MallocChecker.cpp 127 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a variety of memory management related checkers, such as
// leak, double free, and use-after-free.
//
// The following checkers are defined here:
//
//   * MallocChecker
//       Despite its name, it models all sorts of memory allocations and
//       de- or reallocation, including but not limited to malloc, free,
//       relloc, new, delete. It also reports on a variety of memory misuse
//       errors.
//       Many other checkers interact very closely with this checker, in fact,
//       most are merely options to this one. Other checkers may register
//       MallocChecker, but do not enable MallocChecker's reports (more details
//       to follow around its field, ChecksEnabled).
//       It also has a boolean "Optimistic" checker option, which if set to true
//       will cause the checker to model user defined memory management related
//       functions annotated via the attribute ownership_takes, ownership_holds
//       and ownership_returns.
//
//   * NewDeleteChecker
//       Enables the modeling of new, new[], delete, delete[] in MallocChecker,
//       and checks for related double-free and use-after-free errors.
//
//   * NewDeleteLeaksChecker
//       Checks for leaks related to new, new[], delete, delete[].
//       Depends on NewDeleteChecker.
//
//   * MismatchedDeallocatorChecker
//       Enables checking whether memory is deallocated with the correspending
//       allocation function in MallocChecker, such as malloc() allocated
//       regions are only freed by free(), new by delete, new[] by delete[].
//
//  InnerPointerChecker interacts very closely with MallocChecker, but unlike
//  the above checkers, it has it's own file, hence the many InnerPointerChecker
//  related headers and non-static functions.
//
//===----------------------------------------------------------------------===//

#include "AllocationState.h"
#include "InterCheckerAPI.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ParentMap.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <climits>
#include <functional>
#include <utility>

using namespace clang;
using namespace ento;
using namespace std::placeholders;

//===----------------------------------------------------------------------===//
// The types of allocation we're modeling. This is used to check whether a
// dynamically allocated object is deallocated with the correct function, like
// not using operator delete on an object created by malloc(), or alloca regions
// aren't ever deallocated manually.
//===----------------------------------------------------------------------===//

namespace {

// Used to check correspondence between allocators and deallocators.
enum AllocationFamily {
  AF_None,
  AF_Malloc,
  AF_CXXNew,
  AF_CXXNewArray,
  AF_IfNameIndex,
  AF_Alloca,
  AF_InnerBuffer
};

} // end of anonymous namespace

/// Print names of allocators and deallocators.
///
/// \returns true on success.
static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E);

/// Print expected name of an allocator based on the deallocator's family
/// derived from the DeallocExpr.
static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family);

/// Print expected name of a deallocator based on the allocator's
/// family.
static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family);

//===----------------------------------------------------------------------===//
// The state of a symbol, in terms of memory management.
//===----------------------------------------------------------------------===//

namespace {

class RefState {
  enum Kind {
    // Reference to allocated memory.
    Allocated,
    // Reference to zero-allocated memory.
    AllocatedOfSizeZero,
    // Reference to released/freed memory.
    Released,
    // The responsibility for freeing resources has transferred from
    // this reference. A relinquished symbol should not be freed.
    Relinquished,
    // We are no longer guaranteed to have observed all manipulations
    // of this pointer/memory. For example, it could have been
    // passed as a parameter to an opaque function.
    Escaped
  };

  const Stmt *S;

  Kind K;
  AllocationFamily Family;

  RefState(Kind k, const Stmt *s, AllocationFamily family)
      : S(s), K(k), Family(family) {
    assert(family != AF_None);
  }

public:
  bool isAllocated() const { return K == Allocated; }
  bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
  bool isReleased() const { return K == Released; }
  bool isRelinquished() const { return K == Relinquished; }
  bool isEscaped() const { return K == Escaped; }
  AllocationFamily getAllocationFamily() const { return Family; }
  const Stmt *getStmt() const { return S; }

  bool operator==(const RefState &X) const {
    return K == X.K && S == X.S && Family == X.Family;
  }

  static RefState getAllocated(AllocationFamily family, const Stmt *s) {
    return RefState(Allocated, s, family);
  }
  static RefState getAllocatedOfSizeZero(const RefState *RS) {
    return RefState(AllocatedOfSizeZero, RS->getStmt(),
                    RS->getAllocationFamily());
  }
  static RefState getReleased(AllocationFamily family, const Stmt *s) {
    return RefState(Released, s, family);
  }
  static RefState getRelinquished(AllocationFamily family, const Stmt *s) {
    return RefState(Relinquished, s, family);
  }
  static RefState getEscaped(const RefState *RS) {
    return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
  }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(K);
    ID.AddPointer(S);
    ID.AddInteger(Family);
  }

  LLVM_DUMP_METHOD void dump(raw_ostream &OS) const {
    switch (K) {
#define CASE(ID) case ID: OS << #ID; break;
    CASE(Allocated)
    CASE(AllocatedOfSizeZero)
    CASE(Released)
    CASE(Relinquished)
    CASE(Escaped)
    }
  }

  LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
};

} // end of anonymous namespace

REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)

/// Check if the memory associated with this symbol was released.
static bool isReleased(SymbolRef Sym, CheckerContext &C);

/// Update the RefState to reflect the new memory allocation.
/// The optional \p RetVal parameter specifies the newly allocated pointer
/// value; if unspecified, the value of expression \p E is used.
static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
                                            ProgramStateRef State,
                                            AllocationFamily Family,
                                            Optional<SVal> RetVal = None);

//===----------------------------------------------------------------------===//
// The modeling of memory reallocation.
//
// The terminology 'toPtr' and 'fromPtr' will be used:
//   toPtr = realloc(fromPtr, 20);
//===----------------------------------------------------------------------===//

REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)

namespace {

/// The state of 'fromPtr' after reallocation is known to have failed.
enum OwnershipAfterReallocKind {
  // The symbol needs to be freed (e.g.: realloc)
  OAR_ToBeFreedAfterFailure,
  // The symbol has been freed (e.g.: reallocf)
  OAR_FreeOnFailure,
  // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where
  // 'fromPtr' was allocated:
  //    void Haha(int *ptr) {
  //      ptr = realloc(ptr, 67);
  //      // ...
  //    }
  // ).
  OAR_DoNotTrackAfterFailure
};

/// Stores information about the 'fromPtr' symbol after reallocation.
///
/// This is important because realloc may fail, and that needs special modeling.
/// Whether reallocation failed or not will not be known until later, so we'll
/// store whether upon failure 'fromPtr' will be freed, or needs to be freed
/// later, etc.
struct ReallocPair {

  // The 'fromPtr'.
  SymbolRef ReallocatedSym;
  OwnershipAfterReallocKind Kind;

  ReallocPair(SymbolRef S, OwnershipAfterReallocKind K)
      : ReallocatedSym(S), Kind(K) {}
  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(Kind);
    ID.AddPointer(ReallocatedSym);
  }
  bool operator==(const ReallocPair &X) const {
    return ReallocatedSym == X.ReallocatedSym &&
           Kind == X.Kind;
  }
};

} // end of anonymous namespace

REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)

/// Tells if the callee is one of the builtin new/delete operators, including
/// placement operators and other standard overloads.
static bool isStandardNewDelete(const FunctionDecl *FD);
static bool isStandardNewDelete(const CallEvent &Call) {
  if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl()))
    return false;
  return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl()));
}

//===----------------------------------------------------------------------===//
// Definition of the MallocChecker class.
//===----------------------------------------------------------------------===//

namespace {

class MallocChecker
    : public Checker<check::DeadSymbols, check::PointerEscape,
                     check::ConstPointerEscape, check::PreStmt<ReturnStmt>,
                     check::EndFunction, check::PreCall, check::PostCall,
                     check::NewAllocator, check::PostStmt<BlockExpr>,
                     check::PostObjCMessage, check::Location, eval::Assume> {
public:
  /// In pessimistic mode, the checker assumes that it does not know which
  /// functions might free the memory.
  /// In optimistic mode, the checker assumes that all user-defined functions
  /// which might free a pointer are annotated.
  DefaultBool ShouldIncludeOwnershipAnnotatedFunctions;

  /// Many checkers are essentially built into this one, so enabling them will
  /// make MallocChecker perform additional modeling and reporting.
  enum CheckKind {
    /// When a subchecker is enabled but MallocChecker isn't, model memory
    /// management but do not emit warnings emitted with MallocChecker only
    /// enabled.
    CK_MallocChecker,
    CK_NewDeleteChecker,
    CK_NewDeleteLeaksChecker,
    CK_MismatchedDeallocatorChecker,
    CK_InnerPointerChecker,
    CK_NumCheckKinds
  };

  using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>;

  DefaultBool ChecksEnabled[CK_NumCheckKinds];
  CheckerNameRef CheckNames[CK_NumCheckKinds];

  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const;
  void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
  void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
  void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
  void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
  ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
                            bool Assumption) const;
  void checkLocation(SVal l, bool isLoad, const Stmt *S,
                     CheckerContext &C) const;

  ProgramStateRef checkPointerEscape(ProgramStateRef State,
                                    const InvalidatedSymbols &Escaped,
                                    const CallEvent *Call,
                                    PointerEscapeKind Kind) const;
  ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
                                          const InvalidatedSymbols &Escaped,
                                          const CallEvent *Call,
                                          PointerEscapeKind Kind) const;

  void printState(raw_ostream &Out, ProgramStateRef State,
                  const char *NL, const char *Sep) const override;

private:
  mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_DoubleDelete;
  mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
  mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];

#define CHECK_FN(NAME)                                                         \
  void NAME(const CallEvent &Call, CheckerContext &C) const;

  CHECK_FN(checkFree)
  CHECK_FN(checkIfNameIndex)
  CHECK_FN(checkBasicAlloc)
  CHECK_FN(checkKernelMalloc)
  CHECK_FN(checkCalloc)
  CHECK_FN(checkAlloca)
  CHECK_FN(checkStrdup)
  CHECK_FN(checkIfFreeNameIndex)
  CHECK_FN(checkCXXNewOrCXXDelete)
  CHECK_FN(checkGMalloc0)
  CHECK_FN(checkGMemdup)
  CHECK_FN(checkGMallocN)
  CHECK_FN(checkGMallocN0)
  CHECK_FN(checkReallocN)
  CHECK_FN(checkOwnershipAttr)

  void checkRealloc(const CallEvent &Call, CheckerContext &C,
                    bool ShouldFreeOnFail) const;

  using CheckFn = std::function<void(const MallocChecker *,
                                     const CallEvent &Call, CheckerContext &C)>;

  const CallDescriptionMap<CheckFn> FreeingMemFnMap{
      {{"free", 1}, &MallocChecker::checkFree},
      {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex},
      {{"kfree", 1}, &MallocChecker::checkFree},
      {{"g_free", 1}, &MallocChecker::checkFree},
  };

  bool isFreeingCall(const CallEvent &Call) const;

  CallDescriptionMap<CheckFn> AllocatingMemFnMap{
      {{"alloca", 1}, &MallocChecker::checkAlloca},
      {{"_alloca", 1}, &MallocChecker::checkAlloca},
      {{"malloc", 1}, &MallocChecker::checkBasicAlloc},
      {{"malloc", 3}, &MallocChecker::checkKernelMalloc},
      {{"calloc", 2}, &MallocChecker::checkCalloc},
      {{"valloc", 1}, &MallocChecker::checkBasicAlloc},
      {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup},
      {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup},
      {{"_strdup", 1}, &MallocChecker::checkStrdup},
      {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc},
      {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex},
      {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup},
      {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup},
      {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc},
      {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0},
      {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc},
      {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0},
      {{"g_memdup", 2}, &MallocChecker::checkGMemdup},
      {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN},
      {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0},
      {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN},
      {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0},
  };

  CallDescriptionMap<CheckFn> ReallocatingMemFnMap{
      {{"realloc", 2},
       std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
      {{"reallocf", 2},
       std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)},
      {{"g_realloc", 2},
       std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
      {{"g_try_realloc", 2},
       std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
      {{"g_realloc_n", 3}, &MallocChecker::checkReallocN},
      {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN},
  };

  bool isMemCall(const CallEvent &Call) const;

