const CallEvent &Call,
                                       const Summary &Summary) const;
  public:
    ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
                          const Summary &Summary,
                          CheckerContext &C) const override {
      switch (Kind) {
      case OutOfRange:
        return applyAsOutOfRange(State, Call, Summary);
      case WithinRange:
        return applyAsWithinRange(State, Call, Summary);
      }
      llvm_unreachable("Unknown range kind!");
    }

    ValueConstraintPtr negate() const override {
      RangeConstraint Tmp(*this);
      switch (Kind) {
      case OutOfRange:
        Tmp.Kind = WithinRange;
        break;
      case WithinRange:
        Tmp.Kind = OutOfRange;
        break;
      }
      return std::make_shared<RangeConstraint>(Tmp);
    }

    bool checkSpecificValidity(const FunctionDecl *FD) const override {
      const bool ValidArg =
          getArgType(FD, ArgN)->isIntegralType(FD->getASTContext());
      assert(ValidArg &&
             "This constraint should be applied on an integral type");
      return ValidArg;
    }
  };

  class ComparisonConstraint : public ValueConstraint {
    BinaryOperator::Opcode Opcode;
    ArgNo OtherArgN;

  public:
    ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
                         ArgNo OtherArgN)
        : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
    ArgNo getOtherArgNo() const { return OtherArgN; }
    BinaryOperator::Opcode getOpcode() const { return Opcode; }
    ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
                          const Summary &Summary,
                          CheckerContext &C) const override;
  };

  class NotNullConstraint : public ValueConstraint {
    using ValueConstraint::ValueConstraint;
    // This variable has a role when we negate the constraint.
    bool CannotBeNull = true;

  public:
    ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
                          const Summary &Summary,
                          CheckerContext &C) const override {
      SVal V = getArgSVal(Call, getArgNo());
      if (V.isUndef())
        return State;

      DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
      if (!L.getAs<Loc>())
        return State;

      return State->assume(L, CannotBeNull);
    }

    ValueConstraintPtr negate() const override {
      NotNullConstraint Tmp(*this);
      Tmp.CannotBeNull = !this->CannotBeNull;
      return std::make_shared<NotNullConstraint>(Tmp);
    }

    bool checkSpecificValidity(const FunctionDecl *FD) const override {
      const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
      assert(ValidArg &&
             "This constraint should be applied only on a pointer type");
      return ValidArg;
    }
  };

  // Represents a buffer argument with an additional size argument.
  // E.g. the first two arguments here:
  //   ctime_s(char *buffer, rsize_t bufsz, const time_t *time);
  // Another example:
  //   size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
  //   // Here, ptr is the buffer, and its minimum size is `size * nmemb`.
  class BufferSizeConstraint : public ValueConstraint {
    // The argument which holds the size of the buffer.
    ArgNo SizeArgN;
    // The argument which is a multiplier to size. This is set in case of
    // `fread` like functions where the size is computed as a multiplication of
    // two arguments.
    llvm::Optional<ArgNo> SizeMultiplierArgN;
    // The operator we use in apply. This is negated in negate().
    BinaryOperator::Opcode Op = BO_LE;

  public:
    BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize)
        : ValueConstraint(Buffer), SizeArgN(BufSize) {}

    BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier)
        : ValueConstraint(Buffer), SizeArgN(BufSize),
          SizeMultiplierArgN(BufSizeMultiplier) {}

    ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
                          const Summary &Summary,
                          CheckerContext &C) const override {
      SValBuilder &SvalBuilder = C.getSValBuilder();
      // The buffer argument.
      SVal BufV = getArgSVal(Call, getArgNo());
      // The size argument.
      SVal SizeV = getArgSVal(Call, SizeArgN);
      // Multiply with another argument if given.
      if (SizeMultiplierArgN) {
        SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN);
        SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV,
                                      Summary.getArgType(SizeArgN));
      }
      // The dynamic size of the buffer argument, got from the analyzer engine.
      SVal BufDynSize = getDynamicSizeWithOffset(State, BufV);

      SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize,
                                            SvalBuilder.getContext().BoolTy);
      if (auto F = Feasible.getAs<DefinedOrUnknownSVal>())
        return State->assume(*F, true);

      // We can get here only if the size argument or the dynamic size is
      // undefined. But the dynamic size should never be undefined, only
      // unknown. So, here, the size of the argument is undefined, i.e. we
      // cannot apply the constraint. Actually, other checkers like
      // CallAndMessage should catch this situation earlier, because we call a
      // function with an uninitialized argument.
      llvm_unreachable("Size argument or the dynamic size is Undefined");
    }

    ValueConstraintPtr negate() const override {
      BufferSizeConstraint Tmp(*this);
      Tmp.Op = BinaryOperator::negateComparisonOp(Op);
      return std::make_shared<BufferSizeConstraint>(Tmp);
    }
  };

  /// The complete list of constraints that defines a single branch.
  typedef std::vector<ValueConstraintPtr> ConstraintSet;

  using ArgTypes = std::vector<QualType>;

  // A placeholder type, we use it whenever we do not care about the concrete
  // type in a Signature.
  const QualType Irrelevant{};
  bool static isIrrelevant(QualType T) { return T.isNull(); }

  // The signature of a function we want to describe with a summary. This is a
  // concessive signature, meaning there may be irrelevant types in the
  // signature which we do not check against a function with concrete types.
  struct Signature {
    const ArgTypes ArgTys;
    const QualType RetTy;
    Signature(ArgTypes ArgTys, QualType RetTy) : ArgTys(ArgTys), RetTy(RetTy) {
      assertRetTypeSuitableForSignature(RetTy);
      for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
        QualType ArgTy = ArgTys[I];
        assertArgTypeSuitableForSignature(ArgTy);
      }
    }
    bool matches(const FunctionDecl *FD) const;

  private:
    static void assertArgTypeSuitableForSignature(QualType T) {
      assert((T.isNull() || !T->isVoidType()) &&
             "We should have no void types in the spec");
      assert((T.isNull() || T.isCanonical()) &&
             "We should only have canonical types in the spec");
    }
    static void assertRetTypeSuitableForSignature(QualType T) {
      assert((T.isNull() || T.isCanonical()) &&
             "We should only have canonical types in the spec");
    }
  };

  static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) {
    assert(FD && "Function must be set");
    QualType T = (ArgN == Ret)
                     ? FD->getReturnType().getCanonicalType()
                     : FD->getParamDecl(ArgN)->getType().getCanonicalType();
    return T;
  }

  using Cases = std::vector<ConstraintSet>;

