CGObjC.cpp 143 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Objective-C code as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
using namespace clang;
using namespace CodeGen;

typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
                                   QualType ET,
                                   RValue Result);

/// Given the address of a variable of pointer type, find the correct
/// null to store into it.
static llvm::Constant *getNullForVariable(Address addr) {
  llvm::Type *type = addr.getElementType();
  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
}

/// Emits an instance of NSConstantString representing the object.
llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
{
  llvm::Constant *C =
      CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
  // FIXME: This bitcast should just be made an invariant on the Runtime.
  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
}

/// EmitObjCBoxedExpr - This routine generates code to call
/// the appropriate expression boxing method. This will either be
/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
/// or [NSValue valueWithBytes:objCType:].
///
llvm::Value *
CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
  // Generate the correct selector for this literal's concrete type.
  // Get the method.
  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
  const Expr *SubExpr = E->getSubExpr();

  if (E->isExpressibleAsConstantInitializer()) {
    ConstantEmitter ConstEmitter(CGM);
    return ConstEmitter.tryEmitAbstract(E, E->getType());
  }

  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
  Selector Sel = BoxingMethod->getSelector();

  // Generate a reference to the class pointer, which will be the receiver.
  // Assumes that the method was introduced in the class that should be
  // messaged (avoids pulling it out of the result type).
  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);

  CallArgList Args;
  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();

  // ObjCBoxedExpr supports boxing of structs and unions
  // via [NSValue valueWithBytes:objCType:]
  const QualType ValueType(SubExpr->getType().getCanonicalType());
  if (ValueType->isObjCBoxableRecordType()) {
    // Emit CodeGen for first parameter
    // and cast value to correct type
    Address Temporary = CreateMemTemp(SubExpr->getType());
    EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
    Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
    Args.add(RValue::get(BitCast.getPointer()), ArgQT);

    // Create char array to store type encoding
    std::string Str;
    getContext().getObjCEncodingForType(ValueType, Str);
    llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();

    // Cast type encoding to correct type
    const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
    QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
    llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));

    Args.add(RValue::get(Cast), EncodingQT);
  } else {
    Args.add(EmitAnyExpr(SubExpr), ArgQT);
  }

  RValue result = Runtime.GenerateMessageSend(
      *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
      Args, ClassDecl, BoxingMethod);
  return Builder.CreateBitCast(result.getScalarVal(),
                               ConvertType(E->getType()));
}

llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
                                    const ObjCMethodDecl *MethodWithObjects) {
  ASTContext &Context = CGM.getContext();
  const ObjCDictionaryLiteral *DLE = nullptr;
  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
  if (!ALE)
    DLE = cast<ObjCDictionaryLiteral>(E);

  // Optimize empty collections by referencing constants, when available.
  uint64_t NumElements =
    ALE ? ALE->getNumElements() : DLE->getNumElements();
  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
    StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
    QualType IdTy(CGM.getContext().getObjCIdType());
    llvm::Constant *Constant =
        CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
    LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
    llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
    cast<llvm::LoadInst>(Ptr)->setMetadata(
        CGM.getModule().getMDKindID("invariant.load"),
        llvm::MDNode::get(getLLVMContext(), None));
    return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
  }

  // Compute the type of the array we're initializing.
  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
                            NumElements);
  QualType ElementType = Context.getObjCIdType().withConst();
  QualType ElementArrayType
    = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
                                   ArrayType::Normal, /*IndexTypeQuals=*/0);

  // Allocate the temporary array(s).
  Address Objects = CreateMemTemp(ElementArrayType, "objects");
  Address Keys = Address::invalid();
  if (DLE)
    Keys = CreateMemTemp(ElementArrayType, "keys");

  // In ARC, we may need to do extra work to keep all the keys and
  // values alive until after the call.
  SmallVector<llvm::Value *, 16> NeededObjects;
  bool TrackNeededObjects =
    (getLangOpts().ObjCAutoRefCount &&
    CGM.getCodeGenOpts().OptimizationLevel != 0);

  // Perform the actual initialialization of the array(s).
  for (uint64_t i = 0; i < NumElements; i++) {
    if (ALE) {
      // Emit the element and store it to the appropriate array slot.
      const Expr *Rhs = ALE->getElement(i);
      LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
                                 ElementType, AlignmentSource::Decl);

      llvm::Value *value = EmitScalarExpr(Rhs);
      EmitStoreThroughLValue(RValue::get(value), LV, true);
      if (TrackNeededObjects) {
        NeededObjects.push_back(value);
      }
    } else {
      // Emit the key and store it to the appropriate array slot.
      const Expr *Key = DLE->getKeyValueElement(i).Key;
      LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
                                    ElementType, AlignmentSource::Decl);
      llvm::Value *keyValue = EmitScalarExpr(Key);
      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);

      // Emit the value and store it to the appropriate array slot.
      const Expr *Value = DLE->getKeyValueElement(i).Value;
      LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
                                      ElementType, AlignmentSource::Decl);
      llvm::Value *valueValue = EmitScalarExpr(Value);
      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
      if (TrackNeededObjects) {
        NeededObjects.push_back(keyValue);
        NeededObjects.push_back(valueValue);
      }
    }
  }

  // Generate the argument list.
  CallArgList Args;
  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
  const ParmVarDecl *argDecl = *PI++;
  QualType ArgQT = argDecl->getType().getUnqualifiedType();
  Args.add(RValue::get(Objects.getPointer()), ArgQT);
  if (DLE) {
    argDecl = *PI++;
    ArgQT = argDecl->getType().getUnqualifiedType();
    Args.add(RValue::get(Keys.getPointer()), ArgQT);
  }
  argDecl = *PI;
  ArgQT = argDecl->getType().getUnqualifiedType();
  llvm::Value *Count =
    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
  Args.add(RValue::get(Count), ArgQT);

  // Generate a reference to the class pointer, which will be the receiver.
  Selector Sel = MethodWithObjects->getSelector();
  QualType ResultType = E->getType();
  const ObjCObjectPointerType *InterfacePointerType
    = ResultType->getAsObjCInterfacePointerType();
  ObjCInterfaceDecl *Class
    = InterfacePointerType->getObjectType()->getInterface();
  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
  llvm::Value *Receiver = Runtime.GetClass(*this, Class);

  // Generate the message send.
  RValue result = Runtime.GenerateMessageSend(
      *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
      Receiver, Args, Class, MethodWithObjects);

  // The above message send needs these objects, but in ARC they are
  // passed in a buffer that is essentially __unsafe_unretained.
  // Therefore we must prevent the optimizer from releasing them until
  // after the call.
  if (TrackNeededObjects) {
    EmitARCIntrinsicUse(NeededObjects);
  }

  return Builder.CreateBitCast(result.getScalarVal(),
                               ConvertType(E->getType()));
}

llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
}

llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
                                            const ObjCDictionaryLiteral *E) {
  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
}

/// Emit a selector.
llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
  // Untyped selector.
  // Note that this implementation allows for non-constant strings to be passed
  // as arguments to @selector().  Currently, the only thing preventing this
  // behaviour is the type checking in the front end.
  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
}

llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
  // FIXME: This should pass the Decl not the name.
  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
}

/// Adjust the type of an Objective-C object that doesn't match up due
/// to type erasure at various points, e.g., related result types or the use
/// of parameterized classes.
static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
                                   RValue Result) {
  if (!ExpT->isObjCRetainableType())
    return Result;

  // If the converted types are the same, we're done.
  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
  if (ExpLLVMTy == Result.getScalarVal()->getType())
    return Result;

  // We have applied a substitution. Cast the rvalue appropriately.
  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
                                               ExpLLVMTy));
}

/// Decide whether to extend the lifetime of the receiver of a
/// returns-inner-pointer message.
static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
  switch (message->getReceiverKind()) {

  // For a normal instance message, we should extend unless the
  // receiver is loaded from a variable with precise lifetime.
  case ObjCMessageExpr::Instance: {
    const Expr *receiver = message->getInstanceReceiver();

    // Look through OVEs.
    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
      if (opaque->getSourceExpr())
        receiver = opaque->getSourceExpr()->IgnoreParens();
    }

    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
    receiver = ice->getSubExpr()->IgnoreParens();

    // Look through OVEs.
    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
      if (opaque->getSourceExpr())
        receiver = opaque->getSourceExpr()->IgnoreParens();
    }

    // Only __strong variables.
    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
      return true;

    // All ivars and fields have precise lifetime.
    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
      return false;

    // Otherwise, check for variables.
    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
    if (!declRef) return true;
    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
    if (!var) return true;

    // All variables have precise lifetime except local variables with
    // automatic storage duration that aren't specially marked.
    return (var->hasLocalStorage() &&
            !var->hasAttr<ObjCPreciseLifetimeAttr>());
  }

  case ObjCMessageExpr::Class:
  case ObjCMessageExpr::SuperClass:
    // It's never necessary for class objects.
    return false;

  case ObjCMessageExpr::SuperInstance:
    // We generally assume that 'self' lives throughout a method call.
    return false;
  }

  llvm_unreachable("invalid receiver kind");
}

/// Given an expression of ObjC pointer type, check whether it was
/// immediately loaded from an ARC __weak l-value.
static const Expr *findWeakLValue(const Expr *E) {
  assert(E->getType()->isObjCRetainableType());
  E = E->IgnoreParens();
  if (auto CE = dyn_cast<CastExpr>(E)) {
    if (CE->getCastKind() == CK_LValueToRValue) {
      if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
        return CE->getSubExpr();
    }
  }

  return nullptr;
}

/// The ObjC runtime may provide entrypoints that are likely to be faster
/// than an ordinary message send of the appropriate selector.
///
/// The entrypoints are guaranteed to be equivalent to just sending the
/// corresponding message.  If the entrypoint is implemented naively as just a
/// message send, using it is a trade-off: it sacrifices a few cycles of
/// overhead to save a small amount of code.  However, it's possible for
/// runtimes to detect and special-case classes that use "standard"
/// behavior; if that's dynamically a large proportion of all objects, using
/// the entrypoint will also be faster than using a message send.
///
/// If the runtime does support a required entrypoint, then this method will
/// generate a call and return the resulting value.  Otherwise it will return
/// None and the caller can generate a msgSend instead.
static Optional<llvm::Value *>
tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
                                  llvm::Value *Receiver,
                                  const CallArgList& Args, Selector Sel,
                                  const ObjCMethodDecl *method,
                                  bool isClassMessage) {
  auto &CGM = CGF.CGM;
  if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
    return None;

  auto &Runtime = CGM.getLangOpts().ObjCRuntime;
  switch (Sel.getMethodFamily()) {
  case OMF_alloc:
    if (isClassMessage &&
        Runtime.shouldUseRuntimeFunctionsForAlloc() &&
        ResultType->isObjCObjectPointerType()) {
        // [Foo alloc] -> objc_alloc(Foo) or
        // [self alloc] -> objc_alloc(self)
        if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
          return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
        // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
        // [self allocWithZone:nil] -> objc_allocWithZone(self)
        if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
            Args.size() == 1 && Args.front().getType()->isPointerType() &&
            Sel.getNameForSlot(0) == "allocWithZone") {
          const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
          if (isa<llvm::ConstantPointerNull>(arg))
            return CGF.EmitObjCAllocWithZone(Receiver,
                                             CGF.ConvertType(ResultType));
          return None;
        }
    }
    break;

  case OMF_autorelease:
    if (ResultType->isObjCObjectPointerType() &&
        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
        Runtime.shouldUseARCFunctionsForRetainRelease())
      return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
    break;

  case OMF_retain:
    if (ResultType->isObjCObjectPointerType() &&
        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
        Runtime.shouldUseARCFunctionsForRetainRelease())
      return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
    break;

  case OMF_release:
    if (ResultType->isVoidType() &&
        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
        Runtime.shouldUseARCFunctionsForRetainRelease()) {
      CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
      return nullptr;
    }
    break;

  default:
    break;
  }
  return None;
}

CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
    CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
    Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
    const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
    bool isClassMessage) {
  if (Optional<llvm::Value *> SpecializedResult =
          tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
                                            Sel, Method, isClassMessage)) {
    return RValue::get(SpecializedResult.getValue());
  }
  return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
                             Method);
}

/// Instead of '[[MyClass alloc] init]', try to generate
/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
/// caller side, as well as the optimized objc_alloc.
static Optional<llvm::Value *>
tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
  auto &Runtime = CGF.getLangOpts().ObjCRuntime;
  if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
    return None;

  // Match the exact pattern '[[MyClass alloc] init]'.
  Selector Sel = OME->getSelector();
  if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
      !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
      Sel.getNameForSlot(0) != "init")
    return None;

  // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
  // with 'cls' a Class.
  auto *SubOME =
      dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
  if (!SubOME)
    return None;
  Selector SubSel = SubOME->getSelector();

  if (!SubOME->getType()->isObjCObjectPointerType() ||
      !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
    return None;

  llvm::Value *Receiver = nullptr;
  switch (SubOME->getReceiverKind()) {
  case ObjCMessageExpr::Instance:
    if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
      return None;
    Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
    break;

  case ObjCMessageExpr::Class: {
    QualType ReceiverType = SubOME->getClassReceiver();
    const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
    const ObjCInterfaceDecl *ID = ObjTy->getInterface();
    assert(ID && "null interface should be impossible here");
    Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
    break;
  }
  case ObjCMessageExpr::SuperInstance:
  case ObjCMessageExpr::SuperClass:
    return None;
  }

  return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
}

RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
                                            ReturnValueSlot Return) {
  // Only the lookup mechanism and first two arguments of the method
  // implementation vary between runtimes.  We can get the receiver and
  // arguments in generic code.

  bool isDelegateInit = E->isDelegateInitCall();

  const ObjCMethodDecl *method = E->getMethodDecl();

  // If the method is -retain, and the receiver's being loaded from
  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
      method->getMethodFamily() == OMF_retain) {
    if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
      LValue lvalue = EmitLValue(lvalueExpr);
      llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
      return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
    }
  }

  if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
    return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));

  // We don't retain the receiver in delegate init calls, and this is
  // safe because the receiver value is always loaded from 'self',
  // which we zero out.  We don't want to Block_copy block receivers,
  // though.
  bool retainSelf =
    (!isDelegateInit &&
     CGM.getLangOpts().ObjCAutoRefCount &&
     method &&
     method->hasAttr<NSConsumesSelfAttr>());

  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
  bool isSuperMessage = false;
  bool isClassMessage = false;
  ObjCInterfaceDecl *OID = nullptr;
  // Find the receiver
  QualType ReceiverType;
  llvm::Value *Receiver = nullptr;
  switch (E->getReceiverKind()) {
  case ObjCMessageExpr::Instance:
    ReceiverType = E->getInstanceReceiver()->getType();
    isClassMessage = ReceiverType->isObjCClassType();
    if (retainSelf) {
      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
                                                   E->getInstanceReceiver());
      Receiver = ter.getPointer();
      if (ter.getInt()) retainSelf = false;
    } else
      Receiver = EmitScalarExpr(E->getInstanceReceiver());
    break;

  case ObjCMessageExpr::Class: {
    ReceiverType = E->getClassReceiver();
    OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
    assert(OID && "Invalid Objective-C class message send");
    Receiver = Runtime.GetClass(*this, OID);
    isClassMessage = true;
    break;
  }

  case ObjCMessageExpr::SuperInstance:
    ReceiverType = E->getSuperType();
    Receiver = LoadObjCSelf();
    isSuperMessage = true;
    break;

  case ObjCMessageExpr::SuperClass:
    ReceiverType = E->getSuperType();
    Receiver = LoadObjCSelf();
    isSuperMessage = true;
    isClassMessage = true;
    break;
  }

  if (retainSelf)
    Receiver = EmitARCRetainNonBlock(Receiver);

  // In ARC, we sometimes want to "extend the lifetime"
  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
  // messages.
  if (getLangOpts().ObjCAutoRefCount && method &&
      method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
      shouldExtendReceiverForInnerPointerMessage(E))
    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);

  QualType ResultType = method ? method->getReturnType() : E->getType();

  CallArgList Args;
  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));

  // For delegate init calls in ARC, do an unsafe store of null into
  // self.  This represents the call taking direct ownership of that
  // value.  We have to do this after emitting the other call
  // arguments because they might also reference self, but we don't
  // have to worry about any of them modifying self because that would
  // be an undefined read and write of an object in unordered
  // expressions.
  if (isDelegateInit) {
    assert(getLangOpts().ObjCAutoRefCount &&
           "delegate init calls should only be marked in ARC");

    // Do an unsafe store of null into self.
    Address selfAddr =
      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
  }

  RValue result;
  if (isSuperMessage) {
    // super is only valid in an Objective-C method
    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
                                              E->getSelector(),
                                              OMD->getClassInterface(),
                                              isCategoryImpl,
                                              Receiver,
                                              isClassMessage,
                                              Args,
                                              method);
  } else {
    // Call runtime methods directly if we can.
    result = Runtime.GeneratePossiblySpecializedMessageSend(
        *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
        method, isClassMessage);
  }

  // For delegate init calls in ARC, implicitly store the result of
  // the call back into self.  This takes ownership of the value.
  if (isDelegateInit) {
    Address selfAddr =
      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
    llvm::Value *newSelf = result.getScalarVal();

    // The delegate return type isn't necessarily a matching type; in
    // fact, it's quite likely to be 'id'.
    llvm::Type *selfTy = selfAddr.getElementType();
    newSelf = Builder.CreateBitCast(newSelf, selfTy);

    Builder.CreateStore(newSelf, selfAddr);
  }

  return AdjustObjCObjectType(*this, E->getType(), result);
}

namespace {
struct FinishARCDealloc final : EHScopeStack::Cleanup {
  void Emit(CodeGenFunction &CGF, Flags flags) override {
    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);

    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
    const ObjCInterfaceDecl *iface = impl->getClassInterface();
    if (!iface->getSuperClass()) return;

    bool isCategory = isa<ObjCCategoryImplDecl>(impl);

    // Call [super dealloc] if we have a superclass.
    llvm::Value *self = CGF.LoadObjCSelf();

    CallArgList args;
    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
                                                      CGF.getContext().VoidTy,
                                                      method->getSelector(),
                                                      iface,
                                                      isCategory,
                                                      self,
                                                      /*is class msg*/ false,
                                                      args,
                                                      method);
  }
};
}

/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
/// the LLVM function and sets the other context used by
/// CodeGenFunction.
void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
                                      const ObjCContainerDecl *CD) {
  SourceLocation StartLoc = OMD->getBeginLoc();
  FunctionArgList args;
  // Check if we should generate debug info for this method.
  if (OMD->hasAttr<NoDebugAttr>())
    DebugInfo = nullptr; // disable debug info indefinitely for this function

  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);

  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
  if (OMD->isDirectMethod()) {
    Fn->setVisibility(llvm::Function::HiddenVisibility);
    CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
    CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
  } else {
    CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
  }

  args.push_back(OMD->getSelfDecl());
  args.push_back(OMD->getCmdDecl());

  args.append(OMD->param_begin(), OMD->param_end());

  CurGD = OMD;
  CurEHLocation = OMD->getEndLoc();

  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
                OMD->getLocation(), StartLoc);

  if (OMD->isDirectMethod()) {
    // This function is a direct call, it has to implement a nil check
    // on entry.
    //
    // TODO: possibly have several entry points to elide the check
    CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
  }

  // In ARC, certain methods get an extra cleanup.
  if (CGM.getLangOpts().ObjCAutoRefCount &&
      OMD->isInstanceMethod() &&
      OMD->getSelector().isUnarySelector()) {
    const IdentifierInfo *ident =
      OMD->getSelector().getIdentifierInfoForSlot(0);
    if (ident->isStr("dealloc"))
      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
  }
}

static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
                                              LValue lvalue, QualType type);

/// Generate an Objective-C method.  An Objective-C method is a C function with
/// its pointer, name, and types registered in the class structure.
void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
  StartObjCMethod(OMD, OMD->getClassInterface());
  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
  assert(isa<CompoundStmt>(OMD->getBody()));
  incrementProfileCounter(OMD->getBody());
  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
  FinishFunction(OMD->getBodyRBrace());
}

/// emitStructGetterCall - Call the runtime function to load a property
/// into the return value slot.
static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
                                 bool isAtomic, bool hasStrong) {
  ASTContext &Context = CGF.getContext();

  Address src =
      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
          .getAddress(CGF);

  // objc_copyStruct (ReturnValue, &structIvar,
  //                  sizeof (Type of Ivar), isAtomic, false);
  CallArgList args;

  Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
  args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);

  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
  args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);

  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);

  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
  CGCallee callee = CGCallee::forDirect(fn);
  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
               callee, ReturnValueSlot(), args);
}

/// Determine whether the given architecture supports unaligned atomic
/// accesses.  They don't have to be fast, just faster than a function
/// call and a mutex.
static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
  // FIXME: Allow unaligned atomic load/store on x86.  (It is not
  // currently supported by the backend.)
  return 0;
}

/// Return the maximum size that permits atomic accesses for the given
/// architecture.
static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
                                        llvm::Triple::ArchType arch) {
  // ARM has 8-byte atomic accesses, but it's not clear whether we
  // want to rely on them here.

  // In the default case, just assume that any size up to a pointer is
  // fine given adequate alignment.
  return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
}

namespace {
  class PropertyImplStrategy {
  public:
    enum StrategyKind {
      /// The 'native' strategy is to use the architecture's provided
      /// reads and writes.
      Native,

      /// Use objc_setProperty and objc_getProperty.
      GetSetProperty,

      /// Use objc_setProperty for the setter, but use expression
      /// evaluation for the getter.
      SetPropertyAndExpressionGet,

      /// Use objc_copyStruct.
      CopyStruct,

      /// The 'expression' strategy is to emit normal assignment or
      /// lvalue-to-rvalue expressions.
      Expression
    };

    StrategyKind getKind() const { return StrategyKind(Kind); }

    bool hasStrongMember() const { return HasStrong; }
    bool isAtomic() const { return IsAtomic; }
    bool isCopy() const { return IsCopy; }

    CharUnits getIvarSize() const { return IvarSize; }
    CharUnits getIvarAlignment() const { return IvarAlignment; }

    PropertyImplStrategy(CodeGenModule &CGM,
                         const ObjCPropertyImplDecl *propImpl);

  private:
    unsigned Kind : 8;
    unsigned IsAtomic : 1;
    unsigned IsCopy : 1;
    unsigned HasStrong : 1;

    CharUnits IvarSize;
    CharUnits IvarAlignment;
  };
}

/// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
                                     const ObjCPropertyImplDecl *propImpl) {
  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();

  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
  IsAtomic = prop->isAtomic();
  HasStrong = false; // doesn't matter here.

  // Evaluate the ivar's size and alignment.
  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
  QualType ivarType = ivar->getType();
  std::tie(IvarSize, IvarAlignment) =
      CGM.getContext().getTypeInfoInChars(ivarType);

  // If we have a copy property, we always have to use getProperty/setProperty.
  // TODO: we could actually use setProperty and an expression for non-atomics.
  if (IsCopy) {
    Kind = GetSetProperty;
    return;
  }

  // Handle retain.
  if (setterKind == ObjCPropertyDecl::Retain) {
    // In GC-only, there's nothing special that needs to be done.
    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
      // fallthrough

    // In ARC, if the property is non-atomic, use expression emission,
    // which translates to objc_storeStrong.  This isn't required, but
    // it's slightly nicer.
    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
      // Using standard expression emission for the setter is only
      // acceptable if the ivar is __strong, which won't be true if
      // the property is annotated with __attribute__((NSObject)).
      // TODO: falling all the way back to objc_setProperty here is
      // just laziness, though;  we could still use objc_storeStrong
      // if we hacked it right.
      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
        Kind = Expression;
      else
        Kind = SetPropertyAndExpressionGet;
      return;

    // Otherwise, we need to at least use setProperty.  However, if
    // the property isn't atomic, we can use normal expression
    // emission for the getter.
    } else if (!IsAtomic) {
      Kind = SetPropertyAndExpressionGet;
      return;

    // Otherwise, we have to use both setProperty and getProperty.
    } else {
      Kind = GetSetProperty;
      return;
    }
  }

  // If we're not atomic, just use expression accesses.
  if (!IsAtomic) {
    Kind = Expression;
    return;
  }

  // Properties on bitfield ivars need to be emitted using expression
  // accesses even if they're nominally atomic.
  if (ivar->isBitField()) {
    Kind = Expression;
    return;
  }

  // GC-qualified or ARC-qualified ivars need to be emitted as
  // expressions.  This actually works out to being atomic anyway,
  // except for ARC __strong, but that should trigger the above code.
  if (ivarType.hasNonTrivialObjCLifetime() ||
      (CGM.getLangOpts().getGC() &&
       CGM.getContext().getObjCGCAttrKind(ivarType))) {
    Kind = Expression;
    return;
  }

  // Compute whether the ivar has strong members.
  if (CGM.getLangOpts().getGC())
    if (const RecordType *recordType = ivarType->getAs<RecordType>())
      HasStrong = recordType->getDecl()->hasObjectMember();

  // We can never access structs with object members with a native
  // access, because we need to use write barriers.  This is what
  // objc_copyStruct is for.
  if (HasStrong) {
    Kind = CopyStruct;
    return;
  }

  // Otherwise, this is target-dependent and based on the size and
  // alignment of the ivar.

