PFTBuilder.cpp 44.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
//===-- PFTBuilder.cc -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Utils.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/tools.h"
#include "llvm/Support/CommandLine.h"

static llvm::cl::opt<bool> clDisableStructuredFir(
    "no-structured-fir", llvm::cl::desc("disable generation of structured FIR"),
    llvm::cl::init(false), llvm::cl::Hidden);

using namespace Fortran;

namespace {
/// Helpers to unveil parser node inside Fortran::parser::Statement<>,
/// Fortran::parser::UnlabeledStatement, and Fortran::common::Indirection<>
template <typename A>
struct RemoveIndirectionHelper {
  using Type = A;
};
template <typename A>
struct RemoveIndirectionHelper<common::Indirection<A>> {
  using Type = A;
};

template <typename A>
struct UnwrapStmt {
  static constexpr bool isStmt{false};
};
template <typename A>
struct UnwrapStmt<parser::Statement<A>> {
  static constexpr bool isStmt{true};
  using Type = typename RemoveIndirectionHelper<A>::Type;
  constexpr UnwrapStmt(const parser::Statement<A> &a)
      : unwrapped{removeIndirection(a.statement)}, position{a.source},
        label{a.label} {}
  const Type &unwrapped;
  parser::CharBlock position;
  std::optional<parser::Label> label;
};
template <typename A>
struct UnwrapStmt<parser::UnlabeledStatement<A>> {
  static constexpr bool isStmt{true};
  using Type = typename RemoveIndirectionHelper<A>::Type;
  constexpr UnwrapStmt(const parser::UnlabeledStatement<A> &a)
      : unwrapped{removeIndirection(a.statement)}, position{a.source} {}
  const Type &unwrapped;
  parser::CharBlock position;
  std::optional<parser::Label> label;
};

/// The instantiation of a parse tree visitor (Pre and Post) is extremely
/// expensive in terms of compile and link time.  So one goal here is to
/// limit the bridge to one such instantiation.
class PFTBuilder {
public:
  PFTBuilder(const semantics::SemanticsContext &semanticsContext)
      : pgm{std::make_unique<lower::pft::Program>()},
        parentVariantStack{*pgm.get()}, semanticsContext{semanticsContext} {}

  /// Get the result
  std::unique_ptr<lower::pft::Program> result() { return std::move(pgm); }

  template <typename A>
  constexpr bool Pre(const A &a) {
    if constexpr (lower::pft::isFunctionLike<A>) {
      return enterFunction(a, semanticsContext);
    } else if constexpr (lower::pft::isConstruct<A> ||
                         lower::pft::isDirective<A>) {
      return enterConstructOrDirective(a);
    } else if constexpr (UnwrapStmt<A>::isStmt) {
      using T = typename UnwrapStmt<A>::Type;
      // Node "a" being visited has one of the following types:
      // Statement<T>, Statement<Indirection<T>, UnlabeledStatement<T>,
      // or UnlabeledStatement<Indirection<T>>
      auto stmt{UnwrapStmt<A>(a)};
      if constexpr (lower::pft::isConstructStmt<T> ||
                    lower::pft::isOtherStmt<T>) {
        addEvaluation(lower::pft::Evaluation{stmt.unwrapped,
                                             parentVariantStack.back(),
                                             stmt.position, stmt.label});
        return false;
      } else if constexpr (std::is_same_v<T, parser::ActionStmt>) {
        addEvaluation(
            makeEvaluationAction(stmt.unwrapped, stmt.position, stmt.label));
        return true;
      }
    }
    return true;
  }

  template <typename A>
  constexpr void Post(const A &) {
    if constexpr (lower::pft::isFunctionLike<A>) {
      exitFunction();
    } else if constexpr (lower::pft::isConstruct<A> ||
                         lower::pft::isDirective<A>) {
      exitConstructOrDirective();
    }
  }

  // Module like
  bool Pre(const parser::Module &node) { return enterModule(node); }
  bool Pre(const parser::Submodule &node) { return enterModule(node); }

  void Post(const parser::Module &) { exitModule(); }
  void Post(const parser::Submodule &) { exitModule(); }

  // Block data
  bool Pre(const parser::BlockData &node) {
    addUnit(lower::pft::BlockDataUnit{node, parentVariantStack.back()});
    return false;
  }

  // Get rid of production wrapper
  bool Pre(const parser::UnlabeledStatement<parser::ForallAssignmentStmt>
               &statement) {
    addEvaluation(std::visit(
        [&](const auto &x) {
          return lower::pft::Evaluation{
              x, parentVariantStack.back(), statement.source, {}};
        },
        statement.statement.u));
    return false;
  }
  bool Pre(const parser::Statement<parser::ForallAssignmentStmt> &statement) {
    addEvaluation(std::visit(
        [&](const auto &x) {
          return lower::pft::Evaluation{x, parentVariantStack.back(),
                                        statement.source, statement.label};
        },
        statement.statement.u));
    return false;
  }
  bool Pre(const parser::WhereBodyConstruct &whereBody) {
    return std::visit(
        common::visitors{
            [&](const parser::Statement<parser::AssignmentStmt> &stmt) {
              // Not caught as other AssignmentStmt because it is not
              // wrapped in a parser::ActionStmt.
              addEvaluation(lower::pft::Evaluation{stmt.statement,
                                                   parentVariantStack.back(),
                                                   stmt.source, stmt.label});
              return false;
            },
            [&](const auto &) { return true; },
        },
        whereBody.u);
  }

private:
  /// Initialize a new module-like unit and make it the builder's focus.
  template <typename A>
  bool enterModule(const A &func) {
    auto &unit =
        addUnit(lower::pft::ModuleLikeUnit{func, parentVariantStack.back()});
    functionList = &unit.nestedFunctions;
    parentVariantStack.emplace_back(unit);
    return true;
  }

  void exitModule() {
    parentVariantStack.pop_back();
    resetFunctionState();
  }