  /// A summary includes information about
  ///   * function prototype (signature)
  ///   * approach to invalidation,
  ///   * a list of branches - a list of list of ranges -
  ///     A branch represents a path in the exploded graph of a function (which
  ///     is a tree). So, a branch is a series of assumptions. In other words,
  ///     branches represent split states and additional assumptions on top of
  ///     the splitting assumption.
  ///     For example, consider the branches in `isalpha(x)`
  ///       Branch 1)
  ///         x is in range ['A', 'Z'] or in ['a', 'z']
  ///         then the return value is not 0. (I.e. out-of-range [0, 0])
  ///       Branch 2)
  ///         x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
  ///         then the return value is 0.
  ///   * a list of argument constraints, that must be true on every branch.
  ///     If these constraints are not satisfied that means a fatal error
  ///     usually resulting in undefined behaviour.
  ///
  /// Application of a summary:
  ///   The signature and argument constraints together contain information
  ///   about which functions are handled by the summary. The signature can use
  ///   "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in
  ///   a signature means that type is not compared to the type of the parameter
  ///   in the found FunctionDecl. Argument constraints may specify additional
  ///   rules for the given parameter's type, those rules are checked once the
  ///   signature is matched.
  class Summary {
    const Signature Sign;
    const InvalidationKind InvalidationKd;
    Cases CaseConstraints;
    ConstraintSet ArgConstraints;

    // The function to which the summary applies. This is set after lookup and
    // match to the signature.
    const FunctionDecl *FD = nullptr;

  public:
    Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
        : Sign(ArgTys, RetTy), InvalidationKd(InvalidationKd) {}

    Summary &Case(ConstraintSet&& CS) {
      CaseConstraints.push_back(std::move(CS));
      return *this;
    }
    Summary &ArgConstraint(ValueConstraintPtr VC) {
      ArgConstraints.push_back(VC);
      return *this;
    }

    InvalidationKind getInvalidationKd() const { return InvalidationKd; }
    const Cases &getCaseConstraints() const { return CaseConstraints; }
    const ConstraintSet &getArgConstraints() const { return ArgConstraints; }

    QualType getArgType(ArgNo ArgN) const {
      return StdLibraryFunctionsChecker::getArgType(FD, ArgN);
    }

    // Returns true if the summary should be applied to the given function.
    // And if yes then store the function declaration.
    bool matchesAndSet(const FunctionDecl *FD) {
      bool Result = Sign.matches(FD) && validateByConstraints(FD);
      if (Result) {
        assert(!this->FD && "FD must not be set more than once");
        this->FD = FD;
      }
      return Result;
    }

  private:
    // Once we know the exact type of the function then do sanity check on all
    // the given constraints.
    bool validateByConstraints(const FunctionDecl *FD) const {
      for (const ConstraintSet &Case : CaseConstraints)
        for (const ValueConstraintPtr &Constraint : Case)
          if (!Constraint->checkValidity(FD))
            return false;
      for (const ValueConstraintPtr &Constraint : ArgConstraints)
        if (!Constraint->checkValidity(FD))
          return false;
      return true;
    }
  };

  // The map of all functions supported by the checker. It is initialized
  // lazily, and it doesn't change after initialization.
  using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
  mutable FunctionSummaryMapType FunctionSummaryMap;

  mutable std::unique_ptr<BugType> BT_InvalidArg;

  static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
    return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
  }

public:
  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  bool evalCall(const CallEvent &Call, CheckerContext &C) const;

  enum CheckKind {
    CK_StdCLibraryFunctionArgsChecker,
    CK_StdCLibraryFunctionsTesterChecker,
    CK_NumCheckKinds
  };
  DefaultBool ChecksEnabled[CK_NumCheckKinds];
  CheckerNameRef CheckNames[CK_NumCheckKinds];

  bool DisplayLoadedSummaries = false;
  bool ModelPOSIX = false;

private:
  Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
                                        CheckerContext &C) const;
  Optional<Summary> findFunctionSummary(const CallEvent &Call,
                                        CheckerContext &C) const;

  void initFunctionSummaries(CheckerContext &C) const;

  void reportBug(const CallEvent &Call, ExplodedNode *N,
                 CheckerContext &C) const {
    if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
      return;
    // TODO Add detailed diagnostic.
    StringRef Msg = "Function argument constraint is not satisfied";
    if (!BT_InvalidArg)
      BT_InvalidArg = std::make_unique<BugType>(
          CheckNames[CK_StdCLibraryFunctionArgsChecker],
          "Unsatisfied argument constraints", categories::LogicError);
    auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
    bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R);
    C.emitReport(std::move(R));
  }
};

const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
    std::numeric_limits<ArgNo>::max();

} // end of anonymous namespace

ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
    ProgramStateRef State, const CallEvent &Call,
    const Summary &Summary) const {

  ProgramStateManager &Mgr = State->getStateManager();
  SValBuilder &SVB = Mgr.getSValBuilder();
  BasicValueFactory &BVF = SVB.getBasicValueFactory();
  ConstraintManager &CM = Mgr.getConstraintManager();
  QualType T = Summary.getArgType(getArgNo());
  SVal V = getArgSVal(Call, getArgNo());

  if (auto N = V.getAs<NonLoc>()) {
    const IntRangeVector &R = getRanges();
    size_t E = R.size();
    for (size_t I = 0; I != E; ++I) {
      const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
      const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
      assert(Min <= Max);
      State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
      if (!State)
        break;
    }
  }

  return State;
}

ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
    ProgramStateRef State, const CallEvent &Call,
    const Summary &Summary) const {

  ProgramStateManager &Mgr = State->getStateManager();
  SValBuilder &SVB = Mgr.getSValBuilder();
  BasicValueFactory &BVF = SVB.getBasicValueFactory();
  ConstraintManager &CM = Mgr.getConstraintManager();
  QualType T = Summary.getArgType(getArgNo());
  SVal V = getArgSVal(Call, getArgNo());

  // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
  // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
  // and then cut away all holes in R one by one.
  //
  // E.g. consider a range list R as [A, B] and [C, D]
  // -------+--------+------------------+------------+----------->
  //        A        B                  C            D
  // Then we assume that the value is not in [-inf, A - 1],
  // then not in [D + 1, +inf], then not in [B + 1, C - 1]
  if (auto N = V.getAs<NonLoc>()) {
    const IntRangeVector &R = getRanges();
    size_t E = R.size();

    const llvm::APSInt &MinusInf = BVF.getMinValue(T);
    const llvm::APSInt &PlusInf = BVF.getMaxValue(T);

    const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
    if (Left != PlusInf) {
      assert(MinusInf <= Left);
      State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
      if (!State)
        return nullptr;
    }

    const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
    if (Right != MinusInf) {
      assert(Right <= PlusInf);
      State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
      if (!State)
        return nullptr;
    }

    for (size_t I = 1; I != E; ++I) {
      const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
      const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
      if (Min <= Max) {
        State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
        if (!State)
          return nullptr;
      }
    }
  }

  return State;
}

ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
    ProgramStateRef State, const CallEvent &Call, const Summary &Summary,
    CheckerContext &C) const {

  ProgramStateManager &Mgr = State->getStateManager();
  SValBuilder &SVB = Mgr.getSValBuilder();
  QualType CondT = SVB.getConditionType();
  QualType T = Summary.getArgType(getArgNo());
  SVal V = getArgSVal(Call, getArgNo());