  // If the size of the ivar is not a power of two, give up.  We don't
  // want to get into the business of doing compare-and-swaps.
  if (!IvarSize.isPowerOfTwo()) {
    Kind = CopyStruct;
    return;
  }

  llvm::Triple::ArchType arch =
    CGM.getTarget().getTriple().getArch();

  // Most architectures require memory to fit within a single cache
  // line, so the alignment has to be at least the size of the access.
  // Otherwise we have to grab a lock.
  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
    Kind = CopyStruct;
    return;
  }

  // If the ivar's size exceeds the architecture's maximum atomic
  // access size, we have to use CopyStruct.
  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
    Kind = CopyStruct;
    return;
  }

  // Otherwise, we can use native loads and stores.
  Kind = Native;
}

/// Generate an Objective-C property getter function.
///
/// The given Decl must be an ObjCImplementationDecl. \@synthesize
/// is illegal within a category.
void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
                                         const ObjCPropertyImplDecl *PID) {
  llvm::Constant *AtomicHelperFn =
      CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
  ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
  assert(OMD && "Invalid call to generate getter (empty method)");
  StartObjCMethod(OMD, IMP->getClassInterface());

  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);

  FinishFunction(OMD->getEndLoc());
}

static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
  const Expr *getter = propImpl->getGetterCXXConstructor();
  if (!getter) return true;

  // Sema only makes only of these when the ivar has a C++ class type,
  // so the form is pretty constrained.

  // If the property has a reference type, we might just be binding a
  // reference, in which case the result will be a gl-value.  We should
  // treat this as a non-trivial operation.
  if (getter->isGLValue())
    return false;

  // If we selected a trivial copy-constructor, we're okay.
  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
    return (construct->getConstructor()->isTrivial());

  // The constructor might require cleanups (in which case it's never
  // trivial).
  assert(isa<ExprWithCleanups>(getter));
  return false;
}

/// emitCPPObjectAtomicGetterCall - Call the runtime function to
/// copy the ivar into the resturn slot.
static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
                                          llvm::Value *returnAddr,
                                          ObjCIvarDecl *ivar,
                                          llvm::Constant *AtomicHelperFn) {
  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
  //                           AtomicHelperFn);
  CallArgList args;

  // The 1st argument is the return Slot.
  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);

  // The 2nd argument is the address of the ivar.
  llvm::Value *ivarAddr =
      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
          .getPointer(CGF);
  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);

  // Third argument is the helper function.
  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);

  llvm::FunctionCallee copyCppAtomicObjectFn =
      CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
  CGF.EmitCall(
      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
               callee, ReturnValueSlot(), args);
}

void
CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
                                        const ObjCPropertyImplDecl *propImpl,
                                        const ObjCMethodDecl *GetterMethodDecl,
                                        llvm::Constant *AtomicHelperFn) {
  // If there's a non-trivial 'get' expression, we just have to emit that.
  if (!hasTrivialGetExpr(propImpl)) {
    if (!AtomicHelperFn) {
      auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
                                     propImpl->getGetterCXXConstructor(),
                                     /* NRVOCandidate=*/nullptr);
      EmitReturnStmt(*ret);
    }
    else {
      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
      emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
                                    ivar, AtomicHelperFn);
    }
    return;
  }

  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
  QualType propType = prop->getType();
  ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();

  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();

  // Pick an implementation strategy.
  PropertyImplStrategy strategy(CGM, propImpl);
  switch (strategy.getKind()) {
  case PropertyImplStrategy::Native: {
    // We don't need to do anything for a zero-size struct.
    if (strategy.getIvarSize().isZero())
      return;

    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);

    // Currently, all atomic accesses have to be through integer
    // types, so there's no point in trying to pick a prettier type.
    uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
    llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay

    // Perform an atomic load.  This does not impose ordering constraints.
    Address ivarAddr = LV.getAddress(*this);
    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
    load->setAtomic(llvm::AtomicOrdering::Unordered);

    // Store that value into the return address.  Doing this with a
    // bitcast is likely to produce some pretty ugly IR, but it's not
    // the *most* terrible thing in the world.
    llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
    uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
    llvm::Value *ivarVal = load;
    if (ivarSize > retTySize) {
      llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
      ivarVal = Builder.CreateTrunc(load, newTy);
      bitcastType = newTy->getPointerTo();
    }
    Builder.CreateStore(ivarVal,
                        Builder.CreateBitCast(ReturnValue, bitcastType));

    // Make sure we don't do an autorelease.
    AutoreleaseResult = false;
    return;
  }

  case PropertyImplStrategy::GetSetProperty: {
    llvm::FunctionCallee getPropertyFn =
        CGM.getObjCRuntime().GetPropertyGetFunction();
    if (!getPropertyFn) {
      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
      return;
    }
    CGCallee callee = CGCallee::forDirect(getPropertyFn);

    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
    // FIXME: Can't this be simpler? This might even be worse than the
    // corresponding gcc code.
    llvm::Value *cmd =
      Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    llvm::Value *ivarOffset =
      EmitIvarOffset(classImpl->getClassInterface(), ivar);

    CallArgList args;
    args.add(RValue::get(self), getContext().getObjCIdType());
    args.add(RValue::get(cmd), getContext().getObjCSelType());
    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
             getContext().BoolTy);

    // FIXME: We shouldn't need to get the function info here, the
    // runtime already should have computed it to build the function.
    llvm::CallBase *CallInstruction;
    RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
                             getContext().getObjCIdType(), args),
                         callee, ReturnValueSlot(), args, &CallInstruction);
    if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
      call->setTailCall();

    // We need to fix the type here. Ivars with copy & retain are
    // always objects so we don't need to worry about complex or
    // aggregates.
    RV = RValue::get(Builder.CreateBitCast(
        RV.getScalarVal(),
        getTypes().ConvertType(getterMethod->getReturnType())));

    EmitReturnOfRValue(RV, propType);

    // objc_getProperty does an autorelease, so we should suppress ours.
    AutoreleaseResult = false;

    return;
  }

  case PropertyImplStrategy::CopyStruct:
    emitStructGetterCall(*this, ivar, strategy.isAtomic(),
                         strategy.hasStrongMember());
    return;

  case PropertyImplStrategy::Expression:
  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);

    QualType ivarType = ivar->getType();
    switch (getEvaluationKind(ivarType)) {
    case TEK_Complex: {
      ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
      EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
                         /*init*/ true);
      return;
    }
    case TEK_Aggregate: {
      // The return value slot is guaranteed to not be aliased, but
      // that's not necessarily the same as "on the stack", so
      // we still potentially need objc_memmove_collectable.
      EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
                        /* Src= */ LV, ivarType, getOverlapForReturnValue());
      return;
    }
    case TEK_Scalar: {
      llvm::Value *value;
      if (propType->isReferenceType()) {
        value = LV.getAddress(*this).getPointer();
      } else {
        // We want to load and autoreleaseReturnValue ARC __weak ivars.
        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
          if (getLangOpts().ObjCAutoRefCount) {
            value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
          } else {
            value = EmitARCLoadWeak(LV.getAddress(*this));
          }

        // Otherwise we want to do a simple load, suppressing the
        // final autorelease.
        } else {
          value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
          AutoreleaseResult = false;
        }

        value = Builder.CreateBitCast(
            value, ConvertType(GetterMethodDecl->getReturnType()));
      }

      EmitReturnOfRValue(RValue::get(value), propType);
      return;
    }
    }
    llvm_unreachable("bad evaluation kind");
  }

  }
  llvm_unreachable("bad @property implementation strategy!");
}

/// emitStructSetterCall - Call the runtime function to store the value
/// from the first formal parameter into the given ivar.
static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
                                 ObjCIvarDecl *ivar) {
  // objc_copyStruct (&structIvar, &Arg,
  //                  sizeof (struct something), true, false);
  CallArgList args;

  // The first argument is the address of the ivar.
  llvm::Value *ivarAddr =
      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
          .getPointer(CGF);
  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);

  // The second argument is the address of the parameter variable.
  ParmVarDecl *argVar = *OMD->param_begin();
  DeclRefExpr argRef(CGF.getContext(), argVar, false,
                     argVar->getType().getNonReferenceType(), VK_LValue,
                     SourceLocation());
  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);

  // The third argument is the sizeof the type.
  llvm::Value *size =
    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
  args.add(RValue::get(size), CGF.getContext().getSizeType());

  // The fourth argument is the 'isAtomic' flag.
  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);

  // The fifth argument is the 'hasStrong' flag.
  // FIXME: should this really always be false?
  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);

  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
  CGCallee callee = CGCallee::forDirect(fn);
  CGF.EmitCall(
      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
               callee, ReturnValueSlot(), args);
}

/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
/// the value from the first formal parameter into the given ivar, using
/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
                                          ObjCMethodDecl *OMD,
                                          ObjCIvarDecl *ivar,
                                          llvm::Constant *AtomicHelperFn) {
  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
  //                           AtomicHelperFn);
  CallArgList args;

  // The first argument is the address of the ivar.
  llvm::Value *ivarAddr =
      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
          .getPointer(CGF);
  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);

  // The second argument is the address of the parameter variable.
  ParmVarDecl *argVar = *OMD->param_begin();
  DeclRefExpr argRef(CGF.getContext(), argVar, false,
                     argVar->getType().getNonReferenceType(), VK_LValue,
                     SourceLocation());
  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);

  // Third argument is the helper function.
  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);

  llvm::FunctionCallee fn =
      CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
  CGCallee callee = CGCallee::forDirect(fn);
  CGF.EmitCall(
      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
               callee, ReturnValueSlot(), args);
}


static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
  Expr *setter = PID->getSetterCXXAssignment();
  if (!setter) return true;

  // Sema only makes only of these when the ivar has a C++ class type,
  // so the form is pretty constrained.

  // An operator call is trivial if the function it calls is trivial.
  // This also implies that there's nothing non-trivial going on with
  // the arguments, because operator= can only be trivial if it's a
  // synthesized assignment operator and therefore both parameters are
  // references.
  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
    if (const FunctionDecl *callee
          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
      if (callee->isTrivial())
        return true;
    return false;
  }

  assert(isa<ExprWithCleanups>(setter));
  return false;
}

static bool UseOptimizedSetter(CodeGenModule &CGM) {
  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
    return false;
  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
}

void
CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
                                        const ObjCPropertyImplDecl *propImpl,
                                        llvm::Constant *AtomicHelperFn) {
  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
  ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();

  // Just use the setter expression if Sema gave us one and it's
  // non-trivial.
  if (!hasTrivialSetExpr(propImpl)) {
    if (!AtomicHelperFn)
      // If non-atomic, assignment is called directly.
      EmitStmt(propImpl->getSetterCXXAssignment());
    else
      // If atomic, assignment is called via a locking api.
      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
                                    AtomicHelperFn);
    return;
  }

  PropertyImplStrategy strategy(CGM, propImpl);
  switch (strategy.getKind()) {
  case PropertyImplStrategy::Native: {
    // We don't need to do anything for a zero-size struct.
    if (strategy.getIvarSize().isZero())
      return;

    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());

    LValue ivarLValue =
      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
    Address ivarAddr = ivarLValue.getAddress(*this);

    // Currently, all atomic accesses have to be through integer
    // types, so there's no point in trying to pick a prettier type.
    llvm::Type *bitcastType =
      llvm::Type::getIntNTy(getLLVMContext(),
                            getContext().toBits(strategy.getIvarSize()));

    // Cast both arguments to the chosen operation type.
    argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
    ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);

    // This bitcast load is likely to cause some nasty IR.
    llvm::Value *load = Builder.CreateLoad(argAddr);

    // Perform an atomic store.  There are no memory ordering requirements.
    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
    store->setAtomic(llvm::AtomicOrdering::Unordered);
    return;
  }

  case PropertyImplStrategy::GetSetProperty:
  case PropertyImplStrategy::SetPropertyAndExpressionGet: {

    llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
    llvm::FunctionCallee setPropertyFn = nullptr;
    if (UseOptimizedSetter(CGM)) {
      // 10.8 and iOS 6.0 code and GC is off
      setOptimizedPropertyFn =
          CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
              strategy.isAtomic(), strategy.isCopy());
      if (!setOptimizedPropertyFn) {
        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
        return;
      }
    }
    else {
      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
      if (!setPropertyFn) {
        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
        return;
      }
    }

    // Emit objc_setProperty((id) self, _cmd, offset, arg,
    //                       <is-atomic>, <is-copy>).
    llvm::Value *cmd =
      Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
    llvm::Value *self =
      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    llvm::Value *ivarOffset =
      EmitIvarOffset(classImpl->getClassInterface(), ivar);
    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
    llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
    arg = Builder.CreateBitCast(arg, VoidPtrTy);