  // TODO: Remove mutable by moving the initializtaion to the registry function.
  mutable Optional<uint64_t> KernelZeroFlagVal;

  using KernelZeroSizePtrValueTy = Optional<int>;
  /// Store the value of macro called `ZERO_SIZE_PTR`.
  /// The value is initialized at first use, before first use the outer
  /// Optional is empty, afterwards it contains another Optional that indicates
  /// if the macro value could be determined, and if yes the value itself.
  mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue;

  /// Process C++ operator new()'s allocation, which is the part of C++
  /// new-expression that goes before the constructor.
  LLVM_NODISCARD
  ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call,
                                       CheckerContext &C,
                                       AllocationFamily Family) const;

  /// Perform a zero-allocation check.
  ///
  /// \param [in] Call The expression that allocates memory.
  /// \param [in] IndexOfSizeArg Index of the argument that specifies the size
  ///   of the memory that needs to be allocated. E.g. for malloc, this would be
  ///   0.
  /// \param [in] RetVal Specifies the newly allocated pointer value;
  ///   if unspecified, the value of expression \p E is used.
  LLVM_NODISCARD
  static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call,
                                               const unsigned IndexOfSizeArg,
                                               ProgramStateRef State,
                                               Optional<SVal> RetVal = None);

  /// Model functions with the ownership_returns attribute.
  ///
  /// User-defined function may have the ownership_returns attribute, which
  /// annotates that the function returns with an object that was allocated on
  /// the heap, and passes the ownertship to the callee.
  ///
  ///   void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t);
  ///
  /// It has two parameters:
  ///   - first: name of the resource (e.g. 'malloc')
  ///   - (OPTIONAL) second: size of the allocated region
  ///
  /// \param [in] Call The expression that allocates memory.
  /// \param [in] Att The ownership_returns attribute.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after allocation.
  LLVM_NODISCARD
  ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
                                       const OwnershipAttr *Att,
                                       ProgramStateRef State) const;

  /// Models memory allocation.
  ///
  /// \param [in] Call The expression that allocates memory.
  /// \param [in] SizeEx Size of the memory that needs to be allocated.
  /// \param [in] Init The value the allocated memory needs to be initialized.
  /// with. For example, \c calloc initializes the allocated memory to 0,
  /// malloc leaves it undefined.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after allocation.
  LLVM_NODISCARD
  static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call,
                                      const Expr *SizeEx, SVal Init,
                                      ProgramStateRef State,
                                      AllocationFamily Family);

  /// Models memory allocation.
  ///
  /// \param [in] Call The expression that allocates memory.
  /// \param [in] Size Size of the memory that needs to be allocated.
  /// \param [in] Init The value the allocated memory needs to be initialized.
  /// with. For example, \c calloc initializes the allocated memory to 0,
  /// malloc leaves it undefined.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after allocation.
  LLVM_NODISCARD
  static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call,
                                      SVal Size, SVal Init,
                                      ProgramStateRef State,
                                      AllocationFamily Family);

  LLVM_NODISCARD
  static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE,
                                       ProgramStateRef State, SVal Target);

  // Check if this malloc() for special flags. At present that means M_ZERO or
  // __GFP_ZERO (in which case, treat it like calloc).
  LLVM_NODISCARD
  llvm::Optional<ProgramStateRef>
  performKernelMalloc(const CallEvent &Call, CheckerContext &C,
                      const ProgramStateRef &State) const;

  /// Model functions with the ownership_takes and ownership_holds attributes.
  ///
  /// User-defined function may have the ownership_takes and/or ownership_holds
  /// attributes, which annotates that the function frees the memory passed as a
  /// parameter.
  ///
  ///   void __attribute((ownership_takes(malloc, 1))) my_free(void *);
  ///   void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
  ///
  /// They have two parameters:
  ///   - first: name of the resource (e.g. 'malloc')
  ///   - second: index of the parameter the attribute applies to
  ///
  /// \param [in] Call The expression that frees memory.
  /// \param [in] Att The ownership_takes or ownership_holds attribute.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after deallocation.
  LLVM_NODISCARD
  ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call,
                              const OwnershipAttr *Att,
                              ProgramStateRef State) const;

  /// Models memory deallocation.
  ///
  /// \param [in] Call The expression that frees memory.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \param [in] Num Index of the argument that needs to be freed. This is
  ///   normally 0, but for custom free functions it may be different.
  /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
  ///   attribute.
  /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
  ///   to have been allocated, or in other words, the symbol to be freed was
  ///   registered as allocated by this checker. In the following case, \c ptr
  ///   isn't known to be allocated.
  ///      void Haha(int *ptr) {
  ///        ptr = realloc(ptr, 67);
  ///        // ...
  ///      }
  /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
  ///   we're modeling returns with Null on failure.
  /// \returns The ProgramState right after deallocation.
  LLVM_NODISCARD
  ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call,
                             ProgramStateRef State, unsigned Num, bool Hold,
                             bool &IsKnownToBeAllocated,
                             AllocationFamily Family,
                             bool ReturnsNullOnFailure = false) const;

  /// Models memory deallocation.
  ///
  /// \param [in] ArgExpr The variable who's pointee needs to be freed.
  /// \param [in] Call The expression that frees the memory.
  /// \param [in] State The \c ProgramState right before allocation.
  ///   normally 0, but for custom free functions it may be different.
  /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
  ///   attribute.
  /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
  ///   to have been allocated, or in other words, the symbol to be freed was
  ///   registered as allocated by this checker. In the following case, \c ptr
  ///   isn't known to be allocated.
  ///      void Haha(int *ptr) {
  ///        ptr = realloc(ptr, 67);
  ///        // ...
  ///      }
  /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
  ///   we're modeling returns with Null on failure.
  /// \returns The ProgramState right after deallocation.
  LLVM_NODISCARD
  ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr,
                             const CallEvent &Call, ProgramStateRef State,
                             bool Hold, bool &IsKnownToBeAllocated,
                             AllocationFamily Family,
                             bool ReturnsNullOnFailure = false) const;

  // TODO: Needs some refactoring, as all other deallocation modeling
  // functions are suffering from out parameters and messy code due to how
  // realloc is handled.
  //
  /// Models memory reallocation.
  ///
  /// \param [in] Call The expression that reallocated memory
  /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied
  ///   memory should be freed.
  /// \param [in] State The \c ProgramState right before reallocation.
  /// \param [in] SuffixWithN Whether the reallocation function we're modeling
  ///   has an '_n' suffix, such as g_realloc_n.
  /// \returns The ProgramState right after reallocation.
  LLVM_NODISCARD
  ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call,
                                bool ShouldFreeOnFail, ProgramStateRef State,
                                AllocationFamily Family,
                                bool SuffixWithN = false) const;

  /// Evaluates the buffer size that needs to be allocated.
  ///
  /// \param [in] Blocks The amount of blocks that needs to be allocated.
  /// \param [in] BlockBytes The size of a block.
  /// \returns The symbolic value of \p Blocks * \p BlockBytes.
  LLVM_NODISCARD
  static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
                                   const Expr *BlockBytes);

  /// Models zero initialized array allocation.
  ///
  /// \param [in] Call The expression that reallocated memory
  /// \param [in] State The \c ProgramState right before reallocation.
  /// \returns The ProgramState right after allocation.
  LLVM_NODISCARD
  static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call,
                                   ProgramStateRef State);

  /// See if deallocation happens in a suspicious context. If so, escape the
  /// pointers that otherwise would have been deallocated and return true.
  bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call,
                                                 CheckerContext &C) const;

  /// If in \p S  \p Sym is used, check whether \p Sym was already freed.
  bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;

  /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero
  /// sized memory region.
  void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
                             const Stmt *S) const;

  /// If in \p S \p Sym is being freed, check whether \p Sym was already freed.
  bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;

  /// Check if the function is known to free memory, or if it is
  /// "interesting" and should be modeled explicitly.
  ///
  /// \param [out] EscapingSymbol A function might not free memory in general,
  ///   but could be known to free a particular symbol. In this case, false is
  ///   returned and the single escaping symbol is returned through the out
  ///   parameter.
  ///
  /// We assume that pointers do not escape through calls to system functions
  /// not handled by this checker.
  bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
                                   ProgramStateRef State,
                                   SymbolRef &EscapingSymbol) const;

  /// Implementation of the checkPointerEscape callbacks.
  LLVM_NODISCARD
  ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
                                        const InvalidatedSymbols &Escaped,
                                        const CallEvent *Call,
                                        PointerEscapeKind Kind,
                                        bool IsConstPointerEscape) const;

  // Implementation of the checkPreStmt and checkEndFunction callbacks.
  void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;

  ///@{
  /// Tells if a given family/call/symbol is tracked by the current checker.
  /// Sets CheckKind to the kind of the checker responsible for this
  /// family/call/symbol.
  Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
                                        bool IsALeakCheck = false) const;

  Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
                                        bool IsALeakCheck = false) const;
  ///@}
  static bool SummarizeValue(raw_ostream &os, SVal V);
  static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);

  void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range,
                            const Expr *DeallocExpr,
                            AllocationFamily Family) const;

  void HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
                        SourceRange Range) const;

  void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range,
                               const Expr *DeallocExpr, const RefState *RS,
                               SymbolRef Sym, bool OwnershipTransferred) const;

  void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
                        const Expr *DeallocExpr, AllocationFamily Family,
                        const Expr *AllocExpr = nullptr) const;

  void HandleUseAfterFree(CheckerContext &C, SourceRange Range,
                          SymbolRef Sym) const;

  void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
                        SymbolRef Sym, SymbolRef PrevSym) const;

  void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const;

  void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
                          SymbolRef Sym) const;

  void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
                             const Expr *FreeExpr,
                             AllocationFamily Family) const;

  /// Find the location of the allocation for Sym on the path leading to the
  /// exploded node N.
  static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
                                    CheckerContext &C);

  void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;

  /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`.
  bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
                          SVal ArgVal) const;
};

//===----------------------------------------------------------------------===//
// Definition of MallocBugVisitor.
//===----------------------------------------------------------------------===//

/// The bug visitor which allows us to print extra diagnostics along the
/// BugReport path. For example, showing the allocation site of the leaked
/// region.
class MallocBugVisitor final : public BugReporterVisitor {
protected:
  enum NotificationMode { Normal, ReallocationFailed };

  // The allocated region symbol tracked by the main analysis.
  SymbolRef Sym;

  // The mode we are in, i.e. what kind of diagnostics will be emitted.
  NotificationMode Mode;

  // A symbol from when the primary region should have been reallocated.
  SymbolRef FailedReallocSymbol;

  // A C++ destructor stack frame in which memory was released. Used for
  // miscellaneous false positive suppression.
  const StackFrameContext *ReleaseDestructorLC;

  bool IsLeak;

public:
  MallocBugVisitor(SymbolRef S, bool isLeak = false)
      : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
        ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}

  static void *getTag() {
    static int Tag = 0;
    return &Tag;
  }

  void Profile(llvm::FoldingSetNodeID &ID) const override {
    ID.AddPointer(getTag());
    ID.AddPointer(Sym);
  }

  /// Did not track -> allocated. Other state (released) -> allocated.
  static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev,
                                 const Stmt *Stmt) {
    return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
            (RSCurr &&
             (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
            (!RSPrev ||
             !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
  }

  /// Did not track -> released. Other state (allocated) -> released.
  /// The statement associated with the release might be missing.
  static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev,
                                const Stmt *Stmt) {
    bool IsReleased =
        (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased());
    assert(!IsReleased ||
           (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) ||
           (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer));
    return IsReleased;
  }

  /// Did not track -> relinquished. Other state (allocated) -> relinquished.
  static inline bool isRelinquished(const RefState *RSCurr,
                                    const RefState *RSPrev, const Stmt *Stmt) {
    return (Stmt &&
            (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
             isa<ObjCPropertyRefExpr>(Stmt)) &&
            (RSCurr && RSCurr->isRelinquished()) &&
            (!RSPrev || !RSPrev->isRelinquished()));
  }