  /// Ensure that a function has a branch target after the last user statement.
  void endFunctionBody() {
    if (lastLexicalEvaluation) {
      static const parser::ContinueStmt endTarget{};
      addEvaluation(
          lower::pft::Evaluation{endTarget, parentVariantStack.back(), {}, {}});
      lastLexicalEvaluation = nullptr;
    }
  }

  /// Initialize a new function-like unit and make it the builder's focus.
  template <typename A>
  bool enterFunction(const A &func,
                     const semantics::SemanticsContext &semanticsContext) {
    endFunctionBody(); // enclosing host subprogram body, if any
    auto &unit = addFunction(lower::pft::FunctionLikeUnit{
        func, parentVariantStack.back(), semanticsContext});
    labelEvaluationMap = &unit.labelEvaluationMap;
    assignSymbolLabelMap = &unit.assignSymbolLabelMap;
    functionList = &unit.nestedFunctions;
    pushEvaluationList(&unit.evaluationList);
    parentVariantStack.emplace_back(unit);
    return true;
  }

  void exitFunction() {
    endFunctionBody();
    analyzeBranches(nullptr, *evaluationListStack.back()); // add branch links
    popEvaluationList();
    labelEvaluationMap = nullptr;
    assignSymbolLabelMap = nullptr;
    parentVariantStack.pop_back();
    resetFunctionState();
  }

  /// Initialize a new construct and make it the builder's focus.
  template <typename A>
  bool enterConstructOrDirective(const A &construct) {
    auto &eval = addEvaluation(
        lower::pft::Evaluation{construct, parentVariantStack.back()});
    eval.evaluationList.reset(new lower::pft::EvaluationList);
    pushEvaluationList(eval.evaluationList.get());
    parentVariantStack.emplace_back(eval);
    constructAndDirectiveStack.emplace_back(&eval);
    return true;
  }

  void exitConstructOrDirective() {
    popEvaluationList();
    parentVariantStack.pop_back();
    constructAndDirectiveStack.pop_back();
  }

  /// Reset function state to that of an enclosing host function.
  void resetFunctionState() {
    if (!parentVariantStack.empty()) {
      parentVariantStack.back().visit(common::visitors{
          [&](lower::pft::FunctionLikeUnit &p) {
            functionList = &p.nestedFunctions;
            labelEvaluationMap = &p.labelEvaluationMap;
            assignSymbolLabelMap = &p.assignSymbolLabelMap;
          },
          [&](lower::pft::ModuleLikeUnit &p) {
            functionList = &p.nestedFunctions;
          },
          [&](auto &) { functionList = nullptr; },
      });
    }
  }

  template <typename A>
  A &addUnit(A &&unit) {
    pgm->getUnits().emplace_back(std::move(unit));
    return std::get<A>(pgm->getUnits().back());
  }

  template <typename A>
  A &addFunction(A &&func) {
    if (functionList) {
      functionList->emplace_back(std::move(func));
      return functionList->back();
    }
    return addUnit(std::move(func));
  }

  // ActionStmt has a couple of non-conforming cases, explicitly handled here.
  // The other cases use an Indirection, which are discarded in the PFT.
  lower::pft::Evaluation
  makeEvaluationAction(const parser::ActionStmt &statement,
                       parser::CharBlock position,
                       std::optional<parser::Label> label) {
    return std::visit(
        common::visitors{
            [&](const auto &x) {
              return lower::pft::Evaluation{removeIndirection(x),
                                            parentVariantStack.back(), position,
                                            label};
            },
        },
        statement.u);
  }

  /// Append an Evaluation to the end of the current list.
  lower::pft::Evaluation &addEvaluation(lower::pft::Evaluation &&eval) {
    assert(functionList && "not in a function");
    assert(evaluationListStack.size() > 0);
    if (constructAndDirectiveStack.size() > 0) {
      eval.parentConstruct = constructAndDirectiveStack.back();
    }
    evaluationListStack.back()->emplace_back(std::move(eval));
    lower::pft::Evaluation *p = &evaluationListStack.back()->back();
    if (p->isActionStmt() || p->isConstructStmt()) {
      if (lastLexicalEvaluation) {
        lastLexicalEvaluation->lexicalSuccessor = p;
        p->printIndex = lastLexicalEvaluation->printIndex + 1;
      } else {
        p->printIndex = 1;
      }
      lastLexicalEvaluation = p;
    }
    if (p->label.has_value()) {
      labelEvaluationMap->try_emplace(*p->label, p);
    }
    return evaluationListStack.back()->back();
  }

  /// push a new list on the stack of Evaluation lists
  void pushEvaluationList(lower::pft::EvaluationList *eval) {
    assert(functionList && "not in a function");
    assert(eval && eval->empty() && "evaluation list isn't correct");
    evaluationListStack.emplace_back(eval);
  }

  /// pop the current list and return to the last Evaluation list
  void popEvaluationList() {
    assert(functionList && "not in a function");
    evaluationListStack.pop_back();
  }