    CallArgList args;
    args.add(RValue::get(self), getContext().getObjCIdType());
    args.add(RValue::get(cmd), getContext().getObjCSelType());
    if (setOptimizedPropertyFn) {
      args.add(RValue::get(arg), getContext().getObjCIdType());
      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
      CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
               callee, ReturnValueSlot(), args);
    } else {
      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
      args.add(RValue::get(arg), getContext().getObjCIdType());
      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
               getContext().BoolTy);
      args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
               getContext().BoolTy);
      // FIXME: We shouldn't need to get the function info here, the runtime
      // already should have computed it to build the function.
      CGCallee callee = CGCallee::forDirect(setPropertyFn);
      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
               callee, ReturnValueSlot(), args);
    }

    return;
  }

  case PropertyImplStrategy::CopyStruct:
    emitStructSetterCall(*this, setterMethod, ivar);
    return;

  case PropertyImplStrategy::Expression:
    break;
  }

  // Otherwise, fake up some ASTs and emit a normal assignment.
  ValueDecl *selfDecl = setterMethod->getSelfDecl();
  DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
                   VK_LValue, SourceLocation());
  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
                            selfDecl->getType(), CK_LValueToRValue, &self,
                            VK_RValue);
  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
                          SourceLocation(), SourceLocation(),
                          &selfLoad, true, true);

  ParmVarDecl *argDecl = *setterMethod->param_begin();
  QualType argType = argDecl->getType().getNonReferenceType();
  DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
                  SourceLocation());
  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
                           argType.getUnqualifiedType(), CK_LValueToRValue,
                           &arg, VK_RValue);

  // The property type can differ from the ivar type in some situations with
  // Objective-C pointer types, we can always bit cast the RHS in these cases.
  // The following absurdity is just to ensure well-formed IR.
  CastKind argCK = CK_NoOp;
  if (ivarRef.getType()->isObjCObjectPointerType()) {
    if (argLoad.getType()->isObjCObjectPointerType())
      argCK = CK_BitCast;
    else if (argLoad.getType()->isBlockPointerType())
      argCK = CK_BlockPointerToObjCPointerCast;
    else
      argCK = CK_CPointerToObjCPointerCast;
  } else if (ivarRef.getType()->isBlockPointerType()) {
     if (argLoad.getType()->isBlockPointerType())
      argCK = CK_BitCast;
    else
      argCK = CK_AnyPointerToBlockPointerCast;
  } else if (ivarRef.getType()->isPointerType()) {
    argCK = CK_BitCast;
  }
  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
                           ivarRef.getType(), argCK, &argLoad,
                           VK_RValue);
  Expr *finalArg = &argLoad;
  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
                                           argLoad.getType()))
    finalArg = &argCast;

  BinaryOperator *assign = BinaryOperator::Create(
      getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
      OK_Ordinary, SourceLocation(), FPOptionsOverride());
  EmitStmt(assign);
}

/// Generate an Objective-C property setter function.
///
/// The given Decl must be an ObjCImplementationDecl. \@synthesize
/// is illegal within a category.
void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
                                         const ObjCPropertyImplDecl *PID) {
  llvm::Constant *AtomicHelperFn =
      CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
  ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
  assert(OMD && "Invalid call to generate setter (empty method)");
  StartObjCMethod(OMD, IMP->getClassInterface());

  generateObjCSetterBody(IMP, PID, AtomicHelperFn);

  FinishFunction(OMD->getEndLoc());
}

namespace {
  struct DestroyIvar final : EHScopeStack::Cleanup {
  private:
    llvm::Value *addr;
    const ObjCIvarDecl *ivar;
    CodeGenFunction::Destroyer *destroyer;
    bool useEHCleanupForArray;
  public:
    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
                CodeGenFunction::Destroyer *destroyer,
                bool useEHCleanupForArray)
      : addr(addr), ivar(ivar), destroyer(destroyer),
        useEHCleanupForArray(useEHCleanupForArray) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      LValue lvalue
        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
      CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
                      flags.isForNormalCleanup() && useEHCleanupForArray);
    }
  };
}

/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
static void destroyARCStrongWithStore(CodeGenFunction &CGF,
                                      Address addr,
                                      QualType type) {
  llvm::Value *null = getNullForVariable(addr);
  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
}

static void emitCXXDestructMethod(CodeGenFunction &CGF,
                                  ObjCImplementationDecl *impl) {
  CodeGenFunction::RunCleanupsScope scope(CGF);

  llvm::Value *self = CGF.LoadObjCSelf();

  const ObjCInterfaceDecl *iface = impl->getClassInterface();
  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
       ivar; ivar = ivar->getNextIvar()) {
    QualType type = ivar->getType();

    // Check whether the ivar is a destructible type.
    QualType::DestructionKind dtorKind = type.isDestructedType();
    if (!dtorKind) continue;

    CodeGenFunction::Destroyer *destroyer = nullptr;

    // Use a call to objc_storeStrong to destroy strong ivars, for the
    // general benefit of the tools.
    if (dtorKind == QualType::DK_objc_strong_lifetime) {
      destroyer = destroyARCStrongWithStore;

    // Otherwise use the default for the destruction kind.
    } else {
      destroyer = CGF.getDestroyer(dtorKind);
    }

    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);

    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
                                         cleanupKind & EHCleanup);
  }

  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
}

void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
                                                 ObjCMethodDecl *MD,
                                                 bool ctor) {
  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
  StartObjCMethod(MD, IMP->getClassInterface());

  // Emit .cxx_construct.
  if (ctor) {
    // Suppress the final autorelease in ARC.
    AutoreleaseResult = false;

    for (const auto *IvarInit : IMP->inits()) {
      FieldDecl *Field = IvarInit->getAnyMember();
      ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
                                    LoadObjCSelf(), Ivar, 0);
      EmitAggExpr(IvarInit->getInit(),
                  AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
                                          AggValueSlot::DoesNotNeedGCBarriers,
                                          AggValueSlot::IsNotAliased,
                                          AggValueSlot::DoesNotOverlap));
    }
    // constructor returns 'self'.
    CodeGenTypes &Types = CGM.getTypes();
    QualType IdTy(CGM.getContext().getObjCIdType());
    llvm::Value *SelfAsId =
      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);

  // Emit .cxx_destruct.
  } else {
    emitCXXDestructMethod(*this, IMP);
  }
  FinishFunction();
}

llvm::Value *CodeGenFunction::LoadObjCSelf() {
  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
  DeclRefExpr DRE(getContext(), Self,
                  /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
                  Self->getType(), VK_LValue, SourceLocation());
  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
}

QualType CodeGenFunction::TypeOfSelfObject() {
  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
    getContext().getCanonicalType(selfDecl->getType()));
  return PTy->getPointeeType();
}

void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
  llvm::FunctionCallee EnumerationMutationFnPtr =
      CGM.getObjCRuntime().EnumerationMutationFunction();
  if (!EnumerationMutationFnPtr) {
    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
    return;
  }
  CGCallee EnumerationMutationFn =
    CGCallee::forDirect(EnumerationMutationFnPtr);

  CGDebugInfo *DI = getDebugInfo();
  if (DI)
    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());

  RunCleanupsScope ForScope(*this);

  // The local variable comes into scope immediately.
  AutoVarEmission variable = AutoVarEmission::invalid();
  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));

  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");

  // Fast enumeration state.
  QualType StateTy = CGM.getObjCFastEnumerationStateType();
  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
  EmitNullInitialization(StatePtr, StateTy);

  // Number of elements in the items array.
  static const unsigned NumItems = 16;

  // Fetch the countByEnumeratingWithState:objects:count: selector.
  IdentifierInfo *II[] = {
    &CGM.getContext().Idents.get("countByEnumeratingWithState"),
    &CGM.getContext().Idents.get("objects"),
    &CGM.getContext().Idents.get("count")
  };
  Selector FastEnumSel =
    CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);

  QualType ItemsTy =
    getContext().getConstantArrayType(getContext().getObjCIdType(),
                                      llvm::APInt(32, NumItems), nullptr,
                                      ArrayType::Normal, 0);
  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");

  // Emit the collection pointer.  In ARC, we do a retain.
  llvm::Value *Collection;
  if (getLangOpts().ObjCAutoRefCount) {
    Collection = EmitARCRetainScalarExpr(S.getCollection());

    // Enter a cleanup to do the release.
    EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
  } else {
    Collection = EmitScalarExpr(S.getCollection());
  }

  // The 'continue' label needs to appear within the cleanup for the
  // collection object.
  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");

  // Send it our message:
  CallArgList Args;

  // The first argument is a temporary of the enumeration-state type.
  Args.add(RValue::get(StatePtr.getPointer()),
           getContext().getPointerType(StateTy));

  // The second argument is a temporary array with space for NumItems
  // pointers.  We'll actually be loading elements from the array
  // pointer written into the control state; this buffer is so that
  // collections that *aren't* backed by arrays can still queue up
  // batches of elements.
  Args.add(RValue::get(ItemsPtr.getPointer()),
           getContext().getPointerType(ItemsTy));

  // The third argument is the capacity of that temporary array.
  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
  Args.add(RValue::get(Count), getContext().getNSUIntegerType());

  // Start the enumeration.
  RValue CountRV =
      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
                                               getContext().getNSUIntegerType(),
                                               FastEnumSel, Collection, Args);

  // The initial number of objects that were returned in the buffer.
  llvm::Value *initialBufferLimit = CountRV.getScalarVal();

  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");

  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);

  // If the limit pointer was zero to begin with, the collection is
  // empty; skip all this. Set the branch weight assuming this has the same
  // probability of exiting the loop as any other loop exit.
  uint64_t EntryCount = getCurrentProfileCount();
  Builder.CreateCondBr(
      Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
      LoopInitBB,
      createProfileWeights(EntryCount, getProfileCount(S.getBody())));

  // Otherwise, initialize the loop.
  EmitBlock(LoopInitBB);

  // Save the initial mutations value.  This is the value at an
  // address that was written into the state object by
  // countByEnumeratingWithState:objects:count:.
  Address StateMutationsPtrPtr =
      Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
  llvm::Value *StateMutationsPtr
    = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");

  llvm::Value *initialMutations =
    Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
                              "forcoll.initial-mutations");

  // Start looping.  This is the point we return to whenever we have a
  // fresh, non-empty batch of objects.
  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
  EmitBlock(LoopBodyBB);

  // The current index into the buffer.
  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
  index->addIncoming(zero, LoopInitBB);

  // The current buffer size.
  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
  count->addIncoming(initialBufferLimit, LoopInitBB);

  incrementProfileCounter(&S);

  // Check whether the mutations value has changed from where it was
  // at start.  StateMutationsPtr should actually be invariant between
  // refreshes.
  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
  llvm::Value *currentMutations
    = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
                                "statemutations");

  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");

  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
                       WasNotMutatedBB, WasMutatedBB);

  // If so, call the enumeration-mutation function.
  EmitBlock(WasMutatedBB);
  llvm::Value *V =
    Builder.CreateBitCast(Collection,
                          ConvertType(getContext().getObjCIdType()));
  CallArgList Args2;
  Args2.add(RValue::get(V), getContext().getObjCIdType());
  // FIXME: We shouldn't need to get the function info here, the runtime already
  // should have computed it to build the function.
  EmitCall(
          CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
           EnumerationMutationFn, ReturnValueSlot(), Args2);

  // Otherwise, or if the mutation function returns, just continue.
  EmitBlock(WasNotMutatedBB);

  // Initialize the element variable.
  RunCleanupsScope elementVariableScope(*this);
  bool elementIsVariable;
  LValue elementLValue;
  QualType elementType;
  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
    // Initialize the variable, in case it's a __block variable or something.
    EmitAutoVarInit(variable);

    const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
    DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
                        D->getType(), VK_LValue, SourceLocation());
    elementLValue = EmitLValue(&tempDRE);
    elementType = D->getType();
    elementIsVariable = true;

    if (D->isARCPseudoStrong())
      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
  } else {
    elementLValue = LValue(); // suppress warning
    elementType = cast<Expr>(S.getElement())->getType();
    elementIsVariable = false;
  }
  llvm::Type *convertedElementType = ConvertType(elementType);

  // Fetch the buffer out of the enumeration state.
  // TODO: this pointer should actually be invariant between
  // refreshes, which would help us do certain loop optimizations.
  Address StateItemsPtr =
      Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
  llvm::Value *EnumStateItems =
    Builder.CreateLoad(StateItemsPtr, "stateitems");

  // Fetch the value at the current index from the buffer.
  llvm::Value *CurrentItemPtr =
    Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
  llvm::Value *CurrentItem =
    Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());

  if (SanOpts.has(SanitizerKind::ObjCCast)) {
    // Before using an item from the collection, check that the implicit cast
    // from id to the element type is valid. This is done with instrumentation
    // roughly corresponding to:
    //
    //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
    const ObjCObjectPointerType *ObjPtrTy =
        elementType->getAsObjCInterfacePointerType();
    const ObjCInterfaceType *InterfaceTy =
        ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
    if (InterfaceTy) {
      SanitizerScope SanScope(this);
      auto &C = CGM.getContext();
      assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
      Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
      CallArgList IsKindOfClassArgs;
      llvm::Value *Cls =
          CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
      IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
      llvm::Value *IsClass =
          CGM.getObjCRuntime()
              .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
                                   IsKindOfClassSel, CurrentItem,
                                   IsKindOfClassArgs)
              .getScalarVal();
      llvm::Constant *StaticData[] = {
          EmitCheckSourceLocation(S.getBeginLoc()),
          EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
      EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
                SanitizerHandler::InvalidObjCCast,
                ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
    }
  }