  /// If the expression is not a call, and the state change is
  /// released -> allocated, it must be the realloc return value
  /// check. If we have to handle more cases here, it might be cleaner just
  /// to track this extra bit in the state itself.
  static inline bool hasReallocFailed(const RefState *RSCurr,
                                      const RefState *RSPrev,
                                      const Stmt *Stmt) {
    return ((!Stmt || !isa<CallExpr>(Stmt)) &&
            (RSCurr &&
             (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
            (RSPrev &&
             !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
  }

  PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
                                   BugReporterContext &BRC,
                                   PathSensitiveBugReport &BR) override;

  PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC,
                                    const ExplodedNode *EndPathNode,
                                    PathSensitiveBugReport &BR) override {
    if (!IsLeak)
      return nullptr;

    PathDiagnosticLocation L = BR.getLocation();
    // Do not add the statement itself as a range in case of leak.
    return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
                                                      false);
  }

private:
  class StackHintGeneratorForReallocationFailed
      : public StackHintGeneratorForSymbol {
  public:
    StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
        : StackHintGeneratorForSymbol(S, M) {}

    std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override {
      // Printed parameters start at 1, not 0.
      ++ArgIndex;

      SmallString<200> buf;
      llvm::raw_svector_ostream os(buf);

      os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
         << " parameter failed";

      return std::string(os.str());
    }

    std::string getMessageForReturn(const CallExpr *CallExpr) override {
      return "Reallocation of returned value failed";
    }
  };
};

} // end anonymous namespace

// A map from the freed symbol to the symbol representing the return value of
// the free function.
REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)

namespace {
class StopTrackingCallback final : public SymbolVisitor {
  ProgramStateRef state;

public:
  StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
  ProgramStateRef getState() const { return state; }

  bool VisitSymbol(SymbolRef sym) override {
    state = state->remove<RegionState>(sym);
    return true;
  }
};
} // end anonymous namespace

static bool isStandardNewDelete(const FunctionDecl *FD) {
  if (!FD)
    return false;

  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
  if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete &&
      Kind != OO_Array_Delete)
    return false;

  // This is standard if and only if it's not defined in a user file.
  SourceLocation L = FD->getLocation();
  // If the header for operator delete is not included, it's still defined
  // in an invalid source location. Check to make sure we don't crash.
  return !L.isValid() ||
         FD->getASTContext().getSourceManager().isInSystemHeader(L);
}

//===----------------------------------------------------------------------===//
// Methods of MallocChecker and MallocBugVisitor.
//===----------------------------------------------------------------------===//

bool MallocChecker::isFreeingCall(const CallEvent &Call) const {
  if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call))
    return true;

  const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
  if (Func && Func->hasAttrs()) {
    for (const auto *I : Func->specific_attrs<OwnershipAttr>()) {
      OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
      if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds)
        return true;
    }
  }
  return false;
}

bool MallocChecker::isMemCall(const CallEvent &Call) const {
  if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) ||
      ReallocatingMemFnMap.lookup(Call))
    return true;

  if (!ShouldIncludeOwnershipAnnotatedFunctions)
    return false;

  const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
  return Func && Func->hasAttr<OwnershipAttr>();
}

llvm::Optional<ProgramStateRef>
MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C,
                                   const ProgramStateRef &State) const {
  // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
  //
  // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
  //
  // One of the possible flags is M_ZERO, which means 'give me back an
  // allocation which is already zeroed', like calloc.

  // 2-argument kmalloc(), as used in the Linux kernel:
  //
  // void *kmalloc(size_t size, gfp_t flags);
  //
  // Has the similar flag value __GFP_ZERO.

  // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
  // code could be shared.

  ASTContext &Ctx = C.getASTContext();
  llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();

  if (!KernelZeroFlagVal.hasValue()) {
    if (OS == llvm::Triple::FreeBSD)
      KernelZeroFlagVal = 0x0100;
    else if (OS == llvm::Triple::NetBSD)
      KernelZeroFlagVal = 0x0002;
    else if (OS == llvm::Triple::OpenBSD)
      KernelZeroFlagVal = 0x0008;
    else if (OS == llvm::Triple::Linux)
      // __GFP_ZERO
      KernelZeroFlagVal = 0x8000;
    else
      // FIXME: We need a more general way of getting the M_ZERO value.
      // See also: O_CREAT in UnixAPIChecker.cpp.

      // Fall back to normal malloc behavior on platforms where we don't
      // know M_ZERO.
      return None;
  }

  // We treat the last argument as the flags argument, and callers fall-back to
  // normal malloc on a None return. This works for the FreeBSD kernel malloc
  // as well as Linux kmalloc.
  if (Call.getNumArgs() < 2)
    return None;

  const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1);
  const SVal V = C.getSVal(FlagsEx);
  if (!V.getAs<NonLoc>()) {
    // The case where 'V' can be a location can only be due to a bad header,
    // so in this case bail out.
    return None;
  }

  NonLoc Flags = V.castAs<NonLoc>();
  NonLoc ZeroFlag = C.getSValBuilder()
      .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
      .castAs<NonLoc>();
  SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
                                                      Flags, ZeroFlag,
                                                      FlagsEx->getType());
  if (MaskedFlagsUC.isUnknownOrUndef())
    return None;
  DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();

  // Check if maskedFlags is non-zero.
  ProgramStateRef TrueState, FalseState;
  std::tie(TrueState, FalseState) = State->assume(MaskedFlags);

  // If M_ZERO is set, treat this like calloc (initialized).
  if (TrueState && !FalseState) {
    SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
    return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState,
                        AF_Malloc);
  }

  return None;
}

SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
                                         const Expr *BlockBytes) {
  SValBuilder &SB = C.getSValBuilder();
  SVal BlocksVal = C.getSVal(Blocks);
  SVal BlockBytesVal = C.getSVal(BlockBytes);
  ProgramStateRef State = C.getState();
  SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
                                SB.getContext().getSizeType());
  return TotalSize;
}

void MallocChecker::checkBasicAlloc(const CallEvent &Call,
                                    CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
                       AF_Malloc);
  State = ProcessZeroAllocCheck(Call, 0, State);
  C.addTransition(State);
}

void MallocChecker::checkKernelMalloc(const CallEvent &Call,
                                      CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  llvm::Optional<ProgramStateRef> MaybeState =
      performKernelMalloc(Call, C, State);
  if (MaybeState.hasValue())
    State = MaybeState.getValue();
  else
    State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
                         AF_Malloc);
  C.addTransition(State);
}

static bool isStandardRealloc(const CallEvent &Call) {
  const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
  assert(FD);
  ASTContext &AC = FD->getASTContext();

  if (isa<CXXMethodDecl>(FD))
    return false;

  return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
         FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
         FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
             AC.getSizeType();
}

static bool isGRealloc(const CallEvent &Call) {
  const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
  assert(FD);
  ASTContext &AC = FD->getASTContext();

  if (isa<CXXMethodDecl>(FD))
    return false;

  return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
         FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
         FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
             AC.UnsignedLongTy;
}

void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C,
                                 bool ShouldFreeOnFail) const {
  // HACK: CallDescription currently recognizes non-standard realloc functions
  // as standard because it doesn't check the type, or wether its a non-method
  // function. This should be solved by making CallDescription smarter.
  // Mind that this came from a bug report, and all other functions suffer from
  // this.
  // https://bugs.llvm.org/show_bug.cgi?id=46253
  if (!isStandardRealloc(Call) && !isGRealloc(Call))
    return;
  ProgramStateRef State = C.getState();
  State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc);
  State = ProcessZeroAllocCheck(Call, 1, State);
  C.addTransition(State);
}

void MallocChecker::checkCalloc(const CallEvent &Call,
                                CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  State = CallocMem(C, Call, State);
  State = ProcessZeroAllocCheck(Call, 0, State);
  State = ProcessZeroAllocCheck(Call, 1, State);
  C.addTransition(State);
}

void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  bool IsKnownToBeAllocatedMemory = false;
  if (suppressDeallocationsInSuspiciousContexts(Call, C))
    return;
  State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
                     AF_Malloc);
  C.addTransition(State);
}

void MallocChecker::checkAlloca(const CallEvent &Call,
                                CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
                       AF_Alloca);
  State = ProcessZeroAllocCheck(Call, 0, State);
  C.addTransition(State);
}

void MallocChecker::checkStrdup(const CallEvent &Call,
                                CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
  if (!CE)
    return;
  State = MallocUpdateRefState(C, CE, State, AF_Malloc);

  C.addTransition(State);
}

void MallocChecker::checkIfNameIndex(const CallEvent &Call,
                                     CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  // Should we model this differently? We can allocate a fixed number of
  // elements with zeros in the last one.
  State =
      MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex);

  C.addTransition(State);
}

void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call,
                                         CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  bool IsKnownToBeAllocatedMemory = false;
  State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
                     AF_IfNameIndex);
  C.addTransition(State);
}

void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call,
                                           CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  bool IsKnownToBeAllocatedMemory = false;
  const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
  if (!CE)
    return;

  assert(isStandardNewDelete(Call));

  // Process direct calls to operator new/new[]/delete/delete[] functions
  // as distinct from new/new[]/delete/delete[] expressions that are
  // processed by the checkPostStmt callbacks for CXXNewExpr and
  // CXXDeleteExpr.
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  switch (FD->getOverloadedOperator()) {
  case OO_New:
    State =
        MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew);
    State = ProcessZeroAllocCheck(Call, 0, State);
    break;
  case OO_Array_New:
    State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State,
                         AF_CXXNewArray);
    State = ProcessZeroAllocCheck(Call, 0, State);
    break;
  case OO_Delete:
    State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
                       AF_CXXNew);
    break;
  case OO_Array_Delete:
    State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
                       AF_CXXNewArray);
    break;
  default:
    llvm_unreachable("not a new/delete operator");
  }

  C.addTransition(State);
}

void MallocChecker::checkGMalloc0(const CallEvent &Call,
                                  CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  SValBuilder &svalBuilder = C.getSValBuilder();
  SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
  State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc);
  State = ProcessZeroAllocCheck(Call, 0, State);
  C.addTransition(State);
}

void MallocChecker::checkGMemdup(const CallEvent &Call,
                                 CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State,
                       AF_Malloc);
  State = ProcessZeroAllocCheck(Call, 1, State);
  C.addTransition(State);
}

void MallocChecker::checkGMallocN(const CallEvent &Call,
                                  CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  SVal Init = UndefinedVal();
  SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
  State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
  State = ProcessZeroAllocCheck(Call, 0, State);
  State = ProcessZeroAllocCheck(Call, 1, State);
  C.addTransition(State);
}

void MallocChecker::checkGMallocN0(const CallEvent &Call,
                                   CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  SValBuilder &SB = C.getSValBuilder();
  SVal Init = SB.makeZeroVal(SB.getContext().CharTy);
  SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
  State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
  State = ProcessZeroAllocCheck(Call, 0, State);
  State = ProcessZeroAllocCheck(Call, 1, State);
  C.addTransition(State);
}

void MallocChecker::checkReallocN(const CallEvent &Call,
                                  CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc,
                        /*SuffixWithN=*/true);
  State = ProcessZeroAllocCheck(Call, 1, State);
  State = ProcessZeroAllocCheck(Call, 2, State);
  C.addTransition(State);
}

void MallocChecker::checkOwnershipAttr(const CallEvent &Call,
                                       CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
  if (!CE)
    return;
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;
  if (ShouldIncludeOwnershipAnnotatedFunctions ||
      ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
    // Check all the attributes, if there are any.
    // There can be multiple of these attributes.
    if (FD->hasAttrs())
      for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
        switch (I->getOwnKind()) {
        case OwnershipAttr::Returns:
          State = MallocMemReturnsAttr(C, Call, I, State);
          break;
        case OwnershipAttr::Takes:
        case OwnershipAttr::Holds:
          State = FreeMemAttr(C, Call, I, State);
          break;
        }
      }
  }
  C.addTransition(State);
}

void MallocChecker::checkPostCall(const CallEvent &Call,
                                  CheckerContext &C) const {
  if (C.wasInlined)
    return;
  if (!Call.getOriginExpr())
    return;