  /// Mark I/O statement ERR, EOR, and END specifier branch targets.
  template <typename A>
  void analyzeIoBranches(lower::pft::Evaluation &eval, const A &stmt) {
    auto processIfLabel{[&](const auto &specs) {
      using LabelNodes =
          std::tuple<parser::ErrLabel, parser::EorLabel, parser::EndLabel>;
      for (const auto &spec : specs) {
        const auto *label = std::visit(
            [](const auto &label) -> const parser::Label * {
              using B = std::decay_t<decltype(label)>;
              if constexpr (common::HasMember<B, LabelNodes>) {
                return &label.v;
              }
              return nullptr;
            },
            spec.u);

        if (label)
          markBranchTarget(eval, *label);
      }
    }};

    using OtherIOStmts =
        std::tuple<parser::BackspaceStmt, parser::CloseStmt,
                   parser::EndfileStmt, parser::FlushStmt, parser::OpenStmt,
                   parser::RewindStmt, parser::WaitStmt>;

    if constexpr (std::is_same_v<A, parser::ReadStmt> ||
                  std::is_same_v<A, parser::WriteStmt>) {
      processIfLabel(stmt.controls);
    } else if constexpr (std::is_same_v<A, parser::InquireStmt>) {
      processIfLabel(std::get<std::list<parser::InquireSpec>>(stmt.u));
    } else if constexpr (common::HasMember<A, OtherIOStmts>) {
      processIfLabel(stmt.v);
    } else {
      // Always crash if this is instantiated
      static_assert(!std::is_same_v<A, parser::ReadStmt>,
                    "Unexpected IO statement");
    }
  }

  /// Set the exit of a construct, possibly from multiple enclosing constructs.
  void setConstructExit(lower::pft::Evaluation &eval) {
    eval.constructExit = &eval.evaluationList->back().nonNopSuccessor();
  }

  /// Mark the target of a branch as a new block.
  void markBranchTarget(lower::pft::Evaluation &sourceEvaluation,
                        lower::pft::Evaluation &targetEvaluation) {
    sourceEvaluation.isUnstructured = true;
    if (!sourceEvaluation.controlSuccessor) {
      sourceEvaluation.controlSuccessor = &targetEvaluation;
    }
    targetEvaluation.isNewBlock = true;
    // If this is a branch into the body of a construct (usually illegal,
    // but allowed in some legacy cases), then the targetEvaluation and its
    // ancestors must be marked as unstructured.
    auto *sourceConstruct = sourceEvaluation.parentConstruct;
    auto *targetConstruct = targetEvaluation.parentConstruct;
    if (targetEvaluation.isConstructStmt() &&
        &targetConstruct->getFirstNestedEvaluation() == &targetEvaluation)
      // A branch to an initial constructStmt is a branch to the construct.
      targetConstruct = targetConstruct->parentConstruct;
    if (targetConstruct) {
      while (sourceConstruct && sourceConstruct != targetConstruct)
        sourceConstruct = sourceConstruct->parentConstruct;
      if (sourceConstruct != targetConstruct)
        for (auto *eval = &targetEvaluation; eval; eval = eval->parentConstruct)
          eval->isUnstructured = true;
    }
  }
  void markBranchTarget(lower::pft::Evaluation &sourceEvaluation,
                        parser::Label label) {
    assert(label && "missing branch target label");
    lower::pft::Evaluation *targetEvaluation{
        labelEvaluationMap->find(label)->second};
    assert(targetEvaluation && "missing branch target evaluation");
    markBranchTarget(sourceEvaluation, *targetEvaluation);
  }

  /// Mark the successor of an Evaluation as a new block.
  void markSuccessorAsNewBlock(lower::pft::Evaluation &eval) {
    eval.nonNopSuccessor().isNewBlock = true;
  }

  template <typename A>
  inline std::string getConstructName(const A &stmt) {
    using MaybeConstructNameWrapper =
        std::tuple<parser::BlockStmt, parser::CycleStmt, parser::ElseStmt,
                   parser::ElsewhereStmt, parser::EndAssociateStmt,
                   parser::EndBlockStmt, parser::EndCriticalStmt,
                   parser::EndDoStmt, parser::EndForallStmt, parser::EndIfStmt,
                   parser::EndSelectStmt, parser::EndWhereStmt,
                   parser::ExitStmt>;
    if constexpr (common::HasMember<A, MaybeConstructNameWrapper>) {
      if (stmt.v)
        return stmt.v->ToString();
    }

    using MaybeConstructNameInTuple = std::tuple<
        parser::AssociateStmt, parser::CaseStmt, parser::ChangeTeamStmt,
        parser::CriticalStmt, parser::ElseIfStmt, parser::EndChangeTeamStmt,
        parser::ForallConstructStmt, parser::IfThenStmt, parser::LabelDoStmt,
        parser::MaskedElsewhereStmt, parser::NonLabelDoStmt,
        parser::SelectCaseStmt, parser::SelectRankCaseStmt,
        parser::TypeGuardStmt, parser::WhereConstructStmt>;

    if constexpr (common::HasMember<A, MaybeConstructNameInTuple>) {
      if (auto name{std::get<std::optional<parser::Name>>(stmt.t)})
        return name->ToString();
    }

    // These statements have several std::optional<parser::Name>
    if constexpr (std::is_same_v<A, parser::SelectRankStmt> ||
                  std::is_same_v<A, parser::SelectTypeStmt>) {
      if (auto name{std::get<0>(stmt.t)}) {
        return name->ToString();
      }
    }
    return {};
  }

  /// \p parentConstruct can be null if this statement is at the highest
  /// level of a program.
  template <typename A>
  void insertConstructName(const A &stmt,
                           lower::pft::Evaluation *parentConstruct) {
    std::string name{getConstructName(stmt)};
    if (!name.empty()) {
      constructNameMap[name] = parentConstruct;
    }
  }

