fold-designator.cpp 15.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
//===-- lib/Evaluate/designate.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Evaluate/fold-designator.h"
#include "flang/Semantics/tools.h"

namespace Fortran::evaluate {

DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(OffsetSymbol)

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const Symbol &symbol, ConstantSubscript which) {
  if (semantics::IsPointer(symbol) || semantics::IsAllocatable(symbol)) {
    // A pointer may appear as a DATA statement object if it is the
    // rightmost symbol in a designator and has no subscripts.
    // An allocatable may appear if its initializer is NULL().
    if (which > 0) {
      isEmpty_ = true;
    } else {
      return OffsetSymbol{symbol, symbol.size()};
    }
  } else if (symbol.has<semantics::ObjectEntityDetails>() &&
      !IsNamedConstant(symbol)) {
    if (auto type{DynamicType::From(symbol)}) {
      if (auto bytes{type->MeasureSizeInBytes()}) {
        if (auto extents{GetConstantExtents(context_, symbol)}) {
          OffsetSymbol result{symbol, *bytes};
          auto stride{static_cast<ConstantSubscript>(*bytes)};
          for (auto extent : *extents) {
            if (extent == 0) {
              return std::nullopt;
            }
            auto quotient{which / extent};
            auto remainder{which - extent * quotient};
            result.Augment(stride * remainder);
            which = quotient;
            stride *= extent;
          }
          if (which > 0) {
            isEmpty_ = true;
          } else {
            return std::move(result);
          }
        }
      }
    }
  }
  return std::nullopt;
}

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const ArrayRef &x, ConstantSubscript which) {
  const Symbol &array{x.base().GetLastSymbol()};
  if (auto type{DynamicType::From(array)}) {
    if (auto bytes{type->MeasureSizeInBytes()}) {
      if (auto extents{GetConstantExtents(context_, array)}) {
        Shape lbs{GetLowerBounds(context_, x.base())};
        if (auto lowerBounds{AsConstantExtents(context_, lbs)}) {
          std::optional<OffsetSymbol> result;
          if (!x.base().IsSymbol() &&
              x.base().GetComponent().base().Rank() > 0) {
            // A(:)%B(1) - apply elementNumber_ to base
            result = FoldDesignator(x.base(), which);
            which = 0;
          } else { // A(1)%B(:) - apply elementNumber_ to subscripts
            result = FoldDesignator(x.base(), 0);
          }
          if (!result) {
            return std::nullopt;
          }
          auto stride{static_cast<ConstantSubscript>(*bytes)};
          int dim{0};
          for (const Subscript &subscript : x.subscript()) {
            ConstantSubscript lower{lowerBounds->at(dim)};
            ConstantSubscript extent{extents->at(dim)};
            ConstantSubscript upper{lower + extent - 1};
            if (!std::visit(
                    common::visitors{
                        [&](const IndirectSubscriptIntegerExpr &expr) {
                          auto folded{
                              Fold(context_, common::Clone(expr.value()))};
                          if (auto value{UnwrapConstantValue<SubscriptInteger>(
                                  folded)}) {
                            CHECK(value->Rank() <= 1);
                            if (value->size() != 0) {
                              // Apply subscript, possibly vector-valued
                              auto quotient{which / value->size()};
                              auto remainder{which - value->size() * quotient};
                              ConstantSubscript at{
                                  value->values().at(remainder).ToInt64()};
                              if (at < lower || at > upper) {
                                isOutOfRange_ = true;
                              }
                              result->Augment((at - lower) * stride);
                              which = quotient;
                              return true;
                            }
                          }
                          return false;
                        },
                        [&](const Triplet &triplet) {
                          auto start{ToInt64(Fold(context_,
                              triplet.lower().value_or(ExtentExpr{lower})))};
                          auto end{ToInt64(Fold(context_,
                              triplet.upper().value_or(ExtentExpr{upper})))};
                          auto step{ToInt64(Fold(context_, triplet.stride()))};
                          if (start && end && step && *step != 0) {
                            ConstantSubscript range{
                                (*end - *start + *step) / *step};
                            if (range > 0) {
                              auto quotient{which / range};
                              auto remainder{which - range * quotient};
                              auto j{*start + remainder * *step};
                              result->Augment((j - lower) * stride);
                              which = quotient;
                              return true;
                            }
                          }
                          return false;
                        },
                    },
                    subscript.u)) {
              return std::nullopt;
            }
            ++dim;
            stride *= extent;
          }
          if (which > 0) {
            isEmpty_ = true;
          } else {
            return result;
          }
        }
      }
    }
  }
  return std::nullopt;
}

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const Component &component, ConstantSubscript which) {
  const Symbol &comp{component.GetLastSymbol()};
  const DataRef &base{component.base()};
  std::optional<OffsetSymbol> result, baseResult;
  if (base.Rank() == 0) { // A%X(:) - apply "which" to component
    baseResult = FoldDesignator(base, 0);
    result = FoldDesignator(comp, which);
  } else { // A(:)%X - apply "which" to base
    baseResult = FoldDesignator(base, which);
    result = FoldDesignator(comp, 0);
  }
  if (result && baseResult) {
    result->set_symbol(baseResult->symbol());
    result->Augment(baseResult->offset() + comp.offset());
    return result;
  } else {
    return std::nullopt;
  }
}