  ProgramStateRef State = C.getState();

  if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) {
    (*Callback)(this, Call, C);
    return;
  }

  if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) {
    (*Callback)(this, Call, C);
    return;
  }

  if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) {
    (*Callback)(this, Call, C);
    return;
  }

  if (isStandardNewDelete(Call)) {
    checkCXXNewOrCXXDelete(Call, C);
    return;
  }

  checkOwnershipAttr(Call, C);
}

// Performs a 0-sized allocations check.
ProgramStateRef MallocChecker::ProcessZeroAllocCheck(
    const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State,
    Optional<SVal> RetVal) {
  if (!State)
    return nullptr;

  if (!RetVal)
    RetVal = Call.getReturnValue();

  const Expr *Arg = nullptr;

  if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) {
    Arg = CE->getArg(IndexOfSizeArg);
  } else if (const CXXNewExpr *NE =
                 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) {
    if (NE->isArray()) {
      Arg = *NE->getArraySize();
    } else {
      return State;
    }
  } else
    llvm_unreachable("not a CallExpr or CXXNewExpr");

  assert(Arg);

  auto DefArgVal =
      State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>();

  if (!DefArgVal)
    return State;

  // Check if the allocation size is 0.
  ProgramStateRef TrueState, FalseState;
  SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder();
  DefinedSVal Zero =
      SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();

  std::tie(TrueState, FalseState) =
      State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));

  if (TrueState && !FalseState) {
    SymbolRef Sym = RetVal->getAsLocSymbol();
    if (!Sym)
      return State;

    const RefState *RS = State->get<RegionState>(Sym);
    if (RS) {
      if (RS->isAllocated())
        return TrueState->set<RegionState>(Sym,
                                          RefState::getAllocatedOfSizeZero(RS));
      else
        return State;
    } else {
      // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
      // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
      // tracked. Add zero-reallocated Sym to the state to catch references
      // to zero-allocated memory.
      return TrueState->add<ReallocSizeZeroSymbols>(Sym);
    }
  }

  // Assume the value is non-zero going forward.
  assert(FalseState);
  return FalseState;
}

static QualType getDeepPointeeType(QualType T) {
  QualType Result = T, PointeeType = T->getPointeeType();
  while (!PointeeType.isNull()) {
    Result = PointeeType;
    PointeeType = PointeeType->getPointeeType();
  }
  return Result;
}

/// \returns true if the constructor invoked by \p NE has an argument of a
/// pointer/reference to a record type.
static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) {

  const CXXConstructExpr *ConstructE = NE->getConstructExpr();
  if (!ConstructE)
    return false;

  if (!NE->getAllocatedType()->getAsCXXRecordDecl())
    return false;

  const CXXConstructorDecl *CtorD = ConstructE->getConstructor();

  // Iterate over the constructor parameters.
  for (const auto *CtorParam : CtorD->parameters()) {

    QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
    if (CtorParamPointeeT.isNull())
      continue;

    CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);

    if (CtorParamPointeeT->getAsCXXRecordDecl())
      return true;
  }

  return false;
}

ProgramStateRef
MallocChecker::processNewAllocation(const CXXAllocatorCall &Call,
                                    CheckerContext &C,
                                    AllocationFamily Family) const {
  if (!isStandardNewDelete(Call))
    return nullptr;

  const CXXNewExpr *NE = Call.getOriginExpr();
  const ParentMap &PM = C.getLocationContext()->getParentMap();
  ProgramStateRef State = C.getState();

  // Non-trivial constructors have a chance to escape 'this', but marking all
  // invocations of trivial constructors as escaped would cause too great of
  // reduction of true positives, so let's just do that for constructors that
  // have an argument of a pointer-to-record type.
  if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE))
    return State;

  // The return value from operator new is bound to a specified initialization
  // value (if any) and we don't want to loose this value. So we call
  // MallocUpdateRefState() instead of MallocMemAux() which breaks the
  // existing binding.
  SVal Target = Call.getObjectUnderConstruction();
  State = MallocUpdateRefState(C, NE, State, Family, Target);
  State = addExtentSize(C, NE, State, Target);
  State = ProcessZeroAllocCheck(Call, 0, State, Target);
  return State;
}

void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call,
                                      CheckerContext &C) const {
  if (!C.wasInlined) {
    ProgramStateRef State = processNewAllocation(
        Call, C,
        (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew));
    C.addTransition(State);
  }
}

// Sets the extent value of the MemRegion allocated by
// new expression NE to its size in Bytes.
//
ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C,
                                             const CXXNewExpr *NE,
                                             ProgramStateRef State,
                                             SVal Target) {
  if (!State)
    return nullptr;
  SValBuilder &svalBuilder = C.getSValBuilder();
  SVal ElementCount;
  const SubRegion *Region;
  if (NE->isArray()) {
    const Expr *SizeExpr = *NE->getArraySize();
    ElementCount = C.getSVal(SizeExpr);
    // Store the extent size for the (symbolic)region
    // containing the elements.
    Region = Target.getAsRegion()
                 ->castAs<SubRegion>()
                 ->StripCasts()
                 ->castAs<SubRegion>();
  } else {
    ElementCount = svalBuilder.makeIntVal(1, true);
    Region = Target.getAsRegion()->castAs<SubRegion>();
  }

  // Set the region's extent equal to the Size in Bytes.
  QualType ElementType = NE->getAllocatedType();
  ASTContext &AstContext = C.getASTContext();
  CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType);

  if (ElementCount.getAs<NonLoc>()) {
    DefinedOrUnknownSVal DynSize = getDynamicSize(State, Region, svalBuilder);

    // size in Bytes = ElementCount*TypeSize
    SVal SizeInBytes = svalBuilder.evalBinOpNN(
        State, BO_Mul, ElementCount.castAs<NonLoc>(),
        svalBuilder.makeArrayIndex(TypeSize.getQuantity()),
        svalBuilder.getArrayIndexType());
    DefinedOrUnknownSVal DynSizeMatchesSize = svalBuilder.evalEQ(
        State, DynSize, SizeInBytes.castAs<DefinedOrUnknownSVal>());
    State = State->assume(DynSizeMatchesSize, true);
  }
  return State;
}

static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
  // If the first selector piece is one of the names below, assume that the
  // object takes ownership of the memory, promising to eventually deallocate it
  // with free().
  // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
  // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
  StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
  return FirstSlot == "dataWithBytesNoCopy" ||
         FirstSlot == "initWithBytesNoCopy" ||
         FirstSlot == "initWithCharactersNoCopy";
}

static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
  Selector S = Call.getSelector();

  // FIXME: We should not rely on fully-constrained symbols being folded.
  for (unsigned i = 1; i < S.getNumArgs(); ++i)
    if (S.getNameForSlot(i).equals("freeWhenDone"))
      return !Call.getArgSVal(i).isZeroConstant();

  return None;
}

void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
                                         CheckerContext &C) const {
  if (C.wasInlined)
    return;

  if (!isKnownDeallocObjCMethodName(Call))
    return;

  if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
    if (!*FreeWhenDone)
      return;

  if (Call.hasNonZeroCallbackArg())
    return;

  bool IsKnownToBeAllocatedMemory;
  ProgramStateRef State =
      FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(),
                 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc,
                 /*RetNullOnFailure=*/true);

  C.addTransition(State);
}

ProgramStateRef
MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
                                    const OwnershipAttr *Att,
                                    ProgramStateRef State) const {
  if (!State)
    return nullptr;

  if (Att->getModule()->getName() != "malloc")
    return nullptr;

  OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
  if (I != E) {
    return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()),
                        UndefinedVal(), State, AF_Malloc);
  }
  return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc);
}

ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
                                            const CallEvent &Call,
                                            const Expr *SizeEx, SVal Init,
                                            ProgramStateRef State,
                                            AllocationFamily Family) {
  if (!State)
    return nullptr;

  assert(SizeEx);
  return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family);
}

ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
                                            const CallEvent &Call, SVal Size,
                                            SVal Init, ProgramStateRef State,
                                            AllocationFamily Family) {
  if (!State)
    return nullptr;

  const Expr *CE = Call.getOriginExpr();

  // We expect the malloc functions to return a pointer.
  if (!Loc::isLocType(CE->getType()))
    return nullptr;

  // Bind the return value to the symbolic value from the heap region.
  // TODO: We could rewrite post visit to eval call; 'malloc' does not have
  // side effects other than what we model here.
  unsigned Count = C.blockCount();
  SValBuilder &svalBuilder = C.getSValBuilder();
  const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
  DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
      .castAs<DefinedSVal>();
  State = State->BindExpr(CE, C.getLocationContext(), RetVal);

  // Fill the region with the initialization value.
  State = State->bindDefaultInitial(RetVal, Init, LCtx);

  // Set the region's extent equal to the Size parameter.
  const SymbolicRegion *R =
      dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
  if (!R)
    return nullptr;
  if (Optional<DefinedOrUnknownSVal> DefinedSize =
          Size.getAs<DefinedOrUnknownSVal>()) {
    DefinedOrUnknownSVal DynSize = getDynamicSize(State, R, svalBuilder);

    DefinedOrUnknownSVal DynSizeMatchesSize =
        svalBuilder.evalEQ(State, DynSize, *DefinedSize);

    State = State->assume(DynSizeMatchesSize, true);
    assert(State);
  }

  return MallocUpdateRefState(C, CE, State, Family);
}

static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
                                            ProgramStateRef State,
                                            AllocationFamily Family,
                                            Optional<SVal> RetVal) {
  if (!State)
    return nullptr;

  // Get the return value.
  if (!RetVal)
    RetVal = C.getSVal(E);

  // We expect the malloc functions to return a pointer.
  if (!RetVal->getAs<Loc>())
    return nullptr;

  SymbolRef Sym = RetVal->getAsLocSymbol();
  // This is a return value of a function that was not inlined, such as malloc()
  // or new(). We've checked that in the caller. Therefore, it must be a symbol.
  assert(Sym);

  // Set the symbol's state to Allocated.
  return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
}

ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
                                           const CallEvent &Call,
                                           const OwnershipAttr *Att,
                                           ProgramStateRef State) const {
  if (!State)
    return nullptr;

  if (Att->getModule()->getName() != "malloc")
    return nullptr;

  bool IsKnownToBeAllocated = false;

  for (const auto &Arg : Att->args()) {
    ProgramStateRef StateI =
        FreeMemAux(C, Call, State, Arg.getASTIndex(),
                   Att->getOwnKind() == OwnershipAttr::Holds,
                   IsKnownToBeAllocated, AF_Malloc);
    if (StateI)
      State = StateI;
  }
  return State;
}

ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
                                          const CallEvent &Call,
                                          ProgramStateRef State, unsigned Num,
                                          bool Hold, bool &IsKnownToBeAllocated,
                                          AllocationFamily Family,
                                          bool ReturnsNullOnFailure) const {
  if (!State)
    return nullptr;

  if (Call.getNumArgs() < (Num + 1))
    return nullptr;

  return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold,
                    IsKnownToBeAllocated, Family, ReturnsNullOnFailure);
}

/// Checks if the previous call to free on the given symbol failed - if free
/// failed, returns true. Also, returns the corresponding return value symbol.
static bool didPreviousFreeFail(ProgramStateRef State,
                                SymbolRef Sym, SymbolRef &RetStatusSymbol) {
  const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
  if (Ret) {
    assert(*Ret && "We should not store the null return symbol");
    ConstraintManager &CMgr = State->getConstraintManager();
    ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
    RetStatusSymbol = *Ret;
    return FreeFailed.isConstrainedTrue();
  }
  return false;
}

static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) {
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    // FIXME: This doesn't handle indirect calls.
    const FunctionDecl *FD = CE->getDirectCallee();
    if (!FD)
      return false;

    os << *FD;
    if (!FD->isOverloadedOperator())
      os << "()";
    return true;
  }

  if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
    if (Msg->isInstanceMessage())
      os << "-";
    else
      os << "+";
    Msg->getSelector().print(os);
    return true;
  }

  if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
    os << "'"
       << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
       << "'";
    return true;
  }

  if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
    os << "'"
       << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
       << "'";
    return true;
  }

  return false;
}

static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) {

  switch(Family) {
    case AF_Malloc: os << "malloc()"; return;
    case AF_CXXNew: os << "'new'"; return;
    case AF_CXXNewArray: os << "'new[]'"; return;
    case AF_IfNameIndex: os << "'if_nameindex()'"; return;
    case AF_InnerBuffer: os << "container-specific allocator"; return;
    case AF_Alloca:
    case AF_None: llvm_unreachable("not a deallocation expression");
  }
}

static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) {
  switch(Family) {
    case AF_Malloc: os << "free()"; return;
    case AF_CXXNew: os << "'delete'"; return;
    case AF_CXXNewArray: os << "'delete[]'"; return;
    case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
    case AF_InnerBuffer: os << "container-specific deallocator"; return;
    case AF_Alloca:
    case AF_None: llvm_unreachable("suspicious argument");
  }
}