  // Cast that value to the right type.
  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
                                      "currentitem");

  // Make sure we have an l-value.  Yes, this gets evaluated every
  // time through the loop.
  if (!elementIsVariable) {
    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
  } else {
    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
                           /*isInit*/ true);
  }

  // If we do have an element variable, this assignment is the end of
  // its initialization.
  if (elementIsVariable)
    EmitAutoVarCleanups(variable);

  // Perform the loop body, setting up break and continue labels.
  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
  {
    RunCleanupsScope Scope(*this);
    EmitStmt(S.getBody());
  }
  BreakContinueStack.pop_back();

  // Destroy the element variable now.
  elementVariableScope.ForceCleanup();

  // Check whether there are more elements.
  EmitBlock(AfterBody.getBlock());

  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");

  // First we check in the local buffer.
  llvm::Value *indexPlusOne =
      Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));

  // If we haven't overrun the buffer yet, we can continue.
  // Set the branch weights based on the simplifying assumption that this is
  // like a while-loop, i.e., ignoring that the false branch fetches more
  // elements and then returns to the loop.
  Builder.CreateCondBr(
      Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
      createProfileWeights(getProfileCount(S.getBody()), EntryCount));

  index->addIncoming(indexPlusOne, AfterBody.getBlock());
  count->addIncoming(count, AfterBody.getBlock());

  // Otherwise, we have to fetch more elements.
  EmitBlock(FetchMoreBB);

  CountRV =
      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
                                               getContext().getNSUIntegerType(),
                                               FastEnumSel, Collection, Args);

  // If we got a zero count, we're done.
  llvm::Value *refetchCount = CountRV.getScalarVal();

  // (note that the message send might split FetchMoreBB)
  index->addIncoming(zero, Builder.GetInsertBlock());
  count->addIncoming(refetchCount, Builder.GetInsertBlock());

  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
                       EmptyBB, LoopBodyBB);

  // No more elements.
  EmitBlock(EmptyBB);

  if (!elementIsVariable) {
    // If the element was not a declaration, set it to be null.

    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
    EmitStoreThroughLValue(RValue::get(null), elementLValue);
  }

  if (DI)
    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());

  ForScope.ForceCleanup();
  EmitBlock(LoopEnd.getBlock());
}

void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
  CGM.getObjCRuntime().EmitTryStmt(*this, S);
}

void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
}

void CodeGenFunction::EmitObjCAtSynchronizedStmt(
                                              const ObjCAtSynchronizedStmt &S) {
  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
}

namespace {
  struct CallObjCRelease final : EHScopeStack::Cleanup {
    CallObjCRelease(llvm::Value *object) : object(object) {}
    llvm::Value *object;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Releases at the end of the full-expression are imprecise.
      CGF.EmitARCRelease(object, ARCImpreciseLifetime);
    }
  };
}

/// Produce the code for a CK_ARCConsumeObject.  Does a primitive
/// release at the end of the full-expression.
llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
                                                    llvm::Value *object) {
  // If we're in a conditional branch, we need to make the cleanup
  // conditional.
  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
  return object;
}

llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
                                                           llvm::Value *value) {
  return EmitARCRetainAutorelease(type, value);
}

/// Given a number of pointers, inform the optimizer that they're
/// being intrinsically used up until this point in the program.
void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
  if (!fn)
    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);

  // This isn't really a "runtime" function, but as an intrinsic it
  // doesn't really matter as long as we align things up.
  EmitNounwindRuntimeCall(fn, values);
}

static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
    // If the target runtime doesn't naturally support ARC, emit weak
    // references to the runtime support library.  We don't really
    // permit this to fail, but we need a particular relocation style.
    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
        !CGM.getTriple().isOSBinFormatCOFF()) {
      F->setLinkage(llvm::Function::ExternalWeakLinkage);
    }
  }
}

static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
                                         llvm::FunctionCallee RTF) {
  setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
}

/// Perform an operation having the signature
///   i8* (i8*)
/// where a null input causes a no-op and returns null.
static llvm::Value *emitARCValueOperation(
    CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
    llvm::Function *&fn, llvm::Intrinsic::ID IntID,
    llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
  if (isa<llvm::ConstantPointerNull>(value))
    return value;

  if (!fn) {
    fn = CGF.CGM.getIntrinsic(IntID);
    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
  }

  // Cast the argument to 'id'.
  llvm::Type *origType = returnType ? returnType : value->getType();
  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);

  // Call the function.
  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
  call->setTailCallKind(tailKind);

  // Cast the result back to the original type.
  return CGF.Builder.CreateBitCast(call, origType);
}

/// Perform an operation having the following signature:
///   i8* (i8**)
static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
                                         llvm::Function *&fn,
                                         llvm::Intrinsic::ID IntID) {
  if (!fn) {
    fn = CGF.CGM.getIntrinsic(IntID);
    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
  }

  // Cast the argument to 'id*'.
  llvm::Type *origType = addr.getElementType();
  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);

  // Call the function.
  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());

  // Cast the result back to a dereference of the original type.
  if (origType != CGF.Int8PtrTy)
    result = CGF.Builder.CreateBitCast(result, origType);

  return result;
}

/// Perform an operation having the following signature:
///   i8* (i8**, i8*)
static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
                                          llvm::Value *value,
                                          llvm::Function *&fn,
                                          llvm::Intrinsic::ID IntID,
                                          bool ignored) {
  assert(addr.getElementType() == value->getType());

  if (!fn) {
    fn = CGF.CGM.getIntrinsic(IntID);
    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
  }

  llvm::Type *origType = value->getType();

  llvm::Value *args[] = {
    CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
  };
  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);

  if (ignored) return nullptr;

  return CGF.Builder.CreateBitCast(result, origType);
}

/// Perform an operation having the following signature:
///   void (i8**, i8**)
static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
                                 llvm::Function *&fn,
                                 llvm::Intrinsic::ID IntID) {
  assert(dst.getType() == src.getType());

  if (!fn) {
    fn = CGF.CGM.getIntrinsic(IntID);
    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
  }

  llvm::Value *args[] = {
    CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
    CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
  };
  CGF.EmitNounwindRuntimeCall(fn, args);
}

/// Perform an operation having the signature
///   i8* (i8*)
/// where a null input causes a no-op and returns null.
static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
                                           llvm::Value *value,
                                           llvm::Type *returnType,
                                           llvm::FunctionCallee &fn,
                                           StringRef fnName) {
  if (isa<llvm::ConstantPointerNull>(value))
    return value;

  if (!fn) {
    llvm::FunctionType *fnType =
      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
    fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);

    // We have Native ARC, so set nonlazybind attribute for performance
    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
      if (fnName == "objc_retain")
        f->addFnAttr(llvm::Attribute::NonLazyBind);
  }

  // Cast the argument to 'id'.
  llvm::Type *origType = returnType ? returnType : value->getType();
  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);

  // Call the function.
  llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);

  // Cast the result back to the original type.
  return CGF.Builder.CreateBitCast(Inst, origType);
}

/// Produce the code to do a retain.  Based on the type, calls one of:
///   call i8* \@objc_retain(i8* %value)
///   call i8* \@objc_retainBlock(i8* %value)
llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
  if (type->isBlockPointerType())
    return EmitARCRetainBlock(value, /*mandatory*/ false);
  else
    return EmitARCRetainNonBlock(value);
}

/// Retain the given object, with normal retain semantics.
///   call i8* \@objc_retain(i8* %value)
llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
  return emitARCValueOperation(*this, value, nullptr,
                               CGM.getObjCEntrypoints().objc_retain,
                               llvm::Intrinsic::objc_retain);
}

/// Retain the given block, with _Block_copy semantics.
///   call i8* \@objc_retainBlock(i8* %value)
///
/// \param mandatory - If false, emit the call with metadata
/// indicating that it's okay for the optimizer to eliminate this call
/// if it can prove that the block never escapes except down the stack.
llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
                                                 bool mandatory) {
  llvm::Value *result
    = emitARCValueOperation(*this, value, nullptr,
                            CGM.getObjCEntrypoints().objc_retainBlock,
                            llvm::Intrinsic::objc_retainBlock);

  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
  // tell the optimizer that it doesn't need to do this copy if the
  // block doesn't escape, where being passed as an argument doesn't
  // count as escaping.
  if (!mandatory && isa<llvm::Instruction>(result)) {
    llvm::CallInst *call
      = cast<llvm::CallInst>(result->stripPointerCasts());
    assert(call->getCalledOperand() ==
           CGM.getObjCEntrypoints().objc_retainBlock);

    call->setMetadata("clang.arc.copy_on_escape",
                      llvm::MDNode::get(Builder.getContext(), None));
  }

  return result;
}

static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
  // Fetch the void(void) inline asm which marks that we're going to
  // do something with the autoreleased return value.
  llvm::InlineAsm *&marker
    = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
  if (!marker) {
    StringRef assembly
      = CGF.CGM.getTargetCodeGenInfo()
           .getARCRetainAutoreleasedReturnValueMarker();

    // If we have an empty assembly string, there's nothing to do.
    if (assembly.empty()) {

    // Otherwise, at -O0, build an inline asm that we're going to call
    // in a moment.
    } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
      llvm::FunctionType *type =
        llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);

      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);

    // If we're at -O1 and above, we don't want to litter the code
    // with this marker yet, so leave a breadcrumb for the ARC
    // optimizer to pick up.
    } else {
      const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
      if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
        auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
        CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
      }
    }
  }

  // Call the marker asm if we made one, which we do only at -O0.
  if (marker)
    CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
}

/// Retain the given object which is the result of a function call.
///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
///
/// Yes, this function name is one character away from a different
/// call with completely different semantics.
llvm::Value *
CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
  emitAutoreleasedReturnValueMarker(*this);
  llvm::CallInst::TailCallKind tailKind =
      CGM.getTargetCodeGenInfo()
              .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
          ? llvm::CallInst::TCK_NoTail
          : llvm::CallInst::TCK_None;
  return emitARCValueOperation(
      *this, value, nullptr,
      CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
      llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
}

/// Claim a possibly-autoreleased return value at +0.  This is only
/// valid to do in contexts which do not rely on the retain to keep
/// the object valid for all of its uses; for example, when
/// the value is ignored, or when it is being assigned to an
/// __unsafe_unretained variable.
///
///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
llvm::Value *
CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
  emitAutoreleasedReturnValueMarker(*this);
  return emitARCValueOperation(*this, value, nullptr,
              CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
                     llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
}

/// Release the given object.
///   call void \@objc_release(i8* %value)
void CodeGenFunction::EmitARCRelease(llvm::Value *value,
                                     ARCPreciseLifetime_t precise) {
  if (isa<llvm::ConstantPointerNull>(value)) return;

  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
  if (!fn) {
    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
    setARCRuntimeFunctionLinkage(CGM, fn);
  }

  // Cast the argument to 'id'.
  value = Builder.CreateBitCast(value, Int8PtrTy);

  // Call objc_release.
  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);

  if (precise == ARCImpreciseLifetime) {
    call->setMetadata("clang.imprecise_release",
                      llvm::MDNode::get(Builder.getContext(), None));
  }
}

/// Destroy a __strong variable.
///
/// At -O0, emit a call to store 'null' into the address;
/// instrumenting tools prefer this because the address is exposed,
/// but it's relatively cumbersome to optimize.
///
/// At -O1 and above, just load and call objc_release.
///
///   call void \@objc_storeStrong(i8** %addr, i8* null)
void CodeGenFunction::EmitARCDestroyStrong(Address addr,
                                           ARCPreciseLifetime_t precise) {
  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
    llvm::Value *null = getNullForVariable(addr);
    EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
    return;
  }

  llvm::Value *value = Builder.CreateLoad(addr);
  EmitARCRelease(value, precise);
}

/// Store into a strong object.  Always calls this:
///   call void \@objc_storeStrong(i8** %addr, i8* %value)
llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
                                                     llvm::Value *value,
                                                     bool ignored) {
  assert(addr.getElementType() == value->getType());

  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
  if (!fn) {
    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
    setARCRuntimeFunctionLinkage(CGM, fn);
  }

  llvm::Value *args[] = {
    Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
    Builder.CreateBitCast(value, Int8PtrTy)
  };
  EmitNounwindRuntimeCall(fn, args);

  if (ignored) return nullptr;
  return value;
}

/// Store into a strong object.  Sometimes calls this:
///   call void \@objc_storeStrong(i8** %addr, i8* %value)
/// Other times, breaks it down into components.
llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
                                                 llvm::Value *newValue,
                                                 bool ignored) {
  QualType type = dst.getType();
  bool isBlock = type->isBlockPointerType();

  // Use a store barrier at -O0 unless this is a block type or the
  // lvalue is inadequately aligned.
  if (shouldUseFusedARCCalls() &&
      !isBlock &&
      (dst.getAlignment().isZero() ||
       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
    return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
  }

  // Otherwise, split it out.