  /// Insert branch links for a list of Evaluations.
  /// \p parentConstruct can be null if the evaluationList contains the
  /// top-level statements of a program.
  void analyzeBranches(lower::pft::Evaluation *parentConstruct,
                       std::list<lower::pft::Evaluation> &evaluationList) {
    lower::pft::Evaluation *lastConstructStmtEvaluation{nullptr};
    lower::pft::Evaluation *lastIfStmtEvaluation{nullptr};
    for (auto &eval : evaluationList) {
      eval.visit(common::visitors{
          // Action statements
          [&](const parser::CallStmt &s) {
            // Look for alternate return specifiers.
            const auto &args{std::get<std::list<parser::ActualArgSpec>>(s.v.t)};
            for (const auto &arg : args) {
              const auto &actual{std::get<parser::ActualArg>(arg.t)};
              if (const auto *altReturn{
                      std::get_if<parser::AltReturnSpec>(&actual.u)}) {
                markBranchTarget(eval, altReturn->v);
              }
            }
          },
          [&](const parser::CycleStmt &s) {
            std::string name{getConstructName(s)};
            lower::pft::Evaluation *construct{name.empty()
                                                  ? doConstructStack.back()
                                                  : constructNameMap[name]};
            assert(construct && "missing CYCLE construct");
            markBranchTarget(eval, construct->evaluationList->back());
          },
          [&](const parser::ExitStmt &s) {
            std::string name{getConstructName(s)};
            lower::pft::Evaluation *construct{name.empty()
                                                  ? doConstructStack.back()
                                                  : constructNameMap[name]};
            assert(construct && "missing EXIT construct");
            markBranchTarget(eval, *construct->constructExit);
          },
          [&](const parser::GotoStmt &s) { markBranchTarget(eval, s.v); },
          [&](const parser::IfStmt &) { lastIfStmtEvaluation = &eval; },
          [&](const parser::ReturnStmt &) {
            eval.isUnstructured = true;
            if (eval.lexicalSuccessor->lexicalSuccessor)
              markSuccessorAsNewBlock(eval);
          },
          [&](const parser::StopStmt &) {
            eval.isUnstructured = true;
            if (eval.lexicalSuccessor->lexicalSuccessor)
              markSuccessorAsNewBlock(eval);
          },
          [&](const parser::ComputedGotoStmt &s) {
            for (auto &label : std::get<std::list<parser::Label>>(s.t)) {
              markBranchTarget(eval, label);
            }
          },
          [&](const parser::ArithmeticIfStmt &s) {
            markBranchTarget(eval, std::get<1>(s.t));
            markBranchTarget(eval, std::get<2>(s.t));
            markBranchTarget(eval, std::get<3>(s.t));
            if (semantics::ExprHasTypeCategory(
                    *semantics::GetExpr(std::get<parser::Expr>(s.t)),
                    common::TypeCategory::Real)) {
              // Real expression evaluation uses an additional local block.
              eval.localBlocks.emplace_back(nullptr);
            }
          },
          [&](const parser::AssignStmt &s) { // legacy label assignment
            auto &label = std::get<parser::Label>(s.t);
            const auto *sym = std::get<parser::Name>(s.t).symbol;
            assert(sym && "missing AssignStmt symbol");
            lower::pft::Evaluation *target{
                labelEvaluationMap->find(label)->second};
            assert(target && "missing branch target evaluation");
            if (!target->isA<parser::FormatStmt>()) {
              target->isNewBlock = true;
            }
            auto iter = assignSymbolLabelMap->find(*sym);
            if (iter == assignSymbolLabelMap->end()) {
              lower::pft::LabelSet labelSet{};
              labelSet.insert(label);
              assignSymbolLabelMap->try_emplace(*sym, labelSet);
            } else {
              iter->second.insert(label);
            }
          },
          [&](const parser::AssignedGotoStmt &) {
            // Although this statement is a branch, it doesn't have any
            // explicit control successors.  So the code at the end of the
            // loop won't mark the successor.  Do that here.
            eval.isUnstructured = true;
            markSuccessorAsNewBlock(eval);
          },