ProgramStateRef MallocChecker::FreeMemAux(
    CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call,
    ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated,
    AllocationFamily Family, bool ReturnsNullOnFailure) const {

  if (!State)
    return nullptr;

  SVal ArgVal = C.getSVal(ArgExpr);
  if (!ArgVal.getAs<DefinedOrUnknownSVal>())
    return nullptr;
  DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();

  // Check for null dereferences.
  if (!location.getAs<Loc>())
    return nullptr;

  // The explicit NULL case, no operation is performed.
  ProgramStateRef notNullState, nullState;
  std::tie(notNullState, nullState) = State->assume(location);
  if (nullState && !notNullState)
    return nullptr;

  // Unknown values could easily be okay
  // Undefined values are handled elsewhere
  if (ArgVal.isUnknownOrUndef())
    return nullptr;

  const MemRegion *R = ArgVal.getAsRegion();
  const Expr *ParentExpr = Call.getOriginExpr();

  // NOTE: We detected a bug, but the checker under whose name we would emit the
  // error could be disabled. Generally speaking, the MallocChecker family is an
  // integral part of the Static Analyzer, and disabling any part of it should
  // only be done under exceptional circumstances, such as frequent false
  // positives. If this is the case, we can reasonably believe that there are
  // serious faults in our understanding of the source code, and even if we
  // don't emit an warning, we should terminate further analysis with a sink
  // node.

  // Nonlocs can't be freed, of course.
  // Non-region locations (labels and fixed addresses) also shouldn't be freed.
  if (!R) {
    // Exception:
    // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source
    // code. In that case, the ZERO_SIZE_PTR defines a special value used for a
    // zero-sized memory block which is allowed to be freed, despite not being a
    // null pointer.
    if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal))
      HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
                           Family);
    return nullptr;
  }

  R = R->StripCasts();

  // Blocks might show up as heap data, but should not be free()d
  if (isa<BlockDataRegion>(R)) {
    HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
                         Family);
    return nullptr;
  }

  const MemSpaceRegion *MS = R->getMemorySpace();

  // Parameters, locals, statics, globals, and memory returned by
  // __builtin_alloca() shouldn't be freed.
  if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
    // FIXME: at the time this code was written, malloc() regions were
    // represented by conjured symbols, which are all in UnknownSpaceRegion.
    // This means that there isn't actually anything from HeapSpaceRegion
    // that should be freed, even though we allow it here.
    // Of course, free() can work on memory allocated outside the current
    // function, so UnknownSpaceRegion is always a possibility.
    // False negatives are better than false positives.

    if (isa<AllocaRegion>(R))
      HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
    else
      HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
                           Family);

    return nullptr;
  }

  const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
  // Various cases could lead to non-symbol values here.
  // For now, ignore them.
  if (!SrBase)
    return nullptr;

  SymbolRef SymBase = SrBase->getSymbol();
  const RefState *RsBase = State->get<RegionState>(SymBase);
  SymbolRef PreviousRetStatusSymbol = nullptr;

  IsKnownToBeAllocated =
      RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero());

  if (RsBase) {

    // Memory returned by alloca() shouldn't be freed.
    if (RsBase->getAllocationFamily() == AF_Alloca) {
      HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
      return nullptr;
    }

    // Check for double free first.
    if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
        !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
      HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
                       SymBase, PreviousRetStatusSymbol);
      return nullptr;

    // If the pointer is allocated or escaped, but we are now trying to free it,
    // check that the call to free is proper.
    } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
               RsBase->isEscaped()) {

      // Check if an expected deallocation function matches the real one.
      bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family;
      if (!DeallocMatchesAlloc) {
        HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr,
                                RsBase, SymBase, Hold);
        return nullptr;
      }

      // Check if the memory location being freed is the actual location
      // allocated, or an offset.
      RegionOffset Offset = R->getAsOffset();
      if (Offset.isValid() &&
          !Offset.hasSymbolicOffset() &&
          Offset.getOffset() != 0) {
        const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
        HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
                         Family, AllocExpr);
        return nullptr;
      }
    }
  }

  if (SymBase->getType()->isFunctionPointerType()) {
    HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
                          Family);
    return nullptr;
  }

  // Clean out the info on previous call to free return info.
  State = State->remove<FreeReturnValue>(SymBase);

  // Keep track of the return value. If it is NULL, we will know that free
  // failed.
  if (ReturnsNullOnFailure) {
    SVal RetVal = C.getSVal(ParentExpr);
    SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
    if (RetStatusSymbol) {
      C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
      State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
    }
  }

  // If we don't know anything about this symbol, a free on it may be totally
  // valid. If this is the case, lets assume that the allocation family of the
  // freeing function is the same as the symbols allocation family, and go with
  // that.
  assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family));

  // Normal free.
  if (Hold)
    return State->set<RegionState>(SymBase,
                                   RefState::getRelinquished(Family,
                                                             ParentExpr));

  return State->set<RegionState>(SymBase,
                                 RefState::getReleased(Family, ParentExpr));
}

Optional<MallocChecker::CheckKind>
MallocChecker::getCheckIfTracked(AllocationFamily Family,
                                 bool IsALeakCheck) const {
  switch (Family) {
  case AF_Malloc:
  case AF_Alloca:
  case AF_IfNameIndex: {
    if (ChecksEnabled[CK_MallocChecker])
      return CK_MallocChecker;
    return None;
  }
  case AF_CXXNew:
  case AF_CXXNewArray: {
    if (IsALeakCheck) {
      if (ChecksEnabled[CK_NewDeleteLeaksChecker])
        return CK_NewDeleteLeaksChecker;
    }
    else {
      if (ChecksEnabled[CK_NewDeleteChecker])
        return CK_NewDeleteChecker;
    }
    return None;
  }
  case AF_InnerBuffer: {
    if (ChecksEnabled[CK_InnerPointerChecker])
      return CK_InnerPointerChecker;
    return None;
  }
  case AF_None: {
    llvm_unreachable("no family");
  }
  }
  llvm_unreachable("unhandled family");
}

Optional<MallocChecker::CheckKind>
MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
                                 bool IsALeakCheck) const {
  if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
    return CK_MallocChecker;

  const RefState *RS = C.getState()->get<RegionState>(Sym);
  assert(RS);
  return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
}

bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
  if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
    os << "an integer (" << IntVal->getValue() << ")";
  else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
    os << "a constant address (" << ConstAddr->getValue() << ")";
  else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
    os << "the address of the label '" << Label->getLabel()->getName() << "'";
  else
    return false;

  return true;
}

bool MallocChecker::SummarizeRegion(raw_ostream &os,
                                    const MemRegion *MR) {
  switch (MR->getKind()) {
  case MemRegion::FunctionCodeRegionKind: {
    const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
    if (FD)
      os << "the address of the function '" << *FD << '\'';
    else
      os << "the address of a function";
    return true;
  }
  case MemRegion::BlockCodeRegionKind:
    os << "block text";
    return true;
  case MemRegion::BlockDataRegionKind:
    // FIXME: where the block came from?
    os << "a block";
    return true;
  default: {
    const MemSpaceRegion *MS = MR->getMemorySpace();

    if (isa<StackLocalsSpaceRegion>(MS)) {
      const VarRegion *VR = dyn_cast<VarRegion>(MR);
      const VarDecl *VD;
      if (VR)
        VD = VR->getDecl();
      else
        VD = nullptr;

      if (VD)
        os << "the address of the local variable '" << VD->getName() << "'";
      else
        os << "the address of a local stack variable";
      return true;
    }

    if (isa<StackArgumentsSpaceRegion>(MS)) {
      const VarRegion *VR = dyn_cast<VarRegion>(MR);
      const VarDecl *VD;
      if (VR)
        VD = VR->getDecl();
      else
        VD = nullptr;

      if (VD)
        os << "the address of the parameter '" << VD->getName() << "'";
      else
        os << "the address of a parameter";
      return true;
    }

    if (isa<GlobalsSpaceRegion>(MS)) {
      const VarRegion *VR = dyn_cast<VarRegion>(MR);
      const VarDecl *VD;
      if (VR)
        VD = VR->getDecl();
      else
        VD = nullptr;

      if (VD) {
        if (VD->isStaticLocal())
          os << "the address of the static variable '" << VD->getName() << "'";
        else
          os << "the address of the global variable '" << VD->getName() << "'";
      } else
        os << "the address of a global variable";
      return true;
    }

    return false;
  }
  }
}

void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal,
                                         SourceRange Range,
                                         const Expr *DeallocExpr,
                                         AllocationFamily Family) const {

  if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
    C.addSink();
    return;
  }

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_BadFree[*CheckKind])
      BT_BadFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Bad free", categories::MemoryError));

    SmallString<100> buf;
    llvm::raw_svector_ostream os(buf);

    const MemRegion *MR = ArgVal.getAsRegion();
    while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
      MR = ER->getSuperRegion();

    os << "Argument to ";
    if (!printMemFnName(os, C, DeallocExpr))
      os << "deallocator";

    os << " is ";
    bool Summarized = MR ? SummarizeRegion(os, MR)
                         : SummarizeValue(os, ArgVal);
    if (Summarized)
      os << ", which is not memory allocated by ";
    else
      os << "not memory allocated by ";

    printExpectedAllocName(os, Family);

    auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
                                                      os.str(), N);
    R->markInteresting(MR);
    R->addRange(Range);
    C.emitReport(std::move(R));
  }
}

void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
                                     SourceRange Range) const {

  Optional<MallocChecker::CheckKind> CheckKind;

  if (ChecksEnabled[CK_MallocChecker])
    CheckKind = CK_MallocChecker;
  else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
    CheckKind = CK_MismatchedDeallocatorChecker;
  else {
    C.addSink();
    return;
  }

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_FreeAlloca[*CheckKind])
      BT_FreeAlloca[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_FreeAlloca[*CheckKind],
        "Memory allocated by alloca() should not be deallocated", N);
    R->markInteresting(ArgVal.getAsRegion());
    R->addRange(Range);
    C.emitReport(std::move(R));
  }
}

void MallocChecker::HandleMismatchedDealloc(CheckerContext &C,
                                            SourceRange Range,
                                            const Expr *DeallocExpr,
                                            const RefState *RS, SymbolRef Sym,
                                            bool OwnershipTransferred) const {

  if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
    C.addSink();
    return;
  }

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_MismatchedDealloc)
      BT_MismatchedDealloc.reset(
          new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
                      "Bad deallocator", categories::MemoryError));

    SmallString<100> buf;
    llvm::raw_svector_ostream os(buf);

    const Expr *AllocExpr = cast<Expr>(RS->getStmt());
    SmallString<20> AllocBuf;
    llvm::raw_svector_ostream AllocOs(AllocBuf);
    SmallString<20> DeallocBuf;
    llvm::raw_svector_ostream DeallocOs(DeallocBuf);

    if (OwnershipTransferred) {
      if (printMemFnName(DeallocOs, C, DeallocExpr))
        os << DeallocOs.str() << " cannot";
      else
        os << "Cannot";

      os << " take ownership of memory";

      if (printMemFnName(AllocOs, C, AllocExpr))
        os << " allocated by " << AllocOs.str();
    } else {
      os << "Memory";
      if (printMemFnName(AllocOs, C, AllocExpr))
        os << " allocated by " << AllocOs.str();

      os << " should be deallocated by ";
        printExpectedDeallocName(os, RS->getAllocationFamily());

        if (printMemFnName(DeallocOs, C, DeallocExpr))
          os << ", not " << DeallocOs.str();
    }

    auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc,
                                                      os.str(), N);
    R->markInteresting(Sym);
    R->addRange(Range);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    C.emitReport(std::move(R));
  }
}

void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal,
                                     SourceRange Range, const Expr *DeallocExpr,
                                     AllocationFamily Family,
                                     const Expr *AllocExpr) const {

  if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
    C.addSink();
    return;
  }