  BinaryOperator::Opcode Op = getOpcode();
  ArgNo OtherArg = getOtherArgNo();
  SVal OtherV = getArgSVal(Call, OtherArg);
  QualType OtherT = Summary.getArgType(OtherArg);
  // Note: we avoid integral promotion for comparison.
  OtherV = SVB.evalCast(OtherV, T, OtherT);
  if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
                       .getAs<DefinedOrUnknownSVal>())
    State = State->assume(*CompV, true);
  return State;
}

void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
                                              CheckerContext &C) const {
  Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
  if (!FoundSummary)
    return;

  const Summary &Summary = *FoundSummary;
  ProgramStateRef State = C.getState();

  ProgramStateRef NewState = State;
  for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) {
    ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C);
    ProgramStateRef FailureSt =
        Constraint->negate()->apply(NewState, Call, Summary, C);
    // The argument constraint is not satisfied.
    if (FailureSt && !SuccessSt) {
      if (ExplodedNode *N = C.generateErrorNode(NewState))
        reportBug(Call, N, C);
      break;
    } else {
      // We will apply the constraint even if we cannot reason about the
      // argument. This means both SuccessSt and FailureSt can be true. If we
      // weren't applying the constraint that would mean that symbolic
      // execution continues on a code whose behaviour is undefined.
      assert(SuccessSt);
      NewState = SuccessSt;
    }
  }
  if (NewState && NewState != State)
    C.addTransition(NewState);
}

void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
                                               CheckerContext &C) const {
  Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
  if (!FoundSummary)
    return;

  // Now apply the constraints.
  const Summary &Summary = *FoundSummary;
  ProgramStateRef State = C.getState();

  // Apply case/branch specifications.
  for (const ConstraintSet &Case : Summary.getCaseConstraints()) {
    ProgramStateRef NewState = State;
    for (const ValueConstraintPtr &Constraint : Case) {
      NewState = Constraint->apply(NewState, Call, Summary, C);
      if (!NewState)
        break;
    }

    if (NewState && NewState != State)
      C.addTransition(NewState);
  }
}

bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
                                          CheckerContext &C) const {
  Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
  if (!FoundSummary)
    return false;

  const Summary &Summary = *FoundSummary;
  switch (Summary.getInvalidationKd()) {
  case EvalCallAsPure: {
    ProgramStateRef State = C.getState();
    const LocationContext *LC = C.getLocationContext();
    const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
    SVal V = C.getSValBuilder().conjureSymbolVal(
        CE, LC, CE->getType().getCanonicalType(), C.blockCount());
    State = State->BindExpr(CE, LC, V);
    C.addTransition(State);
    return true;
  }
  case NoEvalCall:
    // Summary tells us to avoid performing eval::Call. The function is possibly
    // evaluated by another checker, or evaluated conservatively.
    return false;
  }
  llvm_unreachable("Unknown invalidation kind!");
}

bool StdLibraryFunctionsChecker::Signature::matches(
    const FunctionDecl *FD) const {
  // Check number of arguments:
  if (FD->param_size() != ArgTys.size())
    return false;

  // Check return type.
  if (!isIrrelevant(RetTy))
    if (RetTy != FD->getReturnType().getCanonicalType())
      return false;

  // Check argument types.
  for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
    QualType ArgTy = ArgTys[I];
    if (isIrrelevant(ArgTy))
      continue;
    if (ArgTy != FD->getParamDecl(I)->getType().getCanonicalType())
      return false;
  }

  return true;
}

Optional<StdLibraryFunctionsChecker::Summary>
StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
                                                CheckerContext &C) const {
  if (!FD)
    return None;

  initFunctionSummaries(C);

  auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
  if (FSMI == FunctionSummaryMap.end())
    return None;
  return FSMI->second;
}

Optional<StdLibraryFunctionsChecker::Summary>
StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
                                                CheckerContext &C) const {
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
  if (!FD)
    return None;
  return findFunctionSummary(FD, C);
}

static llvm::Optional<QualType> lookupType(StringRef Name,
                                           const ASTContext &ACtx) {
  IdentifierInfo &II = ACtx.Idents.get(Name);
  auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
  if (LookupRes.size() == 0)
    return None;

  // Prioritze typedef declarations.
  // This is needed in case of C struct typedefs. E.g.:
  //   typedef struct FILE FILE;
  // In this case, we have a RecordDecl 'struct FILE' with the name 'FILE' and
  // we have a TypedefDecl with the name 'FILE'.
  for (Decl *D : LookupRes)
    if (auto *TD = dyn_cast<TypedefNameDecl>(D))
      return ACtx.getTypeDeclType(TD).getCanonicalType();

  // Find the first TypeDecl.
  // There maybe cases when a function has the same name as a struct.
  // E.g. in POSIX: `struct stat` and the function `stat()`:
  //   int stat(const char *restrict path, struct stat *restrict buf);
  for (Decl *D : LookupRes)
    if (auto *TD = dyn_cast<TypeDecl>(D))
      return ACtx.getTypeDeclType(TD).getCanonicalType();
  return None;
}

void StdLibraryFunctionsChecker::initFunctionSummaries(
    CheckerContext &C) const {
  if (!FunctionSummaryMap.empty())
    return;

  SValBuilder &SVB = C.getSValBuilder();
  BasicValueFactory &BVF = SVB.getBasicValueFactory();
  const ASTContext &ACtx = BVF.getContext();

  // These types are useful for writing specifications quickly,
  // New specifications should probably introduce more types.
  // Some types are hard to obtain from the AST, eg. "ssize_t".
  // In such cases it should be possible to provide multiple variants
  // of function summary for common cases (eg. ssize_t could be int or long
  // or long long, so three summary variants would be enough).
  // Of course, function variants are also useful for C++ overloads.
  const QualType VoidTy = ACtx.VoidTy;
  const QualType IntTy = ACtx.IntTy;
  const QualType UnsignedIntTy = ACtx.UnsignedIntTy;
  const QualType LongTy = ACtx.LongTy;
  const QualType LongLongTy = ACtx.LongLongTy;
  const QualType SizeTy = ACtx.getSizeType();

  const QualType VoidPtrTy = ACtx.VoidPtrTy; // void *
  const QualType IntPtrTy = ACtx.getPointerType(IntTy); // int *
  const QualType UnsignedIntPtrTy =
      ACtx.getPointerType(UnsignedIntTy); // unsigned int *
  const QualType VoidPtrRestrictTy =
      ACtx.getLangOpts().C99 ? ACtx.getRestrictType(VoidPtrTy) // void *restrict
                             : VoidPtrTy;
  const QualType ConstVoidPtrTy =
      ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void *
  const QualType CharPtrTy = ACtx.getPointerType(ACtx.CharTy); // char *
  const QualType CharPtrRestrictTy =
      ACtx.getLangOpts().C99 ? ACtx.getRestrictType(CharPtrTy) // char *restrict
                             : CharPtrTy;
  const QualType ConstCharPtrTy =
      ACtx.getPointerType(ACtx.CharTy.withConst()); // const char *
  const QualType ConstCharPtrRestrictTy =
      ACtx.getLangOpts().C99
          ? ACtx.getRestrictType(ConstCharPtrTy) // const char *restrict
          : ConstCharPtrTy;
  const QualType Wchar_tPtrTy = ACtx.getPointerType(ACtx.WCharTy); // wchar_t *
  const QualType ConstWchar_tPtrTy =
      ACtx.getPointerType(ACtx.WCharTy.withConst()); // const wchar_t *
  const QualType ConstVoidPtrRestrictTy =
      ACtx.getLangOpts().C99
          ? ACtx.getRestrictType(ConstVoidPtrTy) // const void *restrict
          : ConstVoidPtrTy;

  const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
  const RangeInt UnsignedIntMax =
      BVF.getMaxValue(UnsignedIntTy).getLimitedValue();
  const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
  const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
  const RangeInt SizeMax = BVF.getMaxValue(SizeTy).getLimitedValue();