          // Construct statements
          [&](const parser::AssociateStmt &s) {
            insertConstructName(s, parentConstruct);
          },
          [&](const parser::BlockStmt &s) {
            insertConstructName(s, parentConstruct);
          },
          [&](const parser::SelectCaseStmt &s) {
            insertConstructName(s, parentConstruct);
            lastConstructStmtEvaluation = &eval;
          },
          [&](const parser::CaseStmt &) {
            eval.isNewBlock = true;
            lastConstructStmtEvaluation->controlSuccessor = &eval;
            lastConstructStmtEvaluation = &eval;
          },
          [&](const parser::EndSelectStmt &) {
            eval.nonNopSuccessor().isNewBlock = true;
            lastConstructStmtEvaluation = nullptr;
          },
          [&](const parser::ChangeTeamStmt &s) {
            insertConstructName(s, parentConstruct);
          },
          [&](const parser::CriticalStmt &s) {
            insertConstructName(s, parentConstruct);
          },
          [&](const parser::NonLabelDoStmt &s) {
            insertConstructName(s, parentConstruct);
            doConstructStack.push_back(parentConstruct);
            auto &control{std::get<std::optional<parser::LoopControl>>(s.t)};
            // eval.block is the loop preheader block, which will be set
            // elsewhere if the NonLabelDoStmt is itself a target.
            // eval.localBlocks[0] is the loop header block.
            eval.localBlocks.emplace_back(nullptr);
            if (!control.has_value()) {
              eval.isUnstructured = true; // infinite loop
              return;
            }
            eval.nonNopSuccessor().isNewBlock = true;
            eval.controlSuccessor = &evaluationList.back();
            if (std::holds_alternative<parser::ScalarLogicalExpr>(control->u)) {
              eval.isUnstructured = true; // while loop
            }
            // Defer additional processing for an unstructured concurrent loop
            // to the EndDoStmt, when the loop is known to be unstructured.
          },
          [&](const parser::EndDoStmt &) {
            lower::pft::Evaluation &doEval{evaluationList.front()};
            eval.controlSuccessor = &doEval;
            doConstructStack.pop_back();
            if (parentConstruct->lowerAsStructured()) {
              return;
            }
            // Now that the loop is known to be unstructured, finish concurrent
            // loop processing, using NonLabelDoStmt information.
            parentConstruct->constructExit->isNewBlock = true;
            const auto &doStmt{doEval.getIf<parser::NonLabelDoStmt>()};
            assert(doStmt && "missing NonLabelDoStmt");
            auto &control{
                std::get<std::optional<parser::LoopControl>>(doStmt->t)};
            if (!control.has_value()) {
              return; // infinite loop
            }
            const auto *concurrent{
                std::get_if<parser::LoopControl::Concurrent>(&control->u)};
            if (!concurrent) {
              return;
            }
            // Unstructured concurrent loop.  NonLabelDoStmt code accounts
            // for one concurrent loop dimension.  Reserve preheader,
            // header, and latch blocks for the remaining dimensions, and
            // one block for a mask expression.
            const auto &header{
                std::get<parser::ConcurrentHeader>(concurrent->t)};
            auto dims{std::get<std::list<parser::ConcurrentControl>>(header.t)
                          .size()};
            for (; dims > 1; --dims) {
              doEval.localBlocks.emplace_back(nullptr); // preheader
              doEval.localBlocks.emplace_back(nullptr); // header
              eval.localBlocks.emplace_back(nullptr);   // latch
            }
            if (std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)) {
              doEval.localBlocks.emplace_back(nullptr); // mask
            }
          },
          [&](const parser::IfThenStmt &s) {
            insertConstructName(s, parentConstruct);
            eval.lexicalSuccessor->isNewBlock = true;
            lastConstructStmtEvaluation = &eval;
          },
          [&](const parser::ElseIfStmt &) {
            eval.isNewBlock = true;
            eval.lexicalSuccessor->isNewBlock = true;
            lastConstructStmtEvaluation->controlSuccessor = &eval;
            lastConstructStmtEvaluation = &eval;
          },
          [&](const parser::ElseStmt &) {
            eval.isNewBlock = true;
            lastConstructStmtEvaluation->controlSuccessor = &eval;
            lastConstructStmtEvaluation = nullptr;
          },
          [&](const parser::EndIfStmt &) {
            if (parentConstruct->lowerAsUnstructured()) {
              parentConstruct->constructExit->isNewBlock = true;
            }
            if (lastConstructStmtEvaluation) {
              lastConstructStmtEvaluation->controlSuccessor =
                  parentConstruct->constructExit;
              lastConstructStmtEvaluation = nullptr;
            }
          },
          [&](const parser::SelectRankStmt &s) {
            insertConstructName(s, parentConstruct);
          },
          [&](const parser::SelectRankCaseStmt &) { eval.isNewBlock = true; },
          [&](const parser::SelectTypeStmt &s) {
            insertConstructName(s, parentConstruct);
          },
          [&](const parser::TypeGuardStmt &) { eval.isNewBlock = true; },

          // Constructs - set (unstructured) construct exit targets
          [&](const parser::AssociateConstruct &) { setConstructExit(eval); },
          [&](const parser::BlockConstruct &) {
            // EndBlockStmt may have code.
            eval.constructExit = &eval.evaluationList->back();
          },
          [&](const parser::CaseConstruct &) {
            setConstructExit(eval);
            eval.isUnstructured = true;
          },
          [&](const parser::ChangeTeamConstruct &) {
            // EndChangeTeamStmt may have code.
            eval.constructExit = &eval.evaluationList->back();
          },
          [&](const parser::CriticalConstruct &) {
            // EndCriticalStmt may have code.
            eval.constructExit = &eval.evaluationList->back();
          },
          [&](const parser::DoConstruct &) { setConstructExit(eval); },
          [&](const parser::IfConstruct &) { setConstructExit(eval); },
          [&](const parser::SelectRankConstruct &) {
            setConstructExit(eval);
            eval.isUnstructured = true;
          },
          [&](const parser::SelectTypeConstruct &) {
            setConstructExit(eval);
            eval.isUnstructured = true;
          },

          [&](const auto &stmt) {
            using A = std::decay_t<decltype(stmt)>;
            using IoStmts = std::tuple<parser::BackspaceStmt, parser::CloseStmt,
                                       parser::EndfileStmt, parser::FlushStmt,
                                       parser::InquireStmt, parser::OpenStmt,
                                       parser::ReadStmt, parser::RewindStmt,
                                       parser::WaitStmt, parser::WriteStmt>;
            if constexpr (common::HasMember<A, IoStmts>) {
              analyzeIoBranches(eval, stmt);
            }

            /* do nothing */
          },
      });

      // Analyze construct evaluations.
      if (eval.evaluationList) {
        analyzeBranches(&eval, *eval.evaluationList);
      }

      // Insert branch links for an unstructured IF statement.
      if (lastIfStmtEvaluation && lastIfStmtEvaluation != &eval) {
        // eval is the action substatement of an IfStmt.
        if (eval.lowerAsUnstructured()) {
          eval.isNewBlock = true;
          markSuccessorAsNewBlock(eval);
          lastIfStmtEvaluation->isUnstructured = true;
        }
        lastIfStmtEvaluation->controlSuccessor = &eval.nonNopSuccessor();
        lastIfStmtEvaluation = nullptr;
      }