  // Retain the new value.
  newValue = EmitARCRetain(type, newValue);

  // Read the old value.
  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());

  // Store.  We do this before the release so that any deallocs won't
  // see the old value.
  EmitStoreOfScalar(newValue, dst);

  // Finally, release the old value.
  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());

  return newValue;
}

/// Autorelease the given object.
///   call i8* \@objc_autorelease(i8* %value)
llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
  return emitARCValueOperation(*this, value, nullptr,
                               CGM.getObjCEntrypoints().objc_autorelease,
                               llvm::Intrinsic::objc_autorelease);
}

/// Autorelease the given object.
///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
llvm::Value *
CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
  return emitARCValueOperation(*this, value, nullptr,
                            CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
                               llvm::Intrinsic::objc_autoreleaseReturnValue,
                               llvm::CallInst::TCK_Tail);
}

/// Do a fused retain/autorelease of the given object.
///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
llvm::Value *
CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
  return emitARCValueOperation(*this, value, nullptr,
                     CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
                             llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
                               llvm::CallInst::TCK_Tail);
}

/// Do a fused retain/autorelease of the given object.
///   call i8* \@objc_retainAutorelease(i8* %value)
/// or
///   %retain = call i8* \@objc_retainBlock(i8* %value)
///   call i8* \@objc_autorelease(i8* %retain)
llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
                                                       llvm::Value *value) {
  if (!type->isBlockPointerType())
    return EmitARCRetainAutoreleaseNonBlock(value);

  if (isa<llvm::ConstantPointerNull>(value)) return value;

  llvm::Type *origType = value->getType();
  value = Builder.CreateBitCast(value, Int8PtrTy);
  value = EmitARCRetainBlock(value, /*mandatory*/ true);
  value = EmitARCAutorelease(value);
  return Builder.CreateBitCast(value, origType);
}

/// Do a fused retain/autorelease of the given object.
///   call i8* \@objc_retainAutorelease(i8* %value)
llvm::Value *
CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
  return emitARCValueOperation(*this, value, nullptr,
                               CGM.getObjCEntrypoints().objc_retainAutorelease,
                               llvm::Intrinsic::objc_retainAutorelease);
}

/// i8* \@objc_loadWeak(i8** %addr)
/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
  return emitARCLoadOperation(*this, addr,
                              CGM.getObjCEntrypoints().objc_loadWeak,
                              llvm::Intrinsic::objc_loadWeak);
}

/// i8* \@objc_loadWeakRetained(i8** %addr)
llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
  return emitARCLoadOperation(*this, addr,
                              CGM.getObjCEntrypoints().objc_loadWeakRetained,
                              llvm::Intrinsic::objc_loadWeakRetained);
}

/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
/// Returns %value.
llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
                                               llvm::Value *value,
                                               bool ignored) {
  return emitARCStoreOperation(*this, addr, value,
                               CGM.getObjCEntrypoints().objc_storeWeak,
                               llvm::Intrinsic::objc_storeWeak, ignored);
}

/// i8* \@objc_initWeak(i8** %addr, i8* %value)
/// Returns %value.  %addr is known to not have a current weak entry.
/// Essentially equivalent to:
///   *addr = nil; objc_storeWeak(addr, value);
void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
  // If we're initializing to null, just write null to memory; no need
  // to get the runtime involved.  But don't do this if optimization
  // is enabled, because accounting for this would make the optimizer
  // much more complicated.
  if (isa<llvm::ConstantPointerNull>(value) &&
      CGM.getCodeGenOpts().OptimizationLevel == 0) {
    Builder.CreateStore(value, addr);
    return;
  }

  emitARCStoreOperation(*this, addr, value,
                        CGM.getObjCEntrypoints().objc_initWeak,
                        llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
}

/// void \@objc_destroyWeak(i8** %addr)
/// Essentially objc_storeWeak(addr, nil).
void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
  if (!fn) {
    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
    setARCRuntimeFunctionLinkage(CGM, fn);
  }

  // Cast the argument to 'id*'.
  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);

  EmitNounwindRuntimeCall(fn, addr.getPointer());
}

/// void \@objc_moveWeak(i8** %dest, i8** %src)
/// Disregards the current value in %dest.  Leaves %src pointing to nothing.
/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
  emitARCCopyOperation(*this, dst, src,
                       CGM.getObjCEntrypoints().objc_moveWeak,
                       llvm::Intrinsic::objc_moveWeak);
}

/// void \@objc_copyWeak(i8** %dest, i8** %src)
/// Disregards the current value in %dest.  Essentially
///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
  emitARCCopyOperation(*this, dst, src,
                       CGM.getObjCEntrypoints().objc_copyWeak,
                       llvm::Intrinsic::objc_copyWeak);
}

void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
                                            Address SrcAddr) {
  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
  Object = EmitObjCConsumeObject(Ty, Object);
  EmitARCStoreWeak(DstAddr, Object, false);
}

void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
                                            Address SrcAddr) {
  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
  Object = EmitObjCConsumeObject(Ty, Object);
  EmitARCStoreWeak(DstAddr, Object, false);
  EmitARCDestroyWeak(SrcAddr);
}

/// Produce the code to do a objc_autoreleasepool_push.
///   call i8* \@objc_autoreleasePoolPush(void)
llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
  if (!fn) {
    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
    setARCRuntimeFunctionLinkage(CGM, fn);
  }

  return EmitNounwindRuntimeCall(fn);
}

/// Produce the code to do a primitive release.
///   call void \@objc_autoreleasePoolPop(i8* %ptr)
void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
  assert(value->getType() == Int8PtrTy);

  if (getInvokeDest()) {
    // Call the runtime method not the intrinsic if we are handling exceptions
    llvm::FunctionCallee &fn =
        CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
    if (!fn) {
      llvm::FunctionType *fnType =
        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
      fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
      setARCRuntimeFunctionLinkage(CGM, fn);
    }

    // objc_autoreleasePoolPop can throw.
    EmitRuntimeCallOrInvoke(fn, value);
  } else {
    llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
    if (!fn) {
      fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
      setARCRuntimeFunctionLinkage(CGM, fn);
    }

    EmitRuntimeCall(fn, value);
  }
}

/// Produce the code to do an MRR version objc_autoreleasepool_push.
/// Which is: [[NSAutoreleasePool alloc] init];
/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
/// init is declared as: - (id) init; in its NSObject super class.
///
llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
  // [NSAutoreleasePool alloc]
  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
  CallArgList Args;
  RValue AllocRV =
    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
                                getContext().getObjCIdType(),
                                AllocSel, Receiver, Args);

  // [Receiver init]
  Receiver = AllocRV.getScalarVal();
  II = &CGM.getContext().Idents.get("init");
  Selector InitSel = getContext().Selectors.getSelector(0, &II);
  RValue InitRV =
    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
                                getContext().getObjCIdType(),
                                InitSel, Receiver, Args);
  return InitRV.getScalarVal();
}

/// Allocate the given objc object.
///   call i8* \@objc_alloc(i8* %value)
llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
                                            llvm::Type *resultType) {
  return emitObjCValueOperation(*this, value, resultType,
                                CGM.getObjCEntrypoints().objc_alloc,
                                "objc_alloc");
}

/// Allocate the given objc object.
///   call i8* \@objc_allocWithZone(i8* %value)
llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
                                                    llvm::Type *resultType) {
  return emitObjCValueOperation(*this, value, resultType,
                                CGM.getObjCEntrypoints().objc_allocWithZone,
                                "objc_allocWithZone");
}

llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
                                                llvm::Type *resultType) {
  return emitObjCValueOperation(*this, value, resultType,
                                CGM.getObjCEntrypoints().objc_alloc_init,
                                "objc_alloc_init");
}

/// Produce the code to do a primitive release.
/// [tmp drain];
void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
  CallArgList Args;
  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
                              getContext().VoidTy, DrainSel, Arg, Args);
}

void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
                                              Address addr,
                                              QualType type) {
  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
}

void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
                                                Address addr,
                                                QualType type) {
  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
}

void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
                                     Address addr,
                                     QualType type) {
  CGF.EmitARCDestroyWeak(addr);
}

void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
                                          QualType type) {
  llvm::Value *value = CGF.Builder.CreateLoad(addr);
  CGF.EmitARCIntrinsicUse(value);
}

/// Autorelease the given object.
///   call i8* \@objc_autorelease(i8* %value)
llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
                                                  llvm::Type *returnType) {
  return emitObjCValueOperation(
      *this, value, returnType,
      CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
      "objc_autorelease");
}

/// Retain the given object, with normal retain semantics.
///   call i8* \@objc_retain(i8* %value)
llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
                                                     llvm::Type *returnType) {
  return emitObjCValueOperation(
      *this, value, returnType,
      CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
}

/// Release the given object.
///   call void \@objc_release(i8* %value)
void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
                                      ARCPreciseLifetime_t precise) {
  if (isa<llvm::ConstantPointerNull>(value)) return;

  llvm::FunctionCallee &fn =
      CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
  if (!fn) {
    llvm::FunctionType *fnType =
        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
    fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
    setARCRuntimeFunctionLinkage(CGM, fn);
    // We have Native ARC, so set nonlazybind attribute for performance
    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
      f->addFnAttr(llvm::Attribute::NonLazyBind);
  }

  // Cast the argument to 'id'.
  value = Builder.CreateBitCast(value, Int8PtrTy);

  // Call objc_release.
  llvm::CallBase *call = EmitCallOrInvoke(fn, value);

  if (precise == ARCImpreciseLifetime) {
    call->setMetadata("clang.imprecise_release",
                      llvm::MDNode::get(Builder.getContext(), None));
  }
}

namespace {
  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
    llvm::Value *Token;

    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitObjCAutoreleasePoolPop(Token);
    }
  };
  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
    llvm::Value *Token;

    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitObjCMRRAutoreleasePoolPop(Token);
    }
  };
}

void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
  if (CGM.getLangOpts().ObjCAutoRefCount)
    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
  else
    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
}

static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
  switch (lifetime) {
  case Qualifiers::OCL_None:
  case Qualifiers::OCL_ExplicitNone:
  case Qualifiers::OCL_Strong:
  case Qualifiers::OCL_Autoreleasing:
    return true;

  case Qualifiers::OCL_Weak:
    return false;
  }

  llvm_unreachable("impossible lifetime!");
}

static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
                                                  LValue lvalue,
                                                  QualType type) {
  llvm::Value *result;
  bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
  if (shouldRetain) {
    result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
  } else {
    assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
    result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
  }
  return TryEmitResult(result, !shouldRetain);
}

static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
                                                  const Expr *e) {
  e = e->IgnoreParens();
  QualType type = e->getType();

  // If we're loading retained from a __strong xvalue, we can avoid
  // an extra retain/release pair by zeroing out the source of this
  // "move" operation.
  if (e->isXValue() &&
      !type.isConstQualified() &&
      type.getObjCLifetime() == Qualifiers::OCL_Strong) {
    // Emit the lvalue.
    LValue lv = CGF.EmitLValue(e);

    // Load the object pointer.
    llvm::Value *result = CGF.EmitLoadOfLValue(lv,
                                               SourceLocation()).getScalarVal();

    // Set the source pointer to NULL.
    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);

    return TryEmitResult(result, true);
  }

  // As a very special optimization, in ARC++, if the l-value is the
  // result of a non-volatile assignment, do a simple retain of the
  // result of the call to objc_storeWeak instead of reloading.
  if (CGF.getLangOpts().CPlusPlus &&
      !type.isVolatileQualified() &&
      type.getObjCLifetime() == Qualifiers::OCL_Weak &&
      isa<BinaryOperator>(e) &&
      cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
    return TryEmitResult(CGF.EmitScalarExpr(e), false);

  // Try to emit code for scalar constant instead of emitting LValue and
  // loading it because we are not guaranteed to have an l-value. One of such
  // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
  if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
    auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
    if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
      return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
                           !shouldRetainObjCLifetime(type.getObjCLifetime()));
  }

  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
}

typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
                                         llvm::Value *value)>
  ValueTransform;

/// Insert code immediately after a call.
static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
                                              llvm::Value *value,
                                              ValueTransform doAfterCall,
                                              ValueTransform doFallback) {
  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();

    // Place the retain immediately following the call.
    CGF.Builder.SetInsertPoint(call->getParent(),
                               ++llvm::BasicBlock::iterator(call));
    value = doAfterCall(CGF, value);

    CGF.Builder.restoreIP(ip);
    return value;
  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();

    // Place the retain at the beginning of the normal destination block.
    llvm::BasicBlock *BB = invoke->getNormalDest();
    CGF.Builder.SetInsertPoint(BB, BB->begin());
    value = doAfterCall(CGF, value);

    CGF.Builder.restoreIP(ip);
    return value;

  // Bitcasts can arise because of related-result returns.  Rewrite
  // the operand.
  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
    llvm::Value *operand = bitcast->getOperand(0);
    operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
    bitcast->setOperand(0, operand);
    return bitcast;