  // Set UCharRangeMax to min of int or uchar maximum value.
  // The C standard states that the arguments of functions like isalpha must
  // be representable as an unsigned char. Their type is 'int', so the max
  // value of the argument should be min(UCharMax, IntMax). This just happen
  // to be true for commonly used and well tested instruction set
  // architectures, but not for others.
  const RangeInt UCharRangeMax =
      std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);

  // The platform dependent value of EOF.
  // Try our best to parse this from the Preprocessor, otherwise fallback to -1.
  const auto EOFv = [&C]() -> RangeInt {
    if (const llvm::Optional<int> OptInt =
            tryExpandAsInteger("EOF", C.getPreprocessor()))
      return *OptInt;
    return -1;
  }();

  // Auxiliary class to aid adding summaries to the summary map.
  struct AddToFunctionSummaryMap {
    const ASTContext &ACtx;
    FunctionSummaryMapType &Map;
    bool DisplayLoadedSummaries;
    AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM,
                            bool DisplayLoadedSummaries)
        : ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) {
    }

    // Add a summary to a FunctionDecl found by lookup. The lookup is performed
    // by the given Name, and in the global scope. The summary will be attached
    // to the found FunctionDecl only if the signatures match.
    void operator()(StringRef Name, Summary S) {
      IdentifierInfo &II = ACtx.Idents.get(Name);
      auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
      if (LookupRes.size() == 0)
        return;
      for (Decl *D : LookupRes) {
        if (auto *FD = dyn_cast<FunctionDecl>(D)) {
          if (S.matchesAndSet(FD)) {
            auto Res = Map.insert({FD->getCanonicalDecl(), S});
            assert(Res.second && "Function already has a summary set!");
            (void)Res;
            if (DisplayLoadedSummaries) {
              llvm::errs() << "Loaded summary for: ";
              FD->print(llvm::errs());
              llvm::errs() << "\n";
            }
            return;
          }
        }
      }
    }
    // Add several summaries for the given name.
    void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
      for (const Summary &S : Summaries)
        operator()(Name, S);
    }
  } addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries);

  // We are finally ready to define specifications for all supported functions.
  //
  // The signature needs to have the correct number of arguments.
  // However, we insert `Irrelevant' when the type is insignificant.
  //
  // Argument ranges should always cover all variants. If return value
  // is completely unknown, omit it from the respective range set.
  //
  // All types in the spec need to be canonical.
  //
  // Every item in the list of range sets represents a particular
  // execution path the analyzer would need to explore once
  // the call is modeled - a new program state is constructed
  // for every range set, and each range line in the range set
  // corresponds to a specific constraint within this state.
  //
  // Upon comparing to another argument, the other argument is casted
  // to the current argument's type. This avoids proper promotion but
  // seems useful. For example, read() receives size_t argument,
  // and its return value, which is of type ssize_t, cannot be greater
  // than this argument. If we made a promotion, and the size argument
  // is equal to, say, 10, then we'd impose a range of [0, 10] on the
  // return value, however the correct range is [-1, 10].
  //
  // Please update the list of functions in the header after editing!

  // Below are helpers functions to create the summaries.
  auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
                              IntRangeVector Ranges) {
    return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
  };
  auto BufferSize = [](auto... Args) {
    return std::make_shared<BufferSizeConstraint>(Args...);
  };
  struct {
    auto operator()(RangeKind Kind, IntRangeVector Ranges) {
      return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
    }
    auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
      return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
    }
  } ReturnValueCondition;
  auto Range = [](RangeInt b, RangeInt e) {
    return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
  };
  auto SingleValue = [](RangeInt v) {
    return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
  };
  auto LessThanOrEq = BO_LE;
  auto NotNull = [&](ArgNo ArgN) {
    return std::make_shared<NotNullConstraint>(ArgN);
  };

  Optional<QualType> FileTy = lookupType("FILE", ACtx);
  Optional<QualType> FilePtrTy, FilePtrRestrictTy;
  if (FileTy) {
    // FILE *
    FilePtrTy = ACtx.getPointerType(*FileTy);
    // FILE *restrict
    FilePtrRestrictTy =
        ACtx.getLangOpts().C99 ? ACtx.getRestrictType(*FilePtrTy) : *FilePtrTy;
  }

  using RetType = QualType;
  // Templates for summaries that are reused by many functions.
  auto Getc = [&]() {
    return Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
        .Case({ReturnValueCondition(WithinRange,
                                    {{EOFv, EOFv}, {0, UCharRangeMax}})});
  };
  auto Read = [&](RetType R, RangeInt Max) {
    return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
                   NoEvalCall)
        .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
               ReturnValueCondition(WithinRange, Range(-1, Max))});
  };
  auto Fread = [&]() {
    return Summary(
               ArgTypes{VoidPtrRestrictTy, SizeTy, SizeTy, *FilePtrRestrictTy},
               RetType{SizeTy}, NoEvalCall)
        .Case({
            ReturnValueCondition(LessThanOrEq, ArgNo(2)),
        })
        .ArgConstraint(NotNull(ArgNo(0)));
  };
  auto Fwrite = [&]() {
    return Summary(ArgTypes{ConstVoidPtrRestrictTy, SizeTy, SizeTy,
                            *FilePtrRestrictTy},
                   RetType{SizeTy}, NoEvalCall)
        .Case({
            ReturnValueCondition(LessThanOrEq, ArgNo(2)),
        })
        .ArgConstraint(NotNull(ArgNo(0)));
  };
  auto Getline = [&](RetType R, RangeInt Max) {
    return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
                   NoEvalCall)
        .Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
  };