      // Set the successor of the last statement in an IF or SELECT block.
      if (!eval.controlSuccessor && eval.lexicalSuccessor &&
          eval.lexicalSuccessor->isIntermediateConstructStmt()) {
        eval.controlSuccessor = parentConstruct->constructExit;
        eval.lexicalSuccessor->isNewBlock = true;
      }

      // Propagate isUnstructured flag to enclosing construct.
      if (parentConstruct && eval.isUnstructured) {
        parentConstruct->isUnstructured = true;
      }

      // The successor of a branch starts a new block.
      if (eval.controlSuccessor && eval.isActionStmt() &&
          eval.lowerAsUnstructured()) {
        markSuccessorAsNewBlock(eval);
      }
    }
  }

  std::unique_ptr<lower::pft::Program> pgm;
  std::vector<lower::pft::ParentVariant> parentVariantStack;
  const semantics::SemanticsContext &semanticsContext;

  /// functionList points to the internal or module procedure function list
  /// of a FunctionLikeUnit or a ModuleLikeUnit.  It may be null.
  std::list<lower::pft::FunctionLikeUnit> *functionList{nullptr};
  std::vector<lower::pft::Evaluation *> constructAndDirectiveStack{};
  std::vector<lower::pft::Evaluation *> doConstructStack{};
  /// evaluationListStack is the current nested construct evaluationList state.
  std::vector<lower::pft::EvaluationList *> evaluationListStack{};
  llvm::DenseMap<parser::Label, lower::pft::Evaluation *> *labelEvaluationMap{
      nullptr};
  lower::pft::SymbolLabelMap *assignSymbolLabelMap{nullptr};
  std::map<std::string, lower::pft::Evaluation *> constructNameMap{};
  lower::pft::Evaluation *lastLexicalEvaluation{nullptr};
};

class PFTDumper {
public:
  void dumpPFT(llvm::raw_ostream &outputStream, lower::pft::Program &pft) {
    for (auto &unit : pft.getUnits()) {
      std::visit(common::visitors{
                     [&](lower::pft::BlockDataUnit &unit) {
                       outputStream << getNodeIndex(unit) << " ";
                       outputStream << "BlockData: ";
                       outputStream << "\nEndBlockData\n\n";
                     },
                     [&](lower::pft::FunctionLikeUnit &func) {
                       dumpFunctionLikeUnit(outputStream, func);
                     },
                     [&](lower::pft::ModuleLikeUnit &unit) {
                       dumpModuleLikeUnit(outputStream, unit);
                     },
                 },
                 unit);
    }
  }

  llvm::StringRef evaluationName(lower::pft::Evaluation &eval) {
    return eval.visit(common::visitors{
        [](const auto &parseTreeNode) {
          return parser::ParseTreeDumper::GetNodeName(parseTreeNode);
        },
    });
  }

  void dumpEvaluationList(llvm::raw_ostream &outputStream,
                          lower::pft::EvaluationList &evaluationList,
                          int indent = 1) {
    static const std::string white{"                                      ++"};
    std::string indentString{white.substr(0, indent * 2)};
    for (lower::pft::Evaluation &eval : evaluationList) {
      llvm::StringRef name{evaluationName(eval)};
      std::string bang{eval.isUnstructured ? "!" : ""};
      if (eval.isConstruct() || eval.isDirective()) {
        outputStream << indentString << "<<" << name << bang << ">>";
        if (eval.constructExit) {
          outputStream << " -> " << eval.constructExit->printIndex;
        }
        outputStream << '\n';
        dumpEvaluationList(outputStream, *eval.evaluationList, indent + 1);
        outputStream << indentString << "<<End " << name << bang << ">>\n";
        continue;
      }
      outputStream << indentString;
      if (eval.printIndex) {
        outputStream << eval.printIndex << ' ';
      }
      if (eval.isNewBlock) {
        outputStream << '^';
      }
      if (eval.localBlocks.size()) {
        outputStream << '*';
      }
      outputStream << name << bang;
      if (eval.isActionStmt() || eval.isConstructStmt()) {
        if (eval.controlSuccessor) {
          outputStream << " -> " << eval.controlSuccessor->printIndex;
        }
      }
      if (eval.position.size()) {
        outputStream << ": " << eval.position.ToString();
      }
      outputStream << '\n';
    }
  }

  void dumpFunctionLikeUnit(llvm::raw_ostream &outputStream,
                            lower::pft::FunctionLikeUnit &functionLikeUnit) {
    outputStream << getNodeIndex(functionLikeUnit) << " ";
    llvm::StringRef unitKind{};
    std::string name{};
    std::string header{};
    if (functionLikeUnit.beginStmt) {
      functionLikeUnit.beginStmt->visit(common::visitors{
          [&](const parser::Statement<parser::ProgramStmt> &statement) {
            unitKind = "Program";
            name = statement.statement.v.ToString();
          },
          [&](const parser::Statement<parser::FunctionStmt> &statement) {
            unitKind = "Function";
            name = std::get<parser::Name>(statement.statement.t).ToString();
            header = statement.source.ToString();
          },
          [&](const parser::Statement<parser::SubroutineStmt> &statement) {
            unitKind = "Subroutine";
            name = std::get<parser::Name>(statement.statement.t).ToString();
            header = statement.source.ToString();
          },
          [&](const parser::Statement<parser::MpSubprogramStmt> &statement) {
            unitKind = "MpSubprogram";
            name = statement.statement.v.ToString();
            header = statement.source.ToString();
          },
          [&](const auto &) {},
      });
    } else {
      unitKind = "Program";
      name = "<anonymous>";
    }
    outputStream << unitKind << ' ' << name;
    if (header.size())
      outputStream << ": " << header;
    outputStream << '\n';
    dumpEvaluationList(outputStream, functionLikeUnit.evaluationList);
    if (!functionLikeUnit.nestedFunctions.empty()) {
      outputStream << "\nContains\n";
      for (auto &func : functionLikeUnit.nestedFunctions)
        dumpFunctionLikeUnit(outputStream, func);
      outputStream << "EndContains\n";
    }
    outputStream << "End" << unitKind << ' ' << name << "\n\n";
  }