  // Generic fall-back case.
  } else {
    // Retain using the non-block variant: we never need to do a copy
    // of a block that's been returned to us.
    return doFallback(CGF, value);
  }
}

/// Given that the given expression is some sort of call (which does
/// not return retained), emit a retain following it.
static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
                                            const Expr *e) {
  llvm::Value *value = CGF.EmitScalarExpr(e);
  return emitARCOperationAfterCall(CGF, value,
           [](CodeGenFunction &CGF, llvm::Value *value) {
             return CGF.EmitARCRetainAutoreleasedReturnValue(value);
           },
           [](CodeGenFunction &CGF, llvm::Value *value) {
             return CGF.EmitARCRetainNonBlock(value);
           });
}

/// Given that the given expression is some sort of call (which does
/// not return retained), perform an unsafeClaim following it.
static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
                                                 const Expr *e) {
  llvm::Value *value = CGF.EmitScalarExpr(e);
  return emitARCOperationAfterCall(CGF, value,
           [](CodeGenFunction &CGF, llvm::Value *value) {
             return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
           },
           [](CodeGenFunction &CGF, llvm::Value *value) {
             return value;
           });
}

llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
                                                      bool allowUnsafeClaim) {
  if (allowUnsafeClaim &&
      CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
    return emitARCUnsafeClaimCallResult(*this, E);
  } else {
    llvm::Value *value = emitARCRetainCallResult(*this, E);
    return EmitObjCConsumeObject(E->getType(), value);
  }
}

/// Determine whether it might be important to emit a separate
/// objc_retain_block on the result of the given expression, or
/// whether it's okay to just emit it in a +1 context.
static bool shouldEmitSeparateBlockRetain(const Expr *e) {
  assert(e->getType()->isBlockPointerType());
  e = e->IgnoreParens();

  // For future goodness, emit block expressions directly in +1
  // contexts if we can.
  if (isa<BlockExpr>(e))
    return false;

  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
    switch (cast->getCastKind()) {
    // Emitting these operations in +1 contexts is goodness.
    case CK_LValueToRValue:
    case CK_ARCReclaimReturnedObject:
    case CK_ARCConsumeObject:
    case CK_ARCProduceObject:
      return false;

    // These operations preserve a block type.
    case CK_NoOp:
    case CK_BitCast:
      return shouldEmitSeparateBlockRetain(cast->getSubExpr());

    // These operations are known to be bad (or haven't been considered).
    case CK_AnyPointerToBlockPointerCast:
    default:
      return true;
    }
  }

  return true;
}

namespace {
/// A CRTP base class for emitting expressions of retainable object
/// pointer type in ARC.
template <typename Impl, typename Result> class ARCExprEmitter {
protected:
  CodeGenFunction &CGF;
  Impl &asImpl() { return *static_cast<Impl*>(this); }

  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}

public:
  Result visit(const Expr *e);
  Result visitCastExpr(const CastExpr *e);
  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
  Result visitBlockExpr(const BlockExpr *e);
  Result visitBinaryOperator(const BinaryOperator *e);
  Result visitBinAssign(const BinaryOperator *e);
  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
  Result visitBinAssignWeak(const BinaryOperator *e);
  Result visitBinAssignStrong(const BinaryOperator *e);

  // Minimal implementation:
  //   Result visitLValueToRValue(const Expr *e)
  //   Result visitConsumeObject(const Expr *e)
  //   Result visitExtendBlockObject(const Expr *e)
  //   Result visitReclaimReturnedObject(const Expr *e)
  //   Result visitCall(const Expr *e)
  //   Result visitExpr(const Expr *e)
  //
  //   Result emitBitCast(Result result, llvm::Type *resultType)
  //   llvm::Value *getValueOfResult(Result result)
};
}

/// Try to emit a PseudoObjectExpr under special ARC rules.
///
/// This massively duplicates emitPseudoObjectRValue.
template <typename Impl, typename Result>
Result
ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;

  // Find the result expression.
  const Expr *resultExpr = E->getResultExpr();
  assert(resultExpr);
  Result result;

  for (PseudoObjectExpr::const_semantics_iterator
         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
    const Expr *semantic = *i;

    // If this semantic expression is an opaque value, bind it
    // to the result of its source expression.
    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
      OVMA opaqueData;

      // If this semantic is the result of the pseudo-object
      // expression, try to evaluate the source as +1.
      if (ov == resultExpr) {
        assert(!OVMA::shouldBindAsLValue(ov));
        result = asImpl().visit(ov->getSourceExpr());
        opaqueData = OVMA::bind(CGF, ov,
                            RValue::get(asImpl().getValueOfResult(result)));

      // Otherwise, just bind it.
      } else {
        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
      }
      opaques.push_back(opaqueData);

    // Otherwise, if the expression is the result, evaluate it
    // and remember the result.
    } else if (semantic == resultExpr) {
      result = asImpl().visit(semantic);

    // Otherwise, evaluate the expression in an ignored context.
    } else {
      CGF.EmitIgnoredExpr(semantic);
    }
  }

  // Unbind all the opaques now.
  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
    opaques[i].unbind(CGF);

  return result;
}

template <typename Impl, typename Result>
Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
  // The default implementation just forwards the expression to visitExpr.
  return asImpl().visitExpr(e);
}

template <typename Impl, typename Result>
Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
  switch (e->getCastKind()) {

  // No-op casts don't change the type, so we just ignore them.
  case CK_NoOp:
    return asImpl().visit(e->getSubExpr());

  // These casts can change the type.
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_BitCast: {
    llvm::Type *resultType = CGF.ConvertType(e->getType());
    assert(e->getSubExpr()->getType()->hasPointerRepresentation());
    Result result = asImpl().visit(e->getSubExpr());
    return asImpl().emitBitCast(result, resultType);
  }

  // Handle some casts specially.
  case CK_LValueToRValue:
    return asImpl().visitLValueToRValue(e->getSubExpr());
  case CK_ARCConsumeObject:
    return asImpl().visitConsumeObject(e->getSubExpr());
  case CK_ARCExtendBlockObject:
    return asImpl().visitExtendBlockObject(e->getSubExpr());
  case CK_ARCReclaimReturnedObject:
    return asImpl().visitReclaimReturnedObject(e->getSubExpr());

  // Otherwise, use the default logic.
  default:
    return asImpl().visitExpr(e);
  }
}

template <typename Impl, typename Result>
Result
ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
  switch (e->getOpcode()) {
  case BO_Comma:
    CGF.EmitIgnoredExpr(e->getLHS());
    CGF.EnsureInsertPoint();
    return asImpl().visit(e->getRHS());

  case BO_Assign:
    return asImpl().visitBinAssign(e);

  default:
    return asImpl().visitExpr(e);
  }
}

template <typename Impl, typename Result>
Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
  switch (e->getLHS()->getType().getObjCLifetime()) {
  case Qualifiers::OCL_ExplicitNone:
    return asImpl().visitBinAssignUnsafeUnretained(e);

  case Qualifiers::OCL_Weak:
    return asImpl().visitBinAssignWeak(e);

  case Qualifiers::OCL_Autoreleasing:
    return asImpl().visitBinAssignAutoreleasing(e);

  case Qualifiers::OCL_Strong:
    return asImpl().visitBinAssignStrong(e);

  case Qualifiers::OCL_None:
    return asImpl().visitExpr(e);
  }
  llvm_unreachable("bad ObjC ownership qualifier");
}

/// The default rule for __unsafe_unretained emits the RHS recursively,
/// stores into the unsafe variable, and propagates the result outward.
template <typename Impl, typename Result>
Result ARCExprEmitter<Impl,Result>::
                    visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
  // Recursively emit the RHS.
  // For __block safety, do this before emitting the LHS.
  Result result = asImpl().visit(e->getRHS());

  // Perform the store.
  LValue lvalue =
    CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
                             lvalue);

  return result;
}

template <typename Impl, typename Result>
Result
ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
  return asImpl().visitExpr(e);
}

template <typename Impl, typename Result>
Result
ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
  return asImpl().visitExpr(e);
}

template <typename Impl, typename Result>
Result
ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
  return asImpl().visitExpr(e);
}

/// The general expression-emission logic.
template <typename Impl, typename Result>
Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
  // We should *never* see a nested full-expression here, because if
  // we fail to emit at +1, our caller must not retain after we close
  // out the full-expression.  This isn't as important in the unsafe
  // emitter.
  assert(!isa<ExprWithCleanups>(e));

  // Look through parens, __extension__, generic selection, etc.
  e = e->IgnoreParens();

  // Handle certain kinds of casts.
  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
    return asImpl().visitCastExpr(ce);

  // Handle the comma operator.
  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
    return asImpl().visitBinaryOperator(op);

  // TODO: handle conditional operators here

  // For calls and message sends, use the retained-call logic.
  // Delegate inits are a special case in that they're the only
  // returns-retained expression that *isn't* surrounded by
  // a consume.
  } else if (isa<CallExpr>(e) ||
             (isa<ObjCMessageExpr>(e) &&
              !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
    return asImpl().visitCall(e);

  // Look through pseudo-object expressions.
  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
    return asImpl().visitPseudoObjectExpr(pseudo);
  } else if (auto *be = dyn_cast<BlockExpr>(e))
    return asImpl().visitBlockExpr(be);

  return asImpl().visitExpr(e);
}

namespace {

/// An emitter for +1 results.
struct ARCRetainExprEmitter :
  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {

  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}

  llvm::Value *getValueOfResult(TryEmitResult result) {
    return result.getPointer();
  }

  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
    llvm::Value *value = result.getPointer();
    value = CGF.Builder.CreateBitCast(value, resultType);
    result.setPointer(value);
    return result;
  }

  TryEmitResult visitLValueToRValue(const Expr *e) {
    return tryEmitARCRetainLoadOfScalar(CGF, e);
  }

  /// For consumptions, just emit the subexpression and thus elide
  /// the retain/release pair.
  TryEmitResult visitConsumeObject(const Expr *e) {
    llvm::Value *result = CGF.EmitScalarExpr(e);
    return TryEmitResult(result, true);
  }

  TryEmitResult visitBlockExpr(const BlockExpr *e) {
    TryEmitResult result = visitExpr(e);
    // Avoid the block-retain if this is a block literal that doesn't need to be
    // copied to the heap.
    if (e->getBlockDecl()->canAvoidCopyToHeap())
      result.setInt(true);
    return result;
  }

  /// Block extends are net +0.  Naively, we could just recurse on
  /// the subexpression, but actually we need to ensure that the
  /// value is copied as a block, so there's a little filter here.
  TryEmitResult visitExtendBlockObject(const Expr *e) {
    llvm::Value *result; // will be a +0 value

    // If we can't safely assume the sub-expression will produce a
    // block-copied value, emit the sub-expression at +0.
    if (shouldEmitSeparateBlockRetain(e)) {
      result = CGF.EmitScalarExpr(e);

    // Otherwise, try to emit the sub-expression at +1 recursively.
    } else {
      TryEmitResult subresult = asImpl().visit(e);

      // If that produced a retained value, just use that.
      if (subresult.getInt()) {
        return subresult;
      }

      // Otherwise it's +0.
      result = subresult.getPointer();
    }

    // Retain the object as a block.
    result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
    return TryEmitResult(result, true);
  }

  /// For reclaims, emit the subexpression as a retained call and
  /// skip the consumption.
  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
    llvm::Value *result = emitARCRetainCallResult(CGF, e);
    return TryEmitResult(result, true);
  }

  /// When we have an undecorated call, retroactively do a claim.
  TryEmitResult visitCall(const Expr *e) {
    llvm::Value *result = emitARCRetainCallResult(CGF, e);
    return TryEmitResult(result, true);
  }

  // TODO: maybe special-case visitBinAssignWeak?