  // The isascii() family of functions.
  // The behavior is undefined if the value of the argument is not
  // representable as unsigned char or is not equal to EOF. See e.g. C99
  // 7.4.1.2 The isalpha function (p: 181-182).
  addToFunctionSummaryMap(
      "isalnum",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          // Boils down to isupper() or islower() or isdigit().
          .Case({ArgumentCondition(0U, WithinRange,
                                   {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          // The locale-specific range.
          // No post-condition. We are completely unaware of
          // locale-specific return values.
          .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
          .Case(
              {ArgumentCondition(
                   0U, OutOfRange,
                   {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
               ReturnValueCondition(WithinRange, SingleValue(0))})
          .ArgConstraint(ArgumentCondition(
              0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
  addToFunctionSummaryMap(
      "isalpha",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          // The locale-specific range.
          .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
          .Case({ArgumentCondition(
                     0U, OutOfRange,
                     {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isascii",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isblank",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "iscntrl",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isdigit",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isgraph",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "islower",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          // Is certainly lowercase.
          .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          // Is ascii but not lowercase.
          .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
                 ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
                 ReturnValueCondition(WithinRange, SingleValue(0))})
          // The locale-specific range.
          .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
          // Is not an unsigned char.
          .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isprint",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "ispunct",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(
                     0U, WithinRange,
                     {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(
                     0U, OutOfRange,
                     {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isspace",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          // Space, '\f', '\n', '\r', '\t', '\v'.
          .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          // The locale-specific range.
          .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
          .Case({ArgumentCondition(0U, OutOfRange,
                                   {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isupper",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          // Is certainly uppercase.
          .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          // The locale-specific range.
          .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
          // Other.
          .Case({ArgumentCondition(0U, OutOfRange,
                                   {{'A', 'Z'}, {128, UCharRangeMax}}),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));
  addToFunctionSummaryMap(
      "isxdigit",
      Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
          .Case({ArgumentCondition(0U, WithinRange,
                                   {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
                 ReturnValueCondition(OutOfRange, SingleValue(0))})
          .Case({ArgumentCondition(0U, OutOfRange,
                                   {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
                 ReturnValueCondition(WithinRange, SingleValue(0))}));

  // The getc() family of functions that returns either a char or an EOF.
  if (FilePtrTy) {
    addToFunctionSummaryMap("getc", Getc());
    addToFunctionSummaryMap("fgetc", Getc());
  }
  addToFunctionSummaryMap(
      "getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
                     .Case({ReturnValueCondition(
                         WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));

  // read()-like functions that never return more than buffer size.
  if (FilePtrRestrictTy) {
    addToFunctionSummaryMap("fread", Fread());
    addToFunctionSummaryMap("fwrite", Fwrite());
  }

  // We are not sure how ssize_t is defined on every platform, so we
  // provide three variants that should cover common cases.
  // FIXME these are actually defined by POSIX and not by the C standard, we
  // should handle them together with the rest of the POSIX functions.
  addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
                                   Read(LongLongTy, LongLongMax)});
  addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
                                    Read(LongLongTy, LongLongMax)});

  // getline()-like functions either fail or read at least the delimiter.
  // FIXME these are actually defined by POSIX and not by the C standard, we
  // should handle them together with the rest of the POSIX functions.
  addToFunctionSummaryMap("getline",
                          {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
                           Getline(LongLongTy, LongLongMax)});
  addToFunctionSummaryMap("getdelim",
                          {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
                           Getline(LongLongTy, LongLongMax)});

  if (ModelPOSIX) {

    // long a64l(const char *str64);
    addToFunctionSummaryMap(
        "a64l", Summary(ArgTypes{ConstCharPtrTy}, RetType{LongTy}, NoEvalCall)
                    .ArgConstraint(NotNull(ArgNo(0))));

    // char *l64a(long value);
    addToFunctionSummaryMap(
        "l64a", Summary(ArgTypes{LongTy}, RetType{CharPtrTy}, NoEvalCall)
                    .ArgConstraint(
                        ArgumentCondition(0, WithinRange, Range(0, LongMax))));

    // int access(const char *pathname, int amode);
    addToFunctionSummaryMap("access", Summary(ArgTypes{ConstCharPtrTy, IntTy},
                                              RetType{IntTy}, NoEvalCall)
                                          .ArgConstraint(NotNull(ArgNo(0))));

    // int faccessat(int dirfd, const char *pathname, int mode, int flags);
    addToFunctionSummaryMap(
        "faccessat", Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, IntTy},
                             RetType{IntTy}, NoEvalCall)
                         .ArgConstraint(NotNull(ArgNo(1))));

    // int dup(int fildes);
    addToFunctionSummaryMap(
        "dup", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
                   .ArgConstraint(
                       ArgumentCondition(0, WithinRange, Range(0, IntMax))));

    // int dup2(int fildes1, int filedes2);
    addToFunctionSummaryMap(
        "dup2",
        Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, NoEvalCall)
            .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
            .ArgConstraint(
                ArgumentCondition(1, WithinRange, Range(0, IntMax))));

    // int fdatasync(int fildes);
    addToFunctionSummaryMap(
        "fdatasync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
                         .ArgConstraint(ArgumentCondition(0, WithinRange,
                                                          Range(0, IntMax))));

    // int fnmatch(const char *pattern, const char *string, int flags);
    addToFunctionSummaryMap(
        "fnmatch", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, IntTy},
                           RetType{IntTy}, EvalCallAsPure)
                       .ArgConstraint(NotNull(ArgNo(0)))
                       .ArgConstraint(NotNull(ArgNo(1))));

    // int fsync(int fildes);
    addToFunctionSummaryMap(
        "fsync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
                     .ArgConstraint(
                         ArgumentCondition(0, WithinRange, Range(0, IntMax))));

    Optional<QualType> Off_tTy = lookupType("off_t", ACtx);

    if (Off_tTy)
      // int truncate(const char *path, off_t length);
      addToFunctionSummaryMap("truncate",
                              Summary(ArgTypes{ConstCharPtrTy, *Off_tTy},
                                      RetType{IntTy}, NoEvalCall)
                                  .ArgConstraint(NotNull(ArgNo(0))));

    // int symlink(const char *oldpath, const char *newpath);
    addToFunctionSummaryMap("symlink",
                            Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
                                    RetType{IntTy}, NoEvalCall)
                                .ArgConstraint(NotNull(ArgNo(0)))
                                .ArgConstraint(NotNull(ArgNo(1))));

    // int symlinkat(const char *oldpath, int newdirfd, const char *newpath);
    addToFunctionSummaryMap(
        "symlinkat",
        Summary(ArgTypes{ConstCharPtrTy, IntTy, ConstCharPtrTy}, RetType{IntTy},
                NoEvalCall)
            .ArgConstraint(NotNull(ArgNo(0)))
            .ArgConstraint(ArgumentCondition(1, WithinRange, Range(0, IntMax)))
            .ArgConstraint(NotNull(ArgNo(2))));

    if (Off_tTy)
      // int lockf(int fd, int cmd, off_t len);
      addToFunctionSummaryMap(
          "lockf",
          Summary(ArgTypes{IntTy, IntTy, *Off_tTy}, RetType{IntTy}, NoEvalCall)
              .ArgConstraint(
                  ArgumentCondition(0, WithinRange, Range(0, IntMax))));

    Optional<QualType> Mode_tTy = lookupType("mode_t", ACtx);

    if (Mode_tTy)
      // int creat(const char *pathname, mode_t mode);
      addToFunctionSummaryMap("creat",
                              Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
                                      RetType{IntTy}, NoEvalCall)
                                  .ArgConstraint(NotNull(ArgNo(0))));

    // unsigned int sleep(unsigned int seconds);
    addToFunctionSummaryMap(
        "sleep",
        Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
            .ArgConstraint(
                ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));