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const ComplexPart &z, ConstantSubscript which) {
  if (auto result{FoldDesignator(z.complex(), which)}) {
    result->set_size(result->size() >> 1);
    if (z.part() == ComplexPart::Part::IM) {
      result->Augment(result->size());
    }
    return result;
  } else {
    return std::nullopt;
  }
}

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const DataRef &dataRef, ConstantSubscript which) {
  return std::visit(
      [&](const auto &x) { return FoldDesignator(x, which); }, dataRef.u);
}

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const NamedEntity &entity, ConstantSubscript which) {
  return entity.IsSymbol() ? FoldDesignator(entity.GetLastSymbol(), which)
                           : FoldDesignator(entity.GetComponent(), which);
}

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const CoarrayRef &, ConstantSubscript) {
  return std::nullopt;
}

std::optional<OffsetSymbol> DesignatorFolder::FoldDesignator(
    const ProcedureDesignator &proc, ConstantSubscript which) {
  if (const Symbol * symbol{proc.GetSymbol()}) {
    if (const Component * component{proc.GetComponent()}) {
      return FoldDesignator(*component, which);
    } else if (which > 0) {
      isEmpty_ = true;
    } else {
      return FoldDesignator(*symbol, 0);
    }
  }
  return std::nullopt;
}

// Conversions of offset symbols (back) to Designators

// Reconstructs subscripts.
// "offset" is decremented in place to hold remaining component offset.
static std::optional<ArrayRef> OffsetToArrayRef(FoldingContext &context,
    NamedEntity &&entity, const Shape &shape, const DynamicType &elementType,
    ConstantSubscript &offset) {
  auto extents{AsConstantExtents(context, shape)};
  Shape lbs{GetLowerBounds(context, entity)};
  auto lower{AsConstantExtents(context, lbs)};
  auto elementBytes{elementType.MeasureSizeInBytes()};
  if (!extents || !lower || !elementBytes || *elementBytes <= 0) {
    return std::nullopt;
  }
  int rank{GetRank(shape)};
  CHECK(extents->size() == static_cast<std::size_t>(rank) &&
      lower->size() == extents->size());
  auto element{offset / *elementBytes};
  std::vector<Subscript> subscripts;
  auto at{element};
  for (int dim{0}; dim + 1 < rank; ++dim) {
    auto extent{(*extents)[dim]};
    if (extent <= 0) {
      return std::nullopt;
    }
    auto quotient{at / extent};
    auto remainder{at - quotient * extent};
    subscripts.emplace_back(ExtentExpr{(*lower)[dim] + remainder});
    at = quotient;
  }
  // This final subscript might be out of range for use in error reporting.
  subscripts.emplace_back(ExtentExpr{(*lower)[rank - 1] + at});
  offset -= element * *elementBytes;
  return ArrayRef{std::move(entity), std::move(subscripts)};
}

// Maps an offset back to a component, when unambiguous.
static const Symbol *OffsetToUniqueComponent(
    const semantics::DerivedTypeSpec &spec, ConstantSubscript offset) {
  const Symbol *result{nullptr};
  if (const semantics::Scope * scope{spec.scope()}) {
    for (const auto &pair : *scope) {
      const Symbol &component{*pair.second};
      if (offset >= static_cast<ConstantSubscript>(component.offset()) &&
          offset < static_cast<ConstantSubscript>(
                       component.offset() + component.size())) {
        if (result) {
          return nullptr; // MAP overlap or error recovery
        }
        result = &component;
      }
    }
  }
  return result;
}

// Converts an offset into subscripts &/or component references.  Recursive.
// Any remaining offset is left in place in the "offset" reference argument.
static std::optional<DataRef> OffsetToDataRef(FoldingContext &context,
    NamedEntity &&entity, ConstantSubscript &offset, std::size_t size) {
  const Symbol &symbol{entity.GetLastSymbol()};
  if (IsAllocatableOrPointer(symbol)) {
    return entity.IsSymbol() ? DataRef{symbol}
                             : DataRef{std::move(entity.GetComponent())};
  }
  std::optional<DataRef> result;
  if (std::optional<DynamicType> type{DynamicType::From(symbol)}) {
    if (!type->IsUnlimitedPolymorphic()) {
      if (std::optional<Shape> shape{GetShape(context, symbol)}) {
        if (GetRank(*shape) > 0) {
          if (auto aref{OffsetToArrayRef(
                  context, std::move(entity), *shape, *type, offset)}) {
            result = DataRef{std::move(*aref)};
          }
        } else {
          result = entity.IsSymbol()
              ? DataRef{symbol}
              : DataRef{std::move(entity.GetComponent())};
        }
        if (result && type->category() == TypeCategory::Derived &&
            size < result->GetLastSymbol().size()) {
          if (const Symbol *
              component{OffsetToUniqueComponent(
                  type->GetDerivedTypeSpec(), offset)}) {
            offset -= component->offset();
            return OffsetToDataRef(context,
                NamedEntity{Component{std::move(*result), *component}}, offset,
                size);
          }
          result.reset();
        }
      }
    }
  }
  return result;
}