  TryEmitResult visitExpr(const Expr *e) {
    // We didn't find an obvious production, so emit what we've got and
    // tell the caller that we didn't manage to retain.
    llvm::Value *result = CGF.EmitScalarExpr(e);
    return TryEmitResult(result, false);
  }
};
}

static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
  return ARCRetainExprEmitter(CGF).visit(e);
}

static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
                                                LValue lvalue,
                                                QualType type) {
  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
  llvm::Value *value = result.getPointer();
  if (!result.getInt())
    value = CGF.EmitARCRetain(type, value);
  return value;
}

/// EmitARCRetainScalarExpr - Semantically equivalent to
/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
/// best-effort attempt to peephole expressions that naturally produce
/// retained objects.
llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
  // The retain needs to happen within the full-expression.
  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
    RunCleanupsScope scope(*this);
    return EmitARCRetainScalarExpr(cleanups->getSubExpr());
  }

  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
  llvm::Value *value = result.getPointer();
  if (!result.getInt())
    value = EmitARCRetain(e->getType(), value);
  return value;
}

llvm::Value *
CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
  // The retain needs to happen within the full-expression.
  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
    RunCleanupsScope scope(*this);
    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
  }

  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
  llvm::Value *value = result.getPointer();
  if (result.getInt())
    value = EmitARCAutorelease(value);
  else
    value = EmitARCRetainAutorelease(e->getType(), value);
  return value;
}

llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
  llvm::Value *result;
  bool doRetain;

  if (shouldEmitSeparateBlockRetain(e)) {
    result = EmitScalarExpr(e);
    doRetain = true;
  } else {
    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
    result = subresult.getPointer();
    doRetain = !subresult.getInt();
  }

  if (doRetain)
    result = EmitARCRetainBlock(result, /*mandatory*/ true);
  return EmitObjCConsumeObject(e->getType(), result);
}

llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
  // In ARC, retain and autorelease the expression.
  if (getLangOpts().ObjCAutoRefCount) {
    // Do so before running any cleanups for the full-expression.
    // EmitARCRetainAutoreleaseScalarExpr does this for us.
    return EmitARCRetainAutoreleaseScalarExpr(expr);
  }

  // Otherwise, use the normal scalar-expression emission.  The
  // exception machinery doesn't do anything special with the
  // exception like retaining it, so there's no safety associated with
  // only running cleanups after the throw has started, and when it
  // matters it tends to be substantially inferior code.
  return EmitScalarExpr(expr);
}

namespace {

/// An emitter for assigning into an __unsafe_unretained context.
struct ARCUnsafeUnretainedExprEmitter :
  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {

  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}

  llvm::Value *getValueOfResult(llvm::Value *value) {
    return value;
  }

  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
    return CGF.Builder.CreateBitCast(value, resultType);
  }

  llvm::Value *visitLValueToRValue(const Expr *e) {
    return CGF.EmitScalarExpr(e);
  }

  /// For consumptions, just emit the subexpression and perform the
  /// consumption like normal.
  llvm::Value *visitConsumeObject(const Expr *e) {
    llvm::Value *value = CGF.EmitScalarExpr(e);
    return CGF.EmitObjCConsumeObject(e->getType(), value);
  }

  /// No special logic for block extensions.  (This probably can't
  /// actually happen in this emitter, though.)
  llvm::Value *visitExtendBlockObject(const Expr *e) {
    return CGF.EmitARCExtendBlockObject(e);
  }

  /// For reclaims, perform an unsafeClaim if that's enabled.
  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
    return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
  }

  /// When we have an undecorated call, just emit it without adding
  /// the unsafeClaim.
  llvm::Value *visitCall(const Expr *e) {
    return CGF.EmitScalarExpr(e);
  }

  /// Just do normal scalar emission in the default case.
  llvm::Value *visitExpr(const Expr *e) {
    return CGF.EmitScalarExpr(e);
  }
};
}

static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
                                                      const Expr *e) {
  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
}

/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
/// immediately releasing the resut of EmitARCRetainScalarExpr, but
/// avoiding any spurious retains, including by performing reclaims
/// with objc_unsafeClaimAutoreleasedReturnValue.
llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
  // Look through full-expressions.
  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
    RunCleanupsScope scope(*this);
    return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
  }

  return emitARCUnsafeUnretainedScalarExpr(*this, e);
}

std::pair<LValue,llvm::Value*>
CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
                                              bool ignored) {
  // Evaluate the RHS first.  If we're ignoring the result, assume
  // that we can emit at an unsafe +0.
  llvm::Value *value;
  if (ignored) {
    value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
  } else {
    value = EmitScalarExpr(e->getRHS());
  }

  // Emit the LHS and perform the store.
  LValue lvalue = EmitLValue(e->getLHS());
  EmitStoreOfScalar(value, lvalue);

  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
}

std::pair<LValue,llvm::Value*>
CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
                                    bool ignored) {
  // Evaluate the RHS first.
  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
  llvm::Value *value = result.getPointer();

  bool hasImmediateRetain = result.getInt();

  // If we didn't emit a retained object, and the l-value is of block
  // type, then we need to emit the block-retain immediately in case
  // it invalidates the l-value.
  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
    value = EmitARCRetainBlock(value, /*mandatory*/ false);
    hasImmediateRetain = true;
  }

  LValue lvalue = EmitLValue(e->getLHS());

  // If the RHS was emitted retained, expand this.
  if (hasImmediateRetain) {
    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
    EmitStoreOfScalar(value, lvalue);
    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
  } else {
    value = EmitARCStoreStrong(lvalue, value, ignored);
  }

  return std::pair<LValue,llvm::Value*>(lvalue, value);
}

std::pair<LValue,llvm::Value*>
CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
  LValue lvalue = EmitLValue(e->getLHS());

  EmitStoreOfScalar(value, lvalue);

  return std::pair<LValue,llvm::Value*>(lvalue, value);
}

void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
                                          const ObjCAutoreleasePoolStmt &ARPS) {
  const Stmt *subStmt = ARPS.getSubStmt();
  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);

  CGDebugInfo *DI = getDebugInfo();
  if (DI)
    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());

  // Keep track of the current cleanup stack depth.
  RunCleanupsScope Scope(*this);
  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
    llvm::Value *token = EmitObjCAutoreleasePoolPush();
    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
  } else {
    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
  }

  for (const auto *I : S.body())
    EmitStmt(I);

  if (DI)
    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
}

/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
/// make sure it survives garbage collection until this point.
void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
  // We just use an inline assembly.
  llvm::FunctionType *extenderType
    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
  llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
                                                   /* assembly */ "",
                                                   /* constraints */ "r",
                                                   /* side effects */ true);

  object = Builder.CreateBitCast(object, VoidPtrTy);
  EmitNounwindRuntimeCall(extender, object);
}

/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
/// non-trivial copy assignment function, produce following helper function.
/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
///
llvm::Constant *
CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
                                        const ObjCPropertyImplDecl *PID) {
  if (!getLangOpts().CPlusPlus ||
      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
    return nullptr;
  QualType Ty = PID->getPropertyIvarDecl()->getType();
  if (!Ty->isRecordType())
    return nullptr;
  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
  if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
    return nullptr;
  llvm::Constant *HelperFn = nullptr;
  if (hasTrivialSetExpr(PID))
    return nullptr;
  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
    return HelperFn;

  ASTContext &C = getContext();
  IdentifierInfo *II
    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");

  QualType ReturnTy = C.VoidTy;
  QualType DestTy = C.getPointerType(Ty);
  QualType SrcTy = Ty;
  SrcTy.addConst();
  SrcTy = C.getPointerType(SrcTy);

  SmallVector<QualType, 2> ArgTys;
  ArgTys.push_back(DestTy);
  ArgTys.push_back(SrcTy);
  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});

  FunctionDecl *FD = FunctionDecl::Create(
      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
      FunctionTy, nullptr, SC_Static, false, false);

  FunctionArgList args;
  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
                            ImplicitParamDecl::Other);
  args.push_back(&DstDecl);
  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
                            ImplicitParamDecl::Other);
  args.push_back(&SrcDecl);

  const CGFunctionInfo &FI =
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);

  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);

  llvm::Function *Fn =
    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
                           "__assign_helper_atomic_property_",
                           &CGM.getModule());

  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);

  StartFunction(FD, ReturnTy, Fn, FI, args);

  DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
  UnaryOperator *DST = UnaryOperator::Create(
      C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
      SourceLocation(), false, FPOptionsOverride());

  DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
  UnaryOperator *SRC = UnaryOperator::Create(
      C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
      SourceLocation(), false, FPOptionsOverride());

  Expr *Args[2] = {DST, SRC};
  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
  CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
      C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
      VK_LValue, SourceLocation(), FPOptionsOverride());

  EmitStmt(TheCall);

  FinishFunction();
  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
  return HelperFn;
}

llvm::Constant *
CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
                                            const ObjCPropertyImplDecl *PID) {
  if (!getLangOpts().CPlusPlus ||
      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
    return nullptr;
  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
  QualType Ty = PD->getType();
  if (!Ty->isRecordType())
    return nullptr;
  if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
    return nullptr;
  llvm::Constant *HelperFn = nullptr;
  if (hasTrivialGetExpr(PID))
    return nullptr;
  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
    return HelperFn;

  ASTContext &C = getContext();
  IdentifierInfo *II =
      &CGM.getContext().Idents.get("__copy_helper_atomic_property_");

  QualType ReturnTy = C.VoidTy;
  QualType DestTy = C.getPointerType(Ty);
  QualType SrcTy = Ty;
  SrcTy.addConst();
  SrcTy = C.getPointerType(SrcTy);

  SmallVector<QualType, 2> ArgTys;
  ArgTys.push_back(DestTy);
  ArgTys.push_back(SrcTy);
  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});

  FunctionDecl *FD = FunctionDecl::Create(
      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
      FunctionTy, nullptr, SC_Static, false, false);

  FunctionArgList args;
  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
                            ImplicitParamDecl::Other);
  args.push_back(&DstDecl);
  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
                            ImplicitParamDecl::Other);
  args.push_back(&SrcDecl);

  const CGFunctionInfo &FI =
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);

  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);

  llvm::Function *Fn = llvm::Function::Create(
      LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
      &CGM.getModule());

  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);

  StartFunction(FD, ReturnTy, Fn, FI, args);

  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
                      SourceLocation());

  UnaryOperator *SRC = UnaryOperator::Create(
      C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
      SourceLocation(), false, FPOptionsOverride());

  CXXConstructExpr *CXXConstExpr =
    cast<CXXConstructExpr>(PID->getGetterCXXConstructor());

  SmallVector<Expr*, 4> ConstructorArgs;
  ConstructorArgs.push_back(SRC);
  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
                         CXXConstExpr->arg_end());

  CXXConstructExpr *TheCXXConstructExpr =
    CXXConstructExpr::Create(C, Ty, SourceLocation(),
                             CXXConstExpr->getConstructor(),
                             CXXConstExpr->isElidable(),
                             ConstructorArgs,
                             CXXConstExpr->hadMultipleCandidates(),
                             CXXConstExpr->isListInitialization(),
                             CXXConstExpr->isStdInitListInitialization(),
                             CXXConstExpr->requiresZeroInitialization(),
                             CXXConstExpr->getConstructionKind(),
                             SourceRange());

  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
                      SourceLocation());

  RValue DV = EmitAnyExpr(&DstExpr);
  CharUnits Alignment
    = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
  EmitAggExpr(TheCXXConstructExpr,
              AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
                                    Qualifiers(),
                                    AggValueSlot::IsDestructed,
                                    AggValueSlot::DoesNotNeedGCBarriers,
                                    AggValueSlot::IsNotAliased,
                                    AggValueSlot::DoesNotOverlap));

  FinishFunction();
  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
  return HelperFn;
}

llvm::Value *
CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
  // Get selectors for retain/autorelease.
  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
  Selector CopySelector =
      getContext().Selectors.getNullarySelector(CopyID);
  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
  Selector AutoreleaseSelector =
      getContext().Selectors.getNullarySelector(AutoreleaseID);

  // Emit calls to retain/autorelease.
  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
  llvm::Value *Val = Block;
  RValue Result;
  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
                                       Ty, CopySelector,
                                       Val, CallArgList(), nullptr, nullptr);
  Val = Result.getScalarVal();
  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
                                       Ty, AutoreleaseSelector,
                                       Val, CallArgList(), nullptr, nullptr);
  Val = Result.getScalarVal();
  return Val;
}

llvm::Value *
CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
  assert(Args.size() == 3 && "Expected 3 argument here!");

  if (!CGM.IsOSVersionAtLeastFn) {
    llvm::FunctionType *FTy =
        llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
    CGM.IsOSVersionAtLeastFn =
        CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
  }

  llvm::Value *CallRes =
      EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);

  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
}

void CodeGenModule::emitAtAvailableLinkGuard() {
  if (!IsOSVersionAtLeastFn)
    return;
  // @available requires CoreFoundation only on Darwin.
  if (!Target.getTriple().isOSDarwin())
    return;
  // Add -framework CoreFoundation to the linker commands. We still want to
  // emit the core foundation reference down below because otherwise if
  // CoreFoundation is not used in the code, the linker won't link the
  // framework.
  auto &Context = getLLVMContext();
  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
                             llvm::MDString::get(Context, "CoreFoundation")};
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
  // Emit a reference to a symbol from CoreFoundation to ensure that
  // CoreFoundation is linked into the final binary.
  llvm::FunctionType *FTy =
      llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
  llvm::FunctionCallee CFFunc =
      CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");

  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
  llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
      CheckFTy, "__clang_at_available_requires_core_foundation_framework",
      llvm::AttributeList(), /*Local=*/true);
  llvm::Function *CFLinkCheckFunc =
      cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
  if (CFLinkCheckFunc->empty()) {
    CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
    CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
    CodeGenFunction CGF(*this);
    CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
    CGF.EmitNounwindRuntimeCall(CFFunc,
                                llvm::Constant::getNullValue(VoidPtrTy));
    CGF.Builder.CreateUnreachable();
    addCompilerUsedGlobal(CFLinkCheckFunc);
  }
}

CGObjCRuntime::~CGObjCRuntime() {}