    Optional<QualType> DirTy = lookupType("DIR", ACtx);
    Optional<QualType> DirPtrTy;
    if (DirTy)
      DirPtrTy = ACtx.getPointerType(*DirTy);

    if (DirPtrTy)
      // int dirfd(DIR *dirp);
      addToFunctionSummaryMap(
          "dirfd", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall)
                       .ArgConstraint(NotNull(ArgNo(0))));

    // unsigned int alarm(unsigned int seconds);
    addToFunctionSummaryMap(
        "alarm",
        Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
            .ArgConstraint(
                ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));

    if (DirPtrTy)
      // int closedir(DIR *dir);
      addToFunctionSummaryMap(
          "closedir", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall)
                          .ArgConstraint(NotNull(ArgNo(0))));

    // char *strdup(const char *s);
    addToFunctionSummaryMap("strdup", Summary(ArgTypes{ConstCharPtrTy},
                                              RetType{CharPtrTy}, NoEvalCall)
                                          .ArgConstraint(NotNull(ArgNo(0))));

    // char *strndup(const char *s, size_t n);
    addToFunctionSummaryMap(
        "strndup", Summary(ArgTypes{ConstCharPtrTy, SizeTy}, RetType{CharPtrTy},
                           NoEvalCall)
                       .ArgConstraint(NotNull(ArgNo(0)))
                       .ArgConstraint(ArgumentCondition(1, WithinRange,
                                                        Range(0, SizeMax))));

    // wchar_t *wcsdup(const wchar_t *s);
    addToFunctionSummaryMap("wcsdup", Summary(ArgTypes{ConstWchar_tPtrTy},
                                              RetType{Wchar_tPtrTy}, NoEvalCall)
                                          .ArgConstraint(NotNull(ArgNo(0))));

    // int mkstemp(char *template);
    addToFunctionSummaryMap(
        "mkstemp", Summary(ArgTypes{CharPtrTy}, RetType{IntTy}, NoEvalCall)
                       .ArgConstraint(NotNull(ArgNo(0))));

    // char *mkdtemp(char *template);
    addToFunctionSummaryMap(
        "mkdtemp", Summary(ArgTypes{CharPtrTy}, RetType{CharPtrTy}, NoEvalCall)
                       .ArgConstraint(NotNull(ArgNo(0))));

    // char *getcwd(char *buf, size_t size);
    addToFunctionSummaryMap(
        "getcwd",
        Summary(ArgTypes{CharPtrTy, SizeTy}, RetType{CharPtrTy}, NoEvalCall)
            .ArgConstraint(
                ArgumentCondition(1, WithinRange, Range(0, SizeMax))));

    if (Mode_tTy) {
      // int mkdir(const char *pathname, mode_t mode);
      addToFunctionSummaryMap("mkdir",
                              Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
                                      RetType{IntTy}, NoEvalCall)
                                  .ArgConstraint(NotNull(ArgNo(0))));

      // int mkdirat(int dirfd, const char *pathname, mode_t mode);
      addToFunctionSummaryMap(
          "mkdirat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy},
                             RetType{IntTy}, NoEvalCall)
                         .ArgConstraint(NotNull(ArgNo(1))));
    }

    Optional<QualType> Dev_tTy = lookupType("dev_t", ACtx);

    if (Mode_tTy && Dev_tTy) {
      // int mknod(const char *pathname, mode_t mode, dev_t dev);
      addToFunctionSummaryMap(
          "mknod", Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy, *Dev_tTy},
                           RetType{IntTy}, NoEvalCall)
                       .ArgConstraint(NotNull(ArgNo(0))));

      // int mknodat(int dirfd, const char *pathname, mode_t mode, dev_t dev);
      addToFunctionSummaryMap("mknodat", Summary(ArgTypes{IntTy, ConstCharPtrTy,
                                                          *Mode_tTy, *Dev_tTy},
                                                 RetType{IntTy}, NoEvalCall)
                                             .ArgConstraint(NotNull(ArgNo(1))));
    }

    if (Mode_tTy) {
      // int chmod(const char *path, mode_t mode);
      addToFunctionSummaryMap("chmod",
                              Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
                                      RetType{IntTy}, NoEvalCall)
                                  .ArgConstraint(NotNull(ArgNo(0))));

      // int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags);
      addToFunctionSummaryMap(
          "fchmodat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy, IntTy},
                              RetType{IntTy}, NoEvalCall)
                          .ArgConstraint(ArgumentCondition(0, WithinRange,
                                                           Range(0, IntMax)))
                          .ArgConstraint(NotNull(ArgNo(1))));

      // int fchmod(int fildes, mode_t mode);
      addToFunctionSummaryMap(
          "fchmod",
          Summary(ArgTypes{IntTy, *Mode_tTy}, RetType{IntTy}, NoEvalCall)
              .ArgConstraint(
                  ArgumentCondition(0, WithinRange, Range(0, IntMax))));
    }

    Optional<QualType> Uid_tTy = lookupType("uid_t", ACtx);
    Optional<QualType> Gid_tTy = lookupType("gid_t", ACtx);

    if (Uid_tTy && Gid_tTy) {
      // int fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group,
      //              int flags);
      addToFunctionSummaryMap(
          "fchownat",
          Summary(ArgTypes{IntTy, ConstCharPtrTy, *Uid_tTy, *Gid_tTy, IntTy},
                  RetType{IntTy}, NoEvalCall)
              .ArgConstraint(
                  ArgumentCondition(0, WithinRange, Range(0, IntMax)))
              .ArgConstraint(NotNull(ArgNo(1))));

      // int chown(const char *path, uid_t owner, gid_t group);
      addToFunctionSummaryMap(
          "chown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy},
                           RetType{IntTy}, NoEvalCall)
                       .ArgConstraint(NotNull(ArgNo(0))));

      // int lchown(const char *path, uid_t owner, gid_t group);
      addToFunctionSummaryMap(
          "lchown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy},
                            RetType{IntTy}, NoEvalCall)
                        .ArgConstraint(NotNull(ArgNo(0))));

      // int fchown(int fildes, uid_t owner, gid_t group);
      addToFunctionSummaryMap(
          "fchown", Summary(ArgTypes{IntTy, *Uid_tTy, *Gid_tTy}, RetType{IntTy},
                            NoEvalCall)
                        .ArgConstraint(ArgumentCondition(0, WithinRange,
                                                         Range(0, IntMax))));
    }

    // int rmdir(const char *pathname);
    addToFunctionSummaryMap(
        "rmdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
                     .ArgConstraint(NotNull(ArgNo(0))));

    // int chdir(const char *path);
    addToFunctionSummaryMap(
        "chdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
                     .ArgConstraint(NotNull(ArgNo(0))));

    // int link(const char *oldpath, const char *newpath);
    addToFunctionSummaryMap("link",
                            Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
                                    RetType{IntTy}, NoEvalCall)
                                .ArgConstraint(NotNull(ArgNo(0)))
                                .ArgConstraint(NotNull(ArgNo(1))));

    // int linkat(int fd1, const char *path1, int fd2, const char *path2,
    //            int flag);
    addToFunctionSummaryMap(
        "linkat",
        Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, ConstCharPtrTy, IntTy},
                RetType{IntTy}, NoEvalCall)
            .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
            .ArgConstraint(NotNull(ArgNo(1)))
            .ArgConstraint(ArgumentCondition(2, WithinRange, Range(0, IntMax)))
            .ArgConstraint(NotNull(ArgNo(3))));