  void dumpModuleLikeUnit(llvm::raw_ostream &outputStream,
                          lower::pft::ModuleLikeUnit &moduleLikeUnit) {
    outputStream << getNodeIndex(moduleLikeUnit) << " ";
    outputStream << "ModuleLike: ";
    outputStream << "\nContains\n";
    for (auto &func : moduleLikeUnit.nestedFunctions)
      dumpFunctionLikeUnit(outputStream, func);
    outputStream << "EndContains\nEndModuleLike\n\n";
  }

  template <typename T>
  std::size_t getNodeIndex(const T &node) {
    auto addr{static_cast<const void *>(&node)};
    auto it{nodeIndexes.find(addr)};
    if (it != nodeIndexes.end()) {
      return it->second;
    }
    nodeIndexes.try_emplace(addr, nextIndex);
    return nextIndex++;
  }
  std::size_t getNodeIndex(const lower::pft::Program &) { return 0; }

private:
  llvm::DenseMap<const void *, std::size_t> nodeIndexes;
  std::size_t nextIndex{1}; // 0 is the root
};

} // namespace

template <typename A, typename T>
static lower::pft::FunctionLikeUnit::FunctionStatement
getFunctionStmt(const T &func) {
  return std::get<parser::Statement<A>>(func.t);
}
template <typename A, typename T>
static lower::pft::ModuleLikeUnit::ModuleStatement getModuleStmt(const T &mod) {
  return std::get<parser::Statement<A>>(mod.t);
}

static const semantics::Symbol *getSymbol(
    std::optional<lower::pft::FunctionLikeUnit::FunctionStatement> &beginStmt) {
  if (!beginStmt)
    return nullptr;

  const auto *symbol = beginStmt->visit(common::visitors{
      [](const parser::Statement<parser::ProgramStmt> &stmt)
          -> const semantics::Symbol * { return stmt.statement.v.symbol; },
      [](const parser::Statement<parser::FunctionStmt> &stmt)
          -> const semantics::Symbol * {
        return std::get<parser::Name>(stmt.statement.t).symbol;
      },
      [](const parser::Statement<parser::SubroutineStmt> &stmt)
          -> const semantics::Symbol * {
        return std::get<parser::Name>(stmt.statement.t).symbol;
      },
      [](const parser::Statement<parser::MpSubprogramStmt> &stmt)
          -> const semantics::Symbol * { return stmt.statement.v.symbol; },
      [](const auto &) -> const semantics::Symbol * {
        llvm_unreachable("unknown FunctionLike beginStmt");
        return nullptr;
      }});
  assert(symbol && "parser::Name must have resolved symbol");
  return symbol;
}

bool Fortran::lower::pft::Evaluation::lowerAsStructured() const {
  return !lowerAsUnstructured();
}

bool Fortran::lower::pft::Evaluation::lowerAsUnstructured() const {
  return isUnstructured || clDisableStructuredFir;
}

lower::pft::FunctionLikeUnit *
Fortran::lower::pft::Evaluation::getOwningProcedure() const {
  return parentVariant.visit(common::visitors{
      [](lower::pft::FunctionLikeUnit &c) { return &c; },
      [&](lower::pft::Evaluation &c) { return c.getOwningProcedure(); },
      [](auto &) -> lower::pft::FunctionLikeUnit * { return nullptr; },
  });
}

namespace {
/// This helper class is for sorting the symbols in the symbol table. We want
/// the symbols in an order such that a symbol will be visited after those it
/// depends upon. Otherwise this sort is stable and preserves the order of the
/// symbol table, which is sorted by name.
struct SymbolDependenceDepth {
  explicit SymbolDependenceDepth(
      std::vector<std::vector<lower::pft::Variable>> &vars)
      : vars{vars} {}

  // Recursively visit each symbol to determine the height of its dependence on
  // other symbols.
  int analyze(const semantics::Symbol &sym) {
    auto done = seen.insert(&sym);
    if (!done.second)
      return 0;
    if (semantics::IsProcedure(sym)) {
      // TODO: add declaration?
      return 0;
    }
    if (sym.has<semantics::UseDetails>() ||
        sym.has<semantics::HostAssocDetails>() ||
        sym.has<semantics::NamelistDetails>() ||
        sym.has<semantics::MiscDetails>()) {
      // FIXME: do we want to do anything with any of these?
      return 0;
    }

    // Symbol must be something lowering will have to allocate.
    bool global = semantics::IsSaved(sym);
    int depth = 0;
    const auto *symTy = sym.GetType();
    assert(symTy && "symbol must have a type");