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
  if (!CheckKind.hasValue())
    return;

  ExplodedNode *N = C.generateErrorNode();
  if (!N)
    return;

  if (!BT_OffsetFree[*CheckKind])
    BT_OffsetFree[*CheckKind].reset(new BugType(
        CheckNames[*CheckKind], "Offset free", categories::MemoryError));

  SmallString<100> buf;
  llvm::raw_svector_ostream os(buf);
  SmallString<20> AllocNameBuf;
  llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);

  const MemRegion *MR = ArgVal.getAsRegion();
  assert(MR && "Only MemRegion based symbols can have offset free errors");

  RegionOffset Offset = MR->getAsOffset();
  assert((Offset.isValid() &&
          !Offset.hasSymbolicOffset() &&
          Offset.getOffset() != 0) &&
         "Only symbols with a valid offset can have offset free errors");

  int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();

  os << "Argument to ";
  if (!printMemFnName(os, C, DeallocExpr))
    os << "deallocator";
  os << " is offset by "
     << offsetBytes
     << " "
     << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
     << " from the start of ";
  if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr))
    os << "memory allocated by " << AllocNameOs.str();
  else
    os << "allocated memory";

  auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind],
                                                    os.str(), N);
  R->markInteresting(MR->getBaseRegion());
  R->addRange(Range);
  C.emitReport(std::move(R));
}

void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range,
                                       SymbolRef Sym) const {

  if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] &&
      !ChecksEnabled[CK_InnerPointerChecker]) {
    C.addSink();
    return;
  }

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_UseFree[*CheckKind])
      BT_UseFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));

    AllocationFamily AF =
        C.getState()->get<RegionState>(Sym)->getAllocationFamily();

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_UseFree[*CheckKind],
        AF == AF_InnerBuffer
            ? "Inner pointer of container used after re/deallocation"
            : "Use of memory after it is freed",
        N);

    R->markInteresting(Sym);
    R->addRange(Range);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));

    if (AF == AF_InnerBuffer)
      R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));

    C.emitReport(std::move(R));
  }
}

void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range,
                                     bool Released, SymbolRef Sym,
                                     SymbolRef PrevSym) const {

  if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
    C.addSink();
    return;
  }

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_DoubleFree[*CheckKind])
      BT_DoubleFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Double free", categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_DoubleFree[*CheckKind],
        (Released ? "Attempt to free released memory"
                  : "Attempt to free non-owned memory"),
        N);
    R->addRange(Range);
    R->markInteresting(Sym);
    if (PrevSym)
      R->markInteresting(PrevSym);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    C.emitReport(std::move(R));
  }
}

void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const {

  if (!ChecksEnabled[CK_NewDeleteChecker]) {
    C.addSink();
    return;
  }

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_DoubleDelete)
      BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
                                        "Double delete",
                                        categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_DoubleDelete, "Attempt to delete released memory", N);

    R->markInteresting(Sym);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    C.emitReport(std::move(R));
  }
}

void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
                                       SymbolRef Sym) const {

  if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
    C.addSink();
    return;
  }

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);

  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_UseZerroAllocated[*CheckKind])
      BT_UseZerroAllocated[*CheckKind].reset(
          new BugType(CheckNames[*CheckKind], "Use of zero allocated",
                      categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N);

    R->addRange(Range);
    if (Sym) {
      R->markInteresting(Sym);
      R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    }
    C.emitReport(std::move(R));
  }
}

void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal,
                                          SourceRange Range,
                                          const Expr *FreeExpr,
                                          AllocationFamily Family) const {
  if (!ChecksEnabled[CK_MallocChecker]) {
    C.addSink();
    return;
  }

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_BadFree[*CheckKind])
      BT_BadFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Bad free", categories::MemoryError));

    SmallString<100> Buf;
    llvm::raw_svector_ostream Os(Buf);

    const MemRegion *MR = ArgVal.getAsRegion();
    while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
      MR = ER->getSuperRegion();

    Os << "Argument to ";
    if (!printMemFnName(Os, C, FreeExpr))
      Os << "deallocator";

    Os << " is a function pointer";

    auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
                                                      Os.str(), N);
    R->markInteresting(MR);
    R->addRange(Range);
    C.emitReport(std::move(R));
  }
}

ProgramStateRef
MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call,
                             bool ShouldFreeOnFail, ProgramStateRef State,
                             AllocationFamily Family, bool SuffixWithN) const {
  if (!State)
    return nullptr;

  const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr());

  if (SuffixWithN && CE->getNumArgs() < 3)
    return nullptr;
  else if (CE->getNumArgs() < 2)
    return nullptr;

  const Expr *arg0Expr = CE->getArg(0);
  SVal Arg0Val = C.getSVal(arg0Expr);
  if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
    return nullptr;
  DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();

  SValBuilder &svalBuilder = C.getSValBuilder();

  DefinedOrUnknownSVal PtrEQ =
    svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());

  // Get the size argument.
  const Expr *Arg1 = CE->getArg(1);

  // Get the value of the size argument.
  SVal TotalSize = C.getSVal(Arg1);
  if (SuffixWithN)
    TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
  if (!TotalSize.getAs<DefinedOrUnknownSVal>())
    return nullptr;

  // Compare the size argument to 0.
  DefinedOrUnknownSVal SizeZero =
    svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
                       svalBuilder.makeIntValWithPtrWidth(0, false));

  ProgramStateRef StatePtrIsNull, StatePtrNotNull;
  std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
  ProgramStateRef StateSizeIsZero, StateSizeNotZero;
  std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
  // We only assume exceptional states if they are definitely true; if the
  // state is under-constrained, assume regular realloc behavior.
  bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
  bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;

  // If the ptr is NULL and the size is not 0, the call is equivalent to
  // malloc(size).
  if (PrtIsNull && !SizeIsZero) {
    ProgramStateRef stateMalloc = MallocMemAux(
        C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family);
    return stateMalloc;
  }

  if (PrtIsNull && SizeIsZero)
    return State;

  assert(!PrtIsNull);

  bool IsKnownToBeAllocated = false;

  // If the size is 0, free the memory.
  if (SizeIsZero)
    // The semantics of the return value are:
    // If size was equal to 0, either NULL or a pointer suitable to be passed
    // to free() is returned. We just free the input pointer and do not add
    // any constrains on the output pointer.
    if (ProgramStateRef stateFree = FreeMemAux(
            C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family))
      return stateFree;

  // Default behavior.
  if (ProgramStateRef stateFree =
          FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) {

    ProgramStateRef stateRealloc =
        MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family);
    if (!stateRealloc)
      return nullptr;

    OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure;
    if (ShouldFreeOnFail)
      Kind = OAR_FreeOnFailure;
    else if (!IsKnownToBeAllocated)
      Kind = OAR_DoNotTrackAfterFailure;

    // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
    SymbolRef FromPtr = arg0Val.getLocSymbolInBase();
    SVal RetVal = C.getSVal(CE);
    SymbolRef ToPtr = RetVal.getAsSymbol();
    assert(FromPtr && ToPtr &&
           "By this point, FreeMemAux and MallocMemAux should have checked "
           "whether the argument or the return value is symbolic!");

    // Record the info about the reallocated symbol so that we could properly
    // process failed reallocation.
    stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
                                                   ReallocPair(FromPtr, Kind));
    // The reallocated symbol should stay alive for as long as the new symbol.
    C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
    return stateRealloc;
  }
  return nullptr;
}

ProgramStateRef MallocChecker::CallocMem(CheckerContext &C,
                                         const CallEvent &Call,
                                         ProgramStateRef State) {
  if (!State)
    return nullptr;

  if (Call.getNumArgs() < 2)
    return nullptr;

  SValBuilder &svalBuilder = C.getSValBuilder();
  SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
  SVal TotalSize =
      evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));

  return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc);
}

MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N,
                                                         SymbolRef Sym,
                                                         CheckerContext &C) {
  const LocationContext *LeakContext = N->getLocationContext();
  // Walk the ExplodedGraph backwards and find the first node that referred to
  // the tracked symbol.
  const ExplodedNode *AllocNode = N;
  const MemRegion *ReferenceRegion = nullptr;

  while (N) {
    ProgramStateRef State = N->getState();
    if (!State->get<RegionState>(Sym))
      break;

    // Find the most recent expression bound to the symbol in the current
    // context.
    if (!ReferenceRegion) {
      if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
        SVal Val = State->getSVal(MR);
        if (Val.getAsLocSymbol() == Sym) {
          const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>();
          // Do not show local variables belonging to a function other than
          // where the error is reported.
          if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame()))
            ReferenceRegion = MR;
        }
      }
    }

    // Allocation node, is the last node in the current or parent context in
    // which the symbol was tracked.
    const LocationContext *NContext = N->getLocationContext();
    if (NContext == LeakContext ||
        NContext->isParentOf(LeakContext))
      AllocNode = N;
    N = N->pred_empty() ? nullptr : *(N->pred_begin());
  }

  return LeakInfo(AllocNode, ReferenceRegion);
}

void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N,
                               CheckerContext &C) const {

  if (!ChecksEnabled[CK_MallocChecker] &&
      !ChecksEnabled[CK_NewDeleteLeaksChecker])
    return;

  const RefState *RS = C.getState()->get<RegionState>(Sym);
  assert(RS && "cannot leak an untracked symbol");
  AllocationFamily Family = RS->getAllocationFamily();

  if (Family == AF_Alloca)
    return;

  Optional<MallocChecker::CheckKind>
      CheckKind = getCheckIfTracked(Family, true);

  if (!CheckKind.hasValue())
    return;

  assert(N);
  if (!BT_Leak[*CheckKind]) {
    // Leaks should not be reported if they are post-dominated by a sink:
    // (1) Sinks are higher importance bugs.
    // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
    //     with __noreturn functions such as assert() or exit(). We choose not
    //     to report leaks on such paths.
    BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
                                          categories::MemoryError,
                                          /*SuppressOnSink=*/true));
  }

  // Most bug reports are cached at the location where they occurred.
  // With leaks, we want to unique them by the location where they were
  // allocated, and only report a single path.
  PathDiagnosticLocation LocUsedForUniqueing;
  const ExplodedNode *AllocNode = nullptr;
  const MemRegion *Region = nullptr;
  std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);

  const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics();
  if (AllocationStmt)
    LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
                                              C.getSourceManager(),
                                              AllocNode->getLocationContext());

  SmallString<200> buf;
  llvm::raw_svector_ostream os(buf);
  if (Region && Region->canPrintPretty()) {
    os << "Potential leak of memory pointed to by ";
    Region->printPretty(os);
  } else {
    os << "Potential memory leak";
  }

  auto R = std::make_unique<PathSensitiveBugReport>(
      *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
      AllocNode->getLocationContext()->getDecl());
  R->markInteresting(Sym);
  R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true));
  C.emitReport(std::move(R));
}

void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
                                     CheckerContext &C) const
{
  ProgramStateRef state = C.getState();
  RegionStateTy OldRS = state->get<RegionState>();
  RegionStateTy::Factory &F = state->get_context<RegionState>();

  RegionStateTy RS = OldRS;
  SmallVector<SymbolRef, 2> Errors;
  for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
    if (SymReaper.isDead(I->first)) {
      if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
        Errors.push_back(I->first);
      // Remove the dead symbol from the map.
      RS = F.remove(RS, I->first);
    }
  }

  if (RS == OldRS) {
    // We shouldn't have touched other maps yet.
    assert(state->get<ReallocPairs>() ==
           C.getState()->get<ReallocPairs>());
    assert(state->get<FreeReturnValue>() ==
           C.getState()->get<FreeReturnValue>());
    return;
  }