    // int unlink(const char *pathname);
    addToFunctionSummaryMap(
        "unlink", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
                      .ArgConstraint(NotNull(ArgNo(0))));

    // int unlinkat(int fd, const char *path, int flag);
    addToFunctionSummaryMap(
        "unlinkat",
        Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy}, RetType{IntTy},
                NoEvalCall)
            .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
            .ArgConstraint(NotNull(ArgNo(1))));

    Optional<QualType> StructStatTy = lookupType("stat", ACtx);
    Optional<QualType> StructStatPtrTy, StructStatPtrRestrictTy;
    if (StructStatTy) {
      StructStatPtrTy = ACtx.getPointerType(*StructStatTy);
      StructStatPtrRestrictTy = ACtx.getLangOpts().C99
                                    ? ACtx.getRestrictType(*StructStatPtrTy)
                                    : *StructStatPtrTy;
    }

    if (StructStatPtrTy)
      // int fstat(int fd, struct stat *statbuf);
      addToFunctionSummaryMap(
          "fstat",
          Summary(ArgTypes{IntTy, *StructStatPtrTy}, RetType{IntTy}, NoEvalCall)
              .ArgConstraint(
                  ArgumentCondition(0, WithinRange, Range(0, IntMax)))
              .ArgConstraint(NotNull(ArgNo(1))));

    if (StructStatPtrRestrictTy) {
      // int stat(const char *restrict path, struct stat *restrict buf);
      addToFunctionSummaryMap(
          "stat",
          Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy},
                  RetType{IntTy}, NoEvalCall)
              .ArgConstraint(NotNull(ArgNo(0)))
              .ArgConstraint(NotNull(ArgNo(1))));

      // int lstat(const char *restrict path, struct stat *restrict buf);
      addToFunctionSummaryMap(
          "lstat",
          Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy},
                  RetType{IntTy}, NoEvalCall)
              .ArgConstraint(NotNull(ArgNo(0)))
              .ArgConstraint(NotNull(ArgNo(1))));

      // int fstatat(int fd, const char *restrict path,
      //             struct stat *restrict buf, int flag);
      addToFunctionSummaryMap(
          "fstatat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy,
                                      *StructStatPtrRestrictTy, IntTy},
                             RetType{IntTy}, NoEvalCall)
                         .ArgConstraint(ArgumentCondition(0, WithinRange,
                                                          Range(0, IntMax)))
                         .ArgConstraint(NotNull(ArgNo(1)))
                         .ArgConstraint(NotNull(ArgNo(2))));
    }

    if (DirPtrTy) {
      // DIR *opendir(const char *name);
      addToFunctionSummaryMap("opendir", Summary(ArgTypes{ConstCharPtrTy},
                                                 RetType{*DirPtrTy}, NoEvalCall)
                                             .ArgConstraint(NotNull(ArgNo(0))));

      // DIR *fdopendir(int fd);
      addToFunctionSummaryMap(
          "fdopendir", Summary(ArgTypes{IntTy}, RetType{*DirPtrTy}, NoEvalCall)
                           .ArgConstraint(ArgumentCondition(0, WithinRange,
                                                            Range(0, IntMax))));
    }

    // int isatty(int fildes);
    addToFunctionSummaryMap(
        "isatty", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
                      .ArgConstraint(
                          ArgumentCondition(0, WithinRange, Range(0, IntMax))));

    if (FilePtrTy) {
      // FILE *popen(const char *command, const char *type);
      addToFunctionSummaryMap("popen",
                              Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
                                      RetType{*FilePtrTy}, NoEvalCall)
                                  .ArgConstraint(NotNull(ArgNo(0)))
                                  .ArgConstraint(NotNull(ArgNo(1))));

      // int pclose(FILE *stream);
      addToFunctionSummaryMap(
          "pclose", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
                        .ArgConstraint(NotNull(ArgNo(0))));
    }

    // int close(int fildes);
    addToFunctionSummaryMap(
        "close", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
                     .ArgConstraint(
                         ArgumentCondition(0, WithinRange, Range(0, IntMax))));

    // long fpathconf(int fildes, int name);
    addToFunctionSummaryMap(
        "fpathconf",
        Summary(ArgTypes{IntTy, IntTy}, RetType{LongTy}, NoEvalCall)
            .ArgConstraint(
                ArgumentCondition(0, WithinRange, Range(0, IntMax))));

    // long pathconf(const char *path, int name);
    addToFunctionSummaryMap("pathconf", Summary(ArgTypes{ConstCharPtrTy, IntTy},
                                                RetType{LongTy}, NoEvalCall)
                                            .ArgConstraint(NotNull(ArgNo(0))));

    if (FilePtrTy)
      // FILE *fdopen(int fd, const char *mode);
      addToFunctionSummaryMap(
          "fdopen", Summary(ArgTypes{IntTy, ConstCharPtrTy},
                            RetType{*FilePtrTy}, NoEvalCall)
                        .ArgConstraint(
                            ArgumentCondition(0, WithinRange, Range(0, IntMax)))
                        .ArgConstraint(NotNull(ArgNo(1))));

    if (DirPtrTy) {
      // void rewinddir(DIR *dir);
      addToFunctionSummaryMap(
          "rewinddir", Summary(ArgTypes{*DirPtrTy}, RetType{VoidTy}, NoEvalCall)
                           .ArgConstraint(NotNull(ArgNo(0))));

      // void seekdir(DIR *dirp, long loc);
      addToFunctionSummaryMap("seekdir", Summary(ArgTypes{*DirPtrTy, LongTy},
                                                 RetType{VoidTy}, NoEvalCall)
                                             .ArgConstraint(NotNull(ArgNo(0))));
    }

    // int rand_r(unsigned int *seedp);
    addToFunctionSummaryMap("rand_r", Summary(ArgTypes{UnsignedIntPtrTy},
                                              RetType{IntTy}, NoEvalCall)
                                          .ArgConstraint(NotNull(ArgNo(0))));

    // int strcasecmp(const char *s1, const char *s2);
    addToFunctionSummaryMap("strcasecmp",
                            Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
                                    RetType{IntTy}, EvalCallAsPure)
                                .ArgConstraint(NotNull(ArgNo(0)))
                                .ArgConstraint(NotNull(ArgNo(1))));

    // int strncasecmp(const char *s1, const char *s2, size_t n);
    addToFunctionSummaryMap(
        "strncasecmp", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, SizeTy},
                               RetType{IntTy}, EvalCallAsPure)
                           .ArgConstraint(NotNull(ArgNo(0)))
                           .ArgConstraint(NotNull(ArgNo(1)))
                           .ArgConstraint(ArgumentCondition(
                               2, WithinRange, Range(0, SizeMax))));

    if (FilePtrTy && Off_tTy) {

      // int fileno(FILE *stream);
      addToFunctionSummaryMap(
          "fileno", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
                        .ArgConstraint(NotNull(ArgNo(0))));