    // check CHARACTER's length
    if (symTy->category() == semantics::DeclTypeSpec::Character)
      if (auto e = symTy->characterTypeSpec().length().GetExplicit())
        for (const auto &s : evaluate::CollectSymbols(*e))
          depth = std::max(analyze(s) + 1, depth);

    if (const auto *details = sym.detailsIf<semantics::ObjectEntityDetails>()) {
      auto doExplicit = [&](const auto &bound) {
        if (bound.isExplicit()) {
          semantics::SomeExpr e{*bound.GetExplicit()};
          for (const auto &s : evaluate::CollectSymbols(e))
            depth = std::max(analyze(s) + 1, depth);
        }
      };
      // handle any symbols in array bound declarations
      for (const auto &subs : details->shape()) {
        doExplicit(subs.lbound());
        doExplicit(subs.ubound());
      }
      // handle any symbols in coarray bound declarations
      for (const auto &subs : details->coshape()) {
        doExplicit(subs.lbound());
        doExplicit(subs.ubound());
      }
      // handle any symbols in initialization expressions
      if (auto e = details->init()) {
        // A PARAMETER may not be marked as implicitly SAVE, so set the flag.
        global = true;
        for (const auto &s : evaluate::CollectSymbols(*e))
          depth = std::max(analyze(s) + 1, depth);
      }
    }
    adjustSize(depth + 1);
    vars[depth].emplace_back(sym, global, depth);
    if (Fortran::semantics::IsAllocatable(sym))
      vars[depth].back().setHeapAlloc();
    if (Fortran::semantics::IsPointer(sym))
      vars[depth].back().setPointer();
    if (sym.attrs().test(Fortran::semantics::Attr::TARGET))
      vars[depth].back().setTarget();
    return depth;
  }

  // Save the final list of symbols as a single vector and free the rest.
  void finalize() {
    for (int i = 1, end = vars.size(); i < end; ++i)
      vars[0].insert(vars[0].end(), vars[i].begin(), vars[i].end());
    vars.resize(1);
  }

private:
  // Make sure the table is of appropriate size.
  void adjustSize(std::size_t size) {
    if (vars.size() < size)
      vars.resize(size);
  }

  llvm::SmallSet<const semantics::Symbol *, 32> seen;
  std::vector<std::vector<lower::pft::Variable>> &vars;
};
} // namespace

void Fortran::lower::pft::FunctionLikeUnit::processSymbolTable(
    const semantics::Scope &scope) {
  // TODO: handle equivalence and common blocks
  if (!scope.equivalenceSets().empty()) {
    llvm::errs() << "TODO: equivalence not yet handled in lowering.\n"
                 << "note: equivalence used in "
                 << (scope.GetName() && !scope.GetName()->empty()
                         ? scope.GetName()->ToString()
                         : "unnamed program"s)
                 << "\n";
    exit(1);
  }
  SymbolDependenceDepth sdd{varList};
  for (const auto &iter : scope)
    sdd.analyze(iter.second.get());
  sdd.finalize();
}

Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
    const parser::MainProgram &func, const lower::pft::ParentVariant &parent,
    const semantics::SemanticsContext &semanticsContext)
    : ProgramUnit{func, parent}, endStmt{
                                     getFunctionStmt<parser::EndProgramStmt>(
                                         func)} {
  const auto &ps{
      std::get<std::optional<parser::Statement<parser::ProgramStmt>>>(func.t)};
  if (ps.has_value()) {
    beginStmt = ps.value();
    symbol = getSymbol(beginStmt);
    processSymbolTable(*symbol->scope());
  } else {
    processSymbolTable(semanticsContext.FindScope(
        std::get<parser::Statement<parser::EndProgramStmt>>(func.t).source));
  }
}

Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
    const parser::FunctionSubprogram &func,
    const lower::pft::ParentVariant &parent,
    const semantics::SemanticsContext &)
    : ProgramUnit{func, parent},
      beginStmt{getFunctionStmt<parser::FunctionStmt>(func)},
      endStmt{getFunctionStmt<parser::EndFunctionStmt>(func)}, symbol{getSymbol(
                                                                   beginStmt)} {
  processSymbolTable(*symbol->scope());
}

Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
    const parser::SubroutineSubprogram &func,
    const lower::pft::ParentVariant &parent,
    const semantics::SemanticsContext &)
    : ProgramUnit{func, parent},
      beginStmt{getFunctionStmt<parser::SubroutineStmt>(func)},
      endStmt{getFunctionStmt<parser::EndSubroutineStmt>(func)},
      symbol{getSymbol(beginStmt)} {
  processSymbolTable(*symbol->scope());
}

Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
    const parser::SeparateModuleSubprogram &func,
    const lower::pft::ParentVariant &parent,
    const semantics::SemanticsContext &)
    : ProgramUnit{func, parent},
      beginStmt{getFunctionStmt<parser::MpSubprogramStmt>(func)},
      endStmt{getFunctionStmt<parser::EndMpSubprogramStmt>(func)},
      symbol{getSymbol(beginStmt)} {
  processSymbolTable(*symbol->scope());
}

Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit(
    const parser::Module &m, const lower::pft::ParentVariant &parent)
    : ProgramUnit{m, parent}, beginStmt{getModuleStmt<parser::ModuleStmt>(m)},
      endStmt{getModuleStmt<parser::EndModuleStmt>(m)} {}

Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit(
    const parser::Submodule &m, const lower::pft::ParentVariant &parent)
    : ProgramUnit{m, parent}, beginStmt{getModuleStmt<parser::SubmoduleStmt>(
                                  m)},
      endStmt{getModuleStmt<parser::EndSubmoduleStmt>(m)} {}

Fortran::lower::pft::BlockDataUnit::BlockDataUnit(
    const parser::BlockData &bd, const lower::pft::ParentVariant &parent)
    : ProgramUnit{bd, parent} {}

std::unique_ptr<lower::pft::Program>
Fortran::lower::createPFT(const parser::Program &root,
                          const semantics::SemanticsContext &semanticsContext) {
  PFTBuilder walker(semanticsContext);
  Walk(root, walker);
  return walker.result();
}

void Fortran::lower::dumpPFT(llvm::raw_ostream &outputStream,
                             lower::pft::Program &pft) {
  PFTDumper{}.dumpPFT(outputStream, pft);
}

void Fortran::lower::pft::Program::dump() { dumpPFT(llvm::errs(), *this); }