  // Cleanup the Realloc Pairs Map.
  ReallocPairsTy RP = state->get<ReallocPairs>();
  for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
    if (SymReaper.isDead(I->first) ||
        SymReaper.isDead(I->second.ReallocatedSym)) {
      state = state->remove<ReallocPairs>(I->first);
    }
  }

  // Cleanup the FreeReturnValue Map.
  FreeReturnValueTy FR = state->get<FreeReturnValue>();
  for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
    if (SymReaper.isDead(I->first) ||
        SymReaper.isDead(I->second)) {
      state = state->remove<FreeReturnValue>(I->first);
    }
  }

  // Generate leak node.
  ExplodedNode *N = C.getPredecessor();
  if (!Errors.empty()) {
    static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
    N = C.generateNonFatalErrorNode(C.getState(), &Tag);
    if (N) {
      for (SmallVectorImpl<SymbolRef>::iterator
           I = Errors.begin(), E = Errors.end(); I != E; ++I) {
        HandleLeak(*I, N, C);
      }
    }
  }

  C.addTransition(state->set<RegionState>(RS), N);
}

void MallocChecker::checkPreCall(const CallEvent &Call,
                                 CheckerContext &C) const {

  if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) {
    const CXXDeleteExpr *DE = DC->getOriginExpr();

    if (!ChecksEnabled[CK_NewDeleteChecker])
      if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
        checkUseAfterFree(Sym, C, DE->getArgument());

    if (!isStandardNewDelete(DC->getDecl()))
      return;

    ProgramStateRef State = C.getState();
    bool IsKnownToBeAllocated;
    State = FreeMemAux(C, DE->getArgument(), Call, State,
                       /*Hold*/ false, IsKnownToBeAllocated,
                       (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew));

    C.addTransition(State);
    return;
  }

  if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) {
    SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
    if (!Sym || checkDoubleDelete(Sym, C))
      return;
  }

  // We will check for double free in the post visit.
  if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
    const FunctionDecl *FD = FC->getDecl();
    if (!FD)
      return;

    if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call))
      return;
  }

  // Check if the callee of a method is deleted.
  if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
    SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
    if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
      return;
  }

  // Check arguments for being used after free.
  for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
    SVal ArgSVal = Call.getArgSVal(I);
    if (ArgSVal.getAs<Loc>()) {
      SymbolRef Sym = ArgSVal.getAsSymbol();
      if (!Sym)
        continue;
      if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
        return;
    }
  }
}

void MallocChecker::checkPreStmt(const ReturnStmt *S,
                                 CheckerContext &C) const {
  checkEscapeOnReturn(S, C);
}

// In the CFG, automatic destructors come after the return statement.
// This callback checks for returning memory that is freed by automatic
// destructors, as those cannot be reached in checkPreStmt().
void MallocChecker::checkEndFunction(const ReturnStmt *S,
                                     CheckerContext &C) const {
  checkEscapeOnReturn(S, C);
}

void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
                                        CheckerContext &C) const {
  if (!S)
    return;

  const Expr *E = S->getRetValue();
  if (!E)
    return;

  // Check if we are returning a symbol.
  ProgramStateRef State = C.getState();
  SVal RetVal = C.getSVal(E);
  SymbolRef Sym = RetVal.getAsSymbol();
  if (!Sym)
    // If we are returning a field of the allocated struct or an array element,
    // the callee could still free the memory.
    // TODO: This logic should be a part of generic symbol escape callback.
    if (const MemRegion *MR = RetVal.getAsRegion())
      if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
        if (const SymbolicRegion *BMR =
              dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
          Sym = BMR->getSymbol();

  // Check if we are returning freed memory.
  if (Sym)
    checkUseAfterFree(Sym, C, E);
}

// TODO: Blocks should be either inlined or should call invalidate regions
// upon invocation. After that's in place, special casing here will not be
// needed.
void MallocChecker::checkPostStmt(const BlockExpr *BE,
                                  CheckerContext &C) const {

  // Scan the BlockDecRefExprs for any object the retain count checker
  // may be tracking.
  if (!BE->getBlockDecl()->hasCaptures())
    return;

  ProgramStateRef state = C.getState();
  const BlockDataRegion *R =
    cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());

  BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
                                            E = R->referenced_vars_end();

  if (I == E)
    return;

  SmallVector<const MemRegion*, 10> Regions;
  const LocationContext *LC = C.getLocationContext();
  MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();

  for ( ; I != E; ++I) {
    const VarRegion *VR = I.getCapturedRegion();
    if (VR->getSuperRegion() == R) {
      VR = MemMgr.getVarRegion(VR->getDecl(), LC);
    }
    Regions.push_back(VR);
  }

  state =
    state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
  C.addTransition(state);
}

static bool isReleased(SymbolRef Sym, CheckerContext &C) {
  assert(Sym);
  const RefState *RS = C.getState()->get<RegionState>(Sym);
  return (RS && RS->isReleased());
}

bool MallocChecker::suppressDeallocationsInSuspiciousContexts(
    const CallEvent &Call, CheckerContext &C) const {
  if (Call.getNumArgs() == 0)
    return false;

  StringRef FunctionStr = "";
  if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
    if (const Stmt *Body = FD->getBody())
      if (Body->getBeginLoc().isValid())
        FunctionStr =
            Lexer::getSourceText(CharSourceRange::getTokenRange(
                                     {FD->getBeginLoc(), Body->getBeginLoc()}),
                                 C.getSourceManager(), C.getLangOpts());

  // We do not model the Integer Set Library's retain-count based allocation.
  if (!FunctionStr.contains("__isl_"))
    return false;

  ProgramStateRef State = C.getState();

  for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments())
    if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol())
      if (const RefState *RS = State->get<RegionState>(Sym))
        State = State->set<RegionState>(Sym, RefState::getEscaped(RS));

  C.addTransition(State);
  return true;
}

bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
                                      const Stmt *S) const {

  if (isReleased(Sym, C)) {
    HandleUseAfterFree(C, S->getSourceRange(), Sym);
    return true;
  }

  return false;
}

void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
                                          const Stmt *S) const {
  assert(Sym);

  if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
    if (RS->isAllocatedOfSizeZero())
      HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym);
  }
  else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
    HandleUseZeroAlloc(C, S->getSourceRange(), Sym);
  }
}

bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {

  if (isReleased(Sym, C)) {
    HandleDoubleDelete(C, Sym);
    return true;
  }
  return false;
}

// Check if the location is a freed symbolic region.
void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
                                  CheckerContext &C) const {
  SymbolRef Sym = l.getLocSymbolInBase();
  if (Sym) {
    checkUseAfterFree(Sym, C, S);
    checkUseZeroAllocated(Sym, C, S);
  }
}

// If a symbolic region is assumed to NULL (or another constant), stop tracking
// it - assuming that allocation failed on this path.
ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
                                              SVal Cond,
                                              bool Assumption) const {
  RegionStateTy RS = state->get<RegionState>();
  for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
    // If the symbol is assumed to be NULL, remove it from consideration.
    ConstraintManager &CMgr = state->getConstraintManager();
    ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
    if (AllocFailed.isConstrainedTrue())
      state = state->remove<RegionState>(I.getKey());
  }

  // Realloc returns 0 when reallocation fails, which means that we should
  // restore the state of the pointer being reallocated.
  ReallocPairsTy RP = state->get<ReallocPairs>();
  for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
    // If the symbol is assumed to be NULL, remove it from consideration.
    ConstraintManager &CMgr = state->getConstraintManager();
    ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
    if (!AllocFailed.isConstrainedTrue())
      continue;

    SymbolRef ReallocSym = I.getData().ReallocatedSym;
    if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
      if (RS->isReleased()) {
        switch (I.getData().Kind) {
        case OAR_ToBeFreedAfterFailure:
          state = state->set<RegionState>(ReallocSym,
              RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
          break;
        case OAR_DoNotTrackAfterFailure:
          state = state->remove<RegionState>(ReallocSym);
          break;
        default:
          assert(I.getData().Kind == OAR_FreeOnFailure);
        }
      }
    }
    state = state->remove<ReallocPairs>(I.getKey());
  }

  return state;
}

bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
                                              const CallEvent *Call,
                                              ProgramStateRef State,
                                              SymbolRef &EscapingSymbol) const {
  assert(Call);
  EscapingSymbol = nullptr;

  // For now, assume that any C++ or block call can free memory.
  // TODO: If we want to be more optimistic here, we'll need to make sure that
  // regions escape to C++ containers. They seem to do that even now, but for
  // mysterious reasons.
  if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
    return true;

  // Check Objective-C messages by selector name.
  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
    // If it's not a framework call, or if it takes a callback, assume it
    // can free memory.
    if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
      return true;

    // If it's a method we know about, handle it explicitly post-call.
    // This should happen before the "freeWhenDone" check below.
    if (isKnownDeallocObjCMethodName(*Msg))
      return false;

    // If there's a "freeWhenDone" parameter, but the method isn't one we know
    // about, we can't be sure that the object will use free() to deallocate the
    // memory, so we can't model it explicitly. The best we can do is use it to
    // decide whether the pointer escapes.
    if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
      return *FreeWhenDone;

    // If the first selector piece ends with "NoCopy", and there is no
    // "freeWhenDone" parameter set to zero, we know ownership is being
    // transferred. Again, though, we can't be sure that the object will use
    // free() to deallocate the memory, so we can't model it explicitly.
    StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
    if (FirstSlot.endswith("NoCopy"))
      return true;

    // If the first selector starts with addPointer, insertPointer,
    // or replacePointer, assume we are dealing with NSPointerArray or similar.
    // This is similar to C++ containers (vector); we still might want to check
    // that the pointers get freed by following the container itself.
    if (FirstSlot.startswith("addPointer") ||
        FirstSlot.startswith("insertPointer") ||
        FirstSlot.startswith("replacePointer") ||
        FirstSlot.equals("valueWithPointer")) {
      return true;
    }

    // We should escape receiver on call to 'init'. This is especially relevant
    // to the receiver, as the corresponding symbol is usually not referenced
    // after the call.
    if (Msg->getMethodFamily() == OMF_init) {
      EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
      return true;
    }

    // Otherwise, assume that the method does not free memory.
    // Most framework methods do not free memory.
    return false;
  }

  // At this point the only thing left to handle is straight function calls.
  const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
  if (!FD)
    return true;

  // If it's one of the allocation functions we can reason about, we model
  // its behavior explicitly.
  if (isMemCall(*Call))
    return false;

  // If it's not a system call, assume it frees memory.
  if (!Call->isInSystemHeader())
    return true;

  // White list the system functions whose arguments escape.
  const IdentifierInfo *II = FD->getIdentifier();
  if (!II)
    return true;
  StringRef FName = II->getName();

  // White list the 'XXXNoCopy' CoreFoundation functions.
  // We specifically check these before
  if (FName.endswith("NoCopy")) {
    // Look for the deallocator argument. We know that the memory ownership
    // is not transferred only if the deallocator argument is
    // 'kCFAllocatorNull'.
    for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
      const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
      if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
        StringRef DeallocatorName = DE->getFoundDecl()->getName();
        if (DeallocatorName == "kCFAllocatorNull")
          return false;
      }
    }
    return true;
  }

  // Associating streams with malloced buffers. The pointer can escape if
  // 'closefn' is specified (and if that function does free memory),
  // but it will not if closefn is not specified.
  // Currently, we do not inspect the 'closefn' function (PR12101).
  if (FName == "funopen")
    if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
      return false;

  // Do not warn on pointers passed to 'setbuf' when used with std streams,
  // these leaks might be intentional when setting the buffer for stdio.
  // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
  if (FName == "setbuf" || FName =="setbuffer" ||
      FName == "setlinebuf" || FName == "setvbuf") {
    if (Call->getNumArgs() >= 1) {
      const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
      if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
        if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
          if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
            return true;
    }
  }