      // int fseeko(FILE *stream, off_t offset, int whence);
      addToFunctionSummaryMap("fseeko",
                              Summary(ArgTypes{*FilePtrTy, *Off_tTy, IntTy},
                                      RetType{IntTy}, NoEvalCall)
                                  .ArgConstraint(NotNull(ArgNo(0))));

      // off_t ftello(FILE *stream);
      addToFunctionSummaryMap(
          "ftello", Summary(ArgTypes{*FilePtrTy}, RetType{*Off_tTy}, NoEvalCall)
                        .ArgConstraint(NotNull(ArgNo(0))));
    }

    if (Off_tTy) {
      Optional<RangeInt> Off_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue();

      // void *mmap(void *addr, size_t length, int prot, int flags, int fd,
      // off_t offset);
      addToFunctionSummaryMap(
          "mmap",
          Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off_tTy},
                  RetType{VoidPtrTy}, NoEvalCall)
              .ArgConstraint(
                  ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
              .ArgConstraint(
                  ArgumentCondition(4, WithinRange, Range(0, *Off_tMax))));
    }

    Optional<QualType> Off64_tTy = lookupType("off64_t", ACtx);
    Optional<RangeInt> Off64_tMax;
    if (Off64_tTy) {
      Off64_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue();
      // void *mmap64(void *addr, size_t length, int prot, int flags, int fd,
      // off64_t offset);
      addToFunctionSummaryMap(
          "mmap64",
          Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off64_tTy},
                  RetType{VoidPtrTy}, NoEvalCall)
              .ArgConstraint(
                  ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
              .ArgConstraint(
                  ArgumentCondition(4, WithinRange, Range(0, *Off64_tMax))));
    }

    // int pipe(int fildes[2]);
    addToFunctionSummaryMap(
        "pipe", Summary(ArgTypes{IntPtrTy}, RetType{IntTy}, NoEvalCall)
                    .ArgConstraint(NotNull(ArgNo(0))));

    if (Off_tTy)
      // off_t lseek(int fildes, off_t offset, int whence);
      addToFunctionSummaryMap(
          "lseek", Summary(ArgTypes{IntTy, *Off_tTy, IntTy}, RetType{*Off_tTy},
                           NoEvalCall)
                       .ArgConstraint(ArgumentCondition(0, WithinRange,
                                                        Range(0, IntMax))));

    Optional<QualType> Ssize_tTy = lookupType("ssize_t", ACtx);

    if (Ssize_tTy) {
      // ssize_t readlink(const char *restrict path, char *restrict buf,
      //                  size_t bufsize);
      addToFunctionSummaryMap(
          "readlink",
          Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy},
                  RetType{*Ssize_tTy}, NoEvalCall)
              .ArgConstraint(NotNull(ArgNo(0)))
              .ArgConstraint(NotNull(ArgNo(1)))
              .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
                                        /*BufSize=*/ArgNo(2)))
              .ArgConstraint(
                  ArgumentCondition(2, WithinRange, Range(0, SizeMax))));

      // ssize_t readlinkat(int fd, const char *restrict path,
      //                    char *restrict buf, size_t bufsize);
      addToFunctionSummaryMap(
          "readlinkat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy,
                                         CharPtrRestrictTy, SizeTy},
                                RetType{*Ssize_tTy}, NoEvalCall)
                            .ArgConstraint(ArgumentCondition(0, WithinRange,
                                                             Range(0, IntMax)))
                            .ArgConstraint(NotNull(ArgNo(1)))
                            .ArgConstraint(NotNull(ArgNo(2)))
                            .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(2),
                                                      /*BufSize=*/ArgNo(3)))
                            .ArgConstraint(ArgumentCondition(
                                3, WithinRange, Range(0, SizeMax))));
    }

    // int renameat(int olddirfd, const char *oldpath, int newdirfd, const char
    // *newpath);
    addToFunctionSummaryMap("renameat", Summary(ArgTypes{IntTy, ConstCharPtrTy,
                                                         IntTy, ConstCharPtrTy},
                                                RetType{IntTy}, NoEvalCall)
                                            .ArgConstraint(NotNull(ArgNo(1)))
                                            .ArgConstraint(NotNull(ArgNo(3))));

    // char *realpath(const char *restrict file_name,
    //                char *restrict resolved_name);
    addToFunctionSummaryMap(
        "realpath", Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy},
                            RetType{CharPtrTy}, NoEvalCall)
                        .ArgConstraint(NotNull(ArgNo(0))));

    QualType CharPtrConstPtr = ACtx.getPointerType(CharPtrTy.withConst());

    // int execv(const char *path, char *const argv[]);
    addToFunctionSummaryMap("execv",
                            Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
                                    RetType{IntTy}, NoEvalCall)
                                .ArgConstraint(NotNull(ArgNo(0))));

    // int execvp(const char *file, char *const argv[]);
    addToFunctionSummaryMap("execvp",
                            Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
                                    RetType{IntTy}, NoEvalCall)
                                .ArgConstraint(NotNull(ArgNo(0))));

    // int getopt(int argc, char * const argv[], const char *optstring);
    addToFunctionSummaryMap(
        "getopt",
        Summary(ArgTypes{IntTy, CharPtrConstPtr, ConstCharPtrTy},
                RetType{IntTy}, NoEvalCall)
            .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
            .ArgConstraint(NotNull(ArgNo(1)))
            .ArgConstraint(NotNull(ArgNo(2))));
  }

  // Functions for testing.
  if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
    addToFunctionSummaryMap(
        "__two_constrained_args",
        Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
            .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
            .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
    addToFunctionSummaryMap(
        "__arg_constrained_twice",
        Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
            .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
            .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
    addToFunctionSummaryMap(
        "__defaultparam",
        Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
            .ArgConstraint(NotNull(ArgNo(0))));
    addToFunctionSummaryMap("__variadic",
                            Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
                                    RetType{IntTy}, EvalCallAsPure)
                                .ArgConstraint(NotNull(ArgNo(0)))
                                .ArgConstraint(NotNull(ArgNo(1))));
    addToFunctionSummaryMap(
        "__buf_size_arg_constraint",
        Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy},
                EvalCallAsPure)
            .ArgConstraint(
                BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))));
    addToFunctionSummaryMap(
        "__buf_size_arg_constraint_mul",
        Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy},
                EvalCallAsPure)
            .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
                                      /*BufSizeMultiplier=*/ArgNo(2))));
  }
}

void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
  auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>();
  Checker->DisplayLoadedSummaries =
      mgr.getAnalyzerOptions().getCheckerBooleanOption(
          Checker, "DisplayLoadedSummaries");
  Checker->ModelPOSIX =
      mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker, "ModelPOSIX");
}

bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) {
  return true;
}

#define REGISTER_CHECKER(name)                                                 \
  void ento::register##name(CheckerManager &mgr) {                             \
    StdLibraryFunctionsChecker *checker =                                      \
        mgr.getChecker<StdLibraryFunctionsChecker>();                          \
    checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true;      \
    checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] =               \
        mgr.getCurrentCheckerName();                                           \
  }                                                                            \
                                                                               \
  bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }

REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)