// Reconstructs a Designator from a symbol, an offset, and a size.
std::optional<Expr<SomeType>> OffsetToDesignator(FoldingContext &context,
    const Symbol &baseSymbol, ConstantSubscript offset, std::size_t size) {
  CHECK(offset >= 0);
  if (std::optional<DataRef> dataRef{
          OffsetToDataRef(context, NamedEntity{baseSymbol}, offset, size)}) {
    const Symbol &symbol{dataRef->GetLastSymbol()};
    if (auto type{DynamicType::From(symbol)}) {
      if (std::optional<Expr<SomeType>> result{
              TypedWrapper<Designator>(*type, std::move(*dataRef))}) {
        if (IsAllocatableOrPointer(symbol)) {
        } else if (auto elementBytes{type->MeasureSizeInBytes()}) {
          if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&result->u)}) {
            if (size * 2 > *elementBytes) {
              return result;
            } else if (offset == 0 ||
                offset * 2 == static_cast<ConstantSubscript>(*elementBytes)) {
              // Pick a COMPLEX component
              auto part{
                  offset == 0 ? ComplexPart::Part::RE : ComplexPart::Part::IM};
              return std::visit(
                  [&](const auto &z) -> std::optional<Expr<SomeType>> {
                    using PartType = typename ResultType<decltype(z)>::Part;
                    return AsGenericExpr(Designator<PartType>{ComplexPart{
                        ExtractDataRef(std::move(*zExpr)).value(), part}});
                  },
                  zExpr->u);
            }
          } else if (auto *cExpr{
                         std::get_if<Expr<SomeCharacter>>(&result->u)}) {
            if (offset > 0 || size != *elementBytes) {
              // Select a substring
              return std::visit(
                  [&](const auto &x) -> std::optional<Expr<SomeType>> {
                    using T = typename std::decay_t<decltype(x)>::Result;
                    return AsGenericExpr(Designator<T>{
                        Substring{ExtractDataRef(std::move(*cExpr)).value(),
                            std::optional<Expr<SubscriptInteger>>{
                                1 + (offset / T::kind)},
                            std::optional<Expr<SubscriptInteger>>{
                                1 + ((offset + size - 1) / T::kind)}}});
                  },
                  cExpr->u);
            }
          }
        }
        if (offset == 0) {
          return result;
        }
      }
    }
  }
  return std::nullopt;
}

std::optional<Expr<SomeType>> OffsetToDesignator(
    FoldingContext &context, const OffsetSymbol &offsetSymbol) {
  return OffsetToDesignator(context, offsetSymbol.symbol(),
      offsetSymbol.offset(), offsetSymbol.size());
}

ConstantObjectPointer ConstantObjectPointer::From(
    FoldingContext &context, const Expr<SomeType> &expr) {
  auto extents{GetConstantExtents(context, expr)};
  CHECK(extents);
  std::size_t elements{TotalElementCount(*extents)};
  CHECK(elements > 0);
  int rank{GetRank(*extents)};
  ConstantSubscripts at(rank, 1);
  ConstantObjectPointer::Dimensions dimensions(rank);
  for (int j{0}; j < rank; ++j) {
    dimensions[j].extent = (*extents)[j];
  }
  DesignatorFolder designatorFolder{context};
  const Symbol *symbol{nullptr};
  ConstantSubscript baseOffset{0};
  std::size_t elementSize{0};
  for (std::size_t j{0}; j < elements; ++j) {
    auto folded{designatorFolder.FoldDesignator(expr)};
    CHECK(folded);
    if (j == 0) {
      symbol = &folded->symbol();
      baseOffset = folded->offset();
      elementSize = folded->size();
    } else {
      CHECK(symbol == &folded->symbol());
      CHECK(elementSize == folded->size());
    }
    int twoDim{-1};
    for (int k{0}; k < rank; ++k) {
      if (at[k] == 2 && twoDim == -1) {
        twoDim = k;
      } else if (at[k] != 1) {
        twoDim = -2;
      }
    }
    if (twoDim >= 0) {
      // Exactly one subscript is a 2 and the rest are 1.
      dimensions[twoDim].byteStride = folded->offset() - baseOffset;
    }
    ConstantSubscript checkOffset{baseOffset};
    for (int k{0}; k < rank; ++k) {
      checkOffset += (at[k] - 1) * dimensions[twoDim].byteStride;
    }
    CHECK(checkOffset == folded->offset());
    CHECK(IncrementSubscripts(at, *extents) == (j + 1 < elements));
  }
  CHECK(!designatorFolder.FoldDesignator(expr));
  return ConstantObjectPointer{
      DEREF(symbol), elementSize, std::move(dimensions)};
}
} // namespace Fortran::evaluate