  // A bunch of other functions which either take ownership of a pointer or
  // wrap the result up in a struct or object, meaning it can be freed later.
  // (See RetainCountChecker.) Not all the parameters here are invalidated,
  // but the Malloc checker cannot differentiate between them. The right way
  // of doing this would be to implement a pointer escapes callback.
  if (FName == "CGBitmapContextCreate" ||
      FName == "CGBitmapContextCreateWithData" ||
      FName == "CVPixelBufferCreateWithBytes" ||
      FName == "CVPixelBufferCreateWithPlanarBytes" ||
      FName == "OSAtomicEnqueue") {
    return true;
  }

  if (FName == "postEvent" &&
      FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
    return true;
  }

  if (FName == "postEvent" &&
      FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
    return true;
  }

  if (FName == "connectImpl" &&
      FD->getQualifiedNameAsString() == "QObject::connectImpl") {
    return true;
  }

  // Handle cases where we know a buffer's /address/ can escape.
  // Note that the above checks handle some special cases where we know that
  // even though the address escapes, it's still our responsibility to free the
  // buffer.
  if (Call->argumentsMayEscape())
    return true;

  // Otherwise, assume that the function does not free memory.
  // Most system calls do not free the memory.
  return false;
}

ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
                                             const InvalidatedSymbols &Escaped,
                                             const CallEvent *Call,
                                             PointerEscapeKind Kind) const {
  return checkPointerEscapeAux(State, Escaped, Call, Kind,
                               /*IsConstPointerEscape*/ false);
}

ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
                                              const InvalidatedSymbols &Escaped,
                                              const CallEvent *Call,
                                              PointerEscapeKind Kind) const {
  // If a const pointer escapes, it may not be freed(), but it could be deleted.
  return checkPointerEscapeAux(State, Escaped, Call, Kind,
                               /*IsConstPointerEscape*/ true);
}

static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
  return (RS->getAllocationFamily() == AF_CXXNewArray ||
          RS->getAllocationFamily() == AF_CXXNew);
}

ProgramStateRef MallocChecker::checkPointerEscapeAux(
    ProgramStateRef State, const InvalidatedSymbols &Escaped,
    const CallEvent *Call, PointerEscapeKind Kind,
    bool IsConstPointerEscape) const {
  // If we know that the call does not free memory, or we want to process the
  // call later, keep tracking the top level arguments.
  SymbolRef EscapingSymbol = nullptr;
  if (Kind == PSK_DirectEscapeOnCall &&
      !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
                                                    EscapingSymbol) &&
      !EscapingSymbol) {
    return State;
  }

  for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
       E = Escaped.end();
       I != E; ++I) {
    SymbolRef sym = *I;

    if (EscapingSymbol && EscapingSymbol != sym)
      continue;

    if (const RefState *RS = State->get<RegionState>(sym))
      if (RS->isAllocated() || RS->isAllocatedOfSizeZero())
        if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS))
          State = State->set<RegionState>(sym, RefState::getEscaped(RS));
  }
  return State;
}

bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
                                       SVal ArgVal) const {
  if (!KernelZeroSizePtrValue)
    KernelZeroSizePtrValue =
        tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor());

  const llvm::APSInt *ArgValKnown =
      C.getSValBuilder().getKnownValue(State, ArgVal);
  return ArgValKnown && *KernelZeroSizePtrValue &&
         ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue;
}

static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
                                         ProgramStateRef prevState) {
  ReallocPairsTy currMap = currState->get<ReallocPairs>();
  ReallocPairsTy prevMap = prevState->get<ReallocPairs>();

  for (const ReallocPairsTy::value_type &Pair : prevMap) {
    SymbolRef sym = Pair.first;
    if (!currMap.lookup(sym))
      return sym;
  }

  return nullptr;
}

static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
  if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
    StringRef N = II->getName();
    if (N.contains_lower("ptr") || N.contains_lower("pointer")) {
      if (N.contains_lower("ref") || N.contains_lower("cnt") ||
          N.contains_lower("intrusive") || N.contains_lower("shared")) {
        return true;
      }
    }
  }
  return false;
}

PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N,
                                                   BugReporterContext &BRC,
                                                   PathSensitiveBugReport &BR) {
  ProgramStateRef state = N->getState();
  ProgramStateRef statePrev = N->getFirstPred()->getState();

  const RefState *RSCurr = state->get<RegionState>(Sym);
  const RefState *RSPrev = statePrev->get<RegionState>(Sym);

  const Stmt *S = N->getStmtForDiagnostics();
  // When dealing with containers, we sometimes want to give a note
  // even if the statement is missing.
  if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer))
    return nullptr;

  const LocationContext *CurrentLC = N->getLocationContext();

  // If we find an atomic fetch_add or fetch_sub within the destructor in which
  // the pointer was released (before the release), this is likely a destructor
  // of a shared pointer.
  // Because we don't model atomics, and also because we don't know that the
  // original reference count is positive, we should not report use-after-frees
  // on objects deleted in such destructors. This can probably be improved
  // through better shared pointer modeling.
  if (ReleaseDestructorLC) {
    if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
      AtomicExpr::AtomicOp Op = AE->getOp();
      if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
          Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
        if (ReleaseDestructorLC == CurrentLC ||
            ReleaseDestructorLC->isParentOf(CurrentLC)) {
          BR.markInvalid(getTag(), S);
        }
      }
    }
  }

  // FIXME: We will eventually need to handle non-statement-based events
  // (__attribute__((cleanup))).

  // Find out if this is an interesting point and what is the kind.
  StringRef Msg;
  std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr;
  SmallString<256> Buf;
  llvm::raw_svector_ostream OS(Buf);

  if (Mode == Normal) {
    if (isAllocated(RSCurr, RSPrev, S)) {
      Msg = "Memory is allocated";
      StackHint = std::make_unique<StackHintGeneratorForSymbol>(
          Sym, "Returned allocated memory");
    } else if (isReleased(RSCurr, RSPrev, S)) {
      const auto Family = RSCurr->getAllocationFamily();
      switch (Family) {
        case AF_Alloca:
        case AF_Malloc:
        case AF_CXXNew:
        case AF_CXXNewArray:
        case AF_IfNameIndex:
          Msg = "Memory is released";
          StackHint = std::make_unique<StackHintGeneratorForSymbol>(
              Sym, "Returning; memory was released");
          break;
        case AF_InnerBuffer: {
          const MemRegion *ObjRegion =
              allocation_state::getContainerObjRegion(statePrev, Sym);
          const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
          QualType ObjTy = TypedRegion->getValueType();
          OS << "Inner buffer of '" << ObjTy.getAsString() << "' ";

          if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
            OS << "deallocated by call to destructor";
            StackHint = std::make_unique<StackHintGeneratorForSymbol>(
                Sym, "Returning; inner buffer was deallocated");
          } else {
            OS << "reallocated by call to '";
            const Stmt *S = RSCurr->getStmt();
            if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
              OS << MemCallE->getMethodDecl()->getNameAsString();
            } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
              OS << OpCallE->getDirectCallee()->getNameAsString();
            } else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
              auto &CEMgr = BRC.getStateManager().getCallEventManager();
              CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC);
              const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl());
              OS << (D ? D->getNameAsString() : "unknown");
            }
            OS << "'";
            StackHint = std::make_unique<StackHintGeneratorForSymbol>(
                Sym, "Returning; inner buffer was reallocated");
          }
          Msg = OS.str();
          break;
        }
        case AF_None:
          llvm_unreachable("Unhandled allocation family!");
      }

      // See if we're releasing memory while inlining a destructor
      // (or one of its callees). This turns on various common
      // false positive suppressions.
      bool FoundAnyDestructor = false;
      for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
        if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
          if (isReferenceCountingPointerDestructor(DD)) {
            // This immediately looks like a reference-counting destructor.
            // We're bad at guessing the original reference count of the object,
            // so suppress the report for now.
            BR.markInvalid(getTag(), DD);
          } else if (!FoundAnyDestructor) {
            assert(!ReleaseDestructorLC &&
                   "There can be only one release point!");
            // Suspect that it's a reference counting pointer destructor.
            // On one of the next nodes might find out that it has atomic
            // reference counting operations within it (see the code above),
            // and if so, we'd conclude that it likely is a reference counting
            // pointer destructor.
            ReleaseDestructorLC = LC->getStackFrame();
            // It is unlikely that releasing memory is delegated to a destructor
            // inside a destructor of a shared pointer, because it's fairly hard
            // to pass the information that the pointer indeed needs to be
            // released into it. So we're only interested in the innermost
            // destructor.
            FoundAnyDestructor = true;
          }
        }
      }
    } else if (isRelinquished(RSCurr, RSPrev, S)) {
      Msg = "Memory ownership is transferred";
      StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, "");
    } else if (hasReallocFailed(RSCurr, RSPrev, S)) {
      Mode = ReallocationFailed;
      Msg = "Reallocation failed";
      StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>(
          Sym, "Reallocation failed");

      if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
        // Is it possible to fail two reallocs WITHOUT testing in between?
        assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
          "We only support one failed realloc at a time.");
        BR.markInteresting(sym);
        FailedReallocSymbol = sym;
      }
    }

  // We are in a special mode if a reallocation failed later in the path.
  } else if (Mode == ReallocationFailed) {
    assert(FailedReallocSymbol && "No symbol to look for.");

    // Is this is the first appearance of the reallocated symbol?
    if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
      // We're at the reallocation point.
      Msg = "Attempt to reallocate memory";
      StackHint = std::make_unique<StackHintGeneratorForSymbol>(
          Sym, "Returned reallocated memory");
      FailedReallocSymbol = nullptr;
      Mode = Normal;
    }
  }

  if (Msg.empty()) {
    assert(!StackHint);
    return nullptr;
  }

  assert(StackHint);

  // Generate the extra diagnostic.
  PathDiagnosticLocation Pos;
  if (!S) {
    assert(RSCurr->getAllocationFamily() == AF_InnerBuffer);
    auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
    if (!PostImplCall)
      return nullptr;
    Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
                                 BRC.getSourceManager());
  } else {
    Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
                                 N->getLocationContext());
  }

  auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true);
  BR.addCallStackHint(P, std::move(StackHint));
  return P;
}

void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
                               const char *NL, const char *Sep) const {

  RegionStateTy RS = State->get<RegionState>();

  if (!RS.isEmpty()) {
    Out << Sep << "MallocChecker :" << NL;
    for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
      const RefState *RefS = State->get<RegionState>(I.getKey());
      AllocationFamily Family = RefS->getAllocationFamily();
      Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
      if (!CheckKind.hasValue())
         CheckKind = getCheckIfTracked(Family, true);

      I.getKey()->dumpToStream(Out);
      Out << " : ";
      I.getData().dump(Out);
      if (CheckKind.hasValue())
        Out << " (" << CheckNames[*CheckKind].getName() << ")";
      Out << NL;
    }
  }
}

namespace clang {
namespace ento {
namespace allocation_state {

ProgramStateRef
markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
  AllocationFamily Family = AF_InnerBuffer;
  return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
}

} // end namespace allocation_state
} // end namespace ento
} // end namespace clang

// Intended to be used in InnerPointerChecker to register the part of
// MallocChecker connected to it.
void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
  MallocChecker *checker = mgr.getChecker<MallocChecker>();
  checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
  checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
      mgr.getCurrentCheckerName();
}

void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
  auto *checker = mgr.registerChecker<MallocChecker>();
  checker->ShouldIncludeOwnershipAnnotatedFunctions =
      mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic");
}

bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) {
  return true;
}

#define REGISTER_CHECKER(name)                                                 \
  void ento::register##name(CheckerManager &mgr) {                             \
    MallocChecker *checker = mgr.getChecker<MallocChecker>();                  \
    checker->ChecksEnabled[MallocChecker::CK_##name] = true;                   \
    checker->CheckNames[MallocChecker::CK_##name] =                            \
        mgr.getCurrentCheckerName();                                           \
  }                                                                            \
                                                                               \
  bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }

REGISTER_CHECKER(MallocChecker)
REGISTER_CHECKER(NewDeleteChecker)
REGISTER_CHECKER(NewDeleteLeaksChecker)
REGISTER_CHECKER(MismatchedDeallocatorChecker)