ir.c 37.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*===- ir.c - Simple test of C APIs ---------------------------------------===*\
|*                                                                            *|
|* Part of the LLVM Project, under the Apache License v2.0 with LLVM          *|
|* Exceptions.                                                                *|
|* See https://llvm.org/LICENSE.txt for license information.                  *|
|* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception                    *|
|*                                                                            *|
\*===----------------------------------------------------------------------===*/

/* RUN: mlir-capi-ir-test 2>&1 | FileCheck %s
 */

#include "mlir-c/IR.h"
#include "mlir-c/AffineMap.h"
#include "mlir-c/Registration.h"
#include "mlir-c/StandardAttributes.h"
#include "mlir-c/StandardDialect.h"
#include "mlir-c/StandardTypes.h"

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void populateLoopBody(MlirContext ctx, MlirBlock loopBody,
                      MlirLocation location, MlirBlock funcBody) {
  MlirValue iv = mlirBlockGetArgument(loopBody, 0);
  MlirValue funcArg0 = mlirBlockGetArgument(funcBody, 0);
  MlirValue funcArg1 = mlirBlockGetArgument(funcBody, 1);
  MlirType f32Type = mlirTypeParseGet(ctx, "f32");

  MlirOperationState loadLHSState = mlirOperationStateGet("std.load", location);
  MlirValue loadLHSOperands[] = {funcArg0, iv};
  mlirOperationStateAddOperands(&loadLHSState, 2, loadLHSOperands);
  mlirOperationStateAddResults(&loadLHSState, 1, &f32Type);
  MlirOperation loadLHS = mlirOperationCreate(&loadLHSState);
  mlirBlockAppendOwnedOperation(loopBody, loadLHS);

  MlirOperationState loadRHSState = mlirOperationStateGet("std.load", location);
  MlirValue loadRHSOperands[] = {funcArg1, iv};
  mlirOperationStateAddOperands(&loadRHSState, 2, loadRHSOperands);
  mlirOperationStateAddResults(&loadRHSState, 1, &f32Type);
  MlirOperation loadRHS = mlirOperationCreate(&loadRHSState);
  mlirBlockAppendOwnedOperation(loopBody, loadRHS);

  MlirOperationState addState = mlirOperationStateGet("std.addf", location);
  MlirValue addOperands[] = {mlirOperationGetResult(loadLHS, 0),
                             mlirOperationGetResult(loadRHS, 0)};
  mlirOperationStateAddOperands(&addState, 2, addOperands);
  mlirOperationStateAddResults(&addState, 1, &f32Type);
  MlirOperation add = mlirOperationCreate(&addState);
  mlirBlockAppendOwnedOperation(loopBody, add);

  MlirOperationState storeState = mlirOperationStateGet("std.store", location);
  MlirValue storeOperands[] = {mlirOperationGetResult(add, 0), funcArg0, iv};
  mlirOperationStateAddOperands(&storeState, 3, storeOperands);
  MlirOperation store = mlirOperationCreate(&storeState);
  mlirBlockAppendOwnedOperation(loopBody, store);

  MlirOperationState yieldState = mlirOperationStateGet("scf.yield", location);
  MlirOperation yield = mlirOperationCreate(&yieldState);
  mlirBlockAppendOwnedOperation(loopBody, yield);
}

MlirModule makeAdd(MlirContext ctx, MlirLocation location) {
  MlirModule moduleOp = mlirModuleCreateEmpty(location);
  MlirOperation module = mlirModuleGetOperation(moduleOp);
  MlirRegion moduleBodyRegion = mlirOperationGetRegion(module, 0);
  MlirBlock moduleBody = mlirRegionGetFirstBlock(moduleBodyRegion);

  MlirType memrefType = mlirTypeParseGet(ctx, "memref<?xf32>");
  MlirType funcBodyArgTypes[] = {memrefType, memrefType};
  MlirRegion funcBodyRegion = mlirRegionCreate();
  MlirBlock funcBody = mlirBlockCreate(
      sizeof(funcBodyArgTypes) / sizeof(MlirType), funcBodyArgTypes);
  mlirRegionAppendOwnedBlock(funcBodyRegion, funcBody);

  MlirAttribute funcTypeAttr =
      mlirAttributeParseGet(ctx, "(memref<?xf32>, memref<?xf32>) -> ()");
  MlirAttribute funcNameAttr = mlirAttributeParseGet(ctx, "\"add\"");
  MlirNamedAttribute funcAttrs[] = {
      mlirNamedAttributeGet("type", funcTypeAttr),
      mlirNamedAttributeGet("sym_name", funcNameAttr)};
  MlirOperationState funcState = mlirOperationStateGet("func", location);
  mlirOperationStateAddAttributes(&funcState, 2, funcAttrs);
  mlirOperationStateAddOwnedRegions(&funcState, 1, &funcBodyRegion);
  MlirOperation func = mlirOperationCreate(&funcState);
  mlirBlockInsertOwnedOperation(moduleBody, 0, func);

  MlirType indexType = mlirTypeParseGet(ctx, "index");
  MlirAttribute indexZeroLiteral = mlirAttributeParseGet(ctx, "0 : index");
  MlirNamedAttribute indexZeroValueAttr =
      mlirNamedAttributeGet("value", indexZeroLiteral);
  MlirOperationState constZeroState =
      mlirOperationStateGet("std.constant", location);
  mlirOperationStateAddResults(&constZeroState, 1, &indexType);
  mlirOperationStateAddAttributes(&constZeroState, 1, &indexZeroValueAttr);
  MlirOperation constZero = mlirOperationCreate(&constZeroState);
  mlirBlockAppendOwnedOperation(funcBody, constZero);

  MlirValue funcArg0 = mlirBlockGetArgument(funcBody, 0);
  MlirValue constZeroValue = mlirOperationGetResult(constZero, 0);
  MlirValue dimOperands[] = {funcArg0, constZeroValue};
  MlirOperationState dimState = mlirOperationStateGet("std.dim", location);
  mlirOperationStateAddOperands(&dimState, 2, dimOperands);
  mlirOperationStateAddResults(&dimState, 1, &indexType);
  MlirOperation dim = mlirOperationCreate(&dimState);
  mlirBlockAppendOwnedOperation(funcBody, dim);

  MlirRegion loopBodyRegion = mlirRegionCreate();
  MlirBlock loopBody = mlirBlockCreate(/*nArgs=*/1, &indexType);
  mlirRegionAppendOwnedBlock(loopBodyRegion, loopBody);

  MlirAttribute indexOneLiteral = mlirAttributeParseGet(ctx, "1 : index");
  MlirNamedAttribute indexOneValueAttr =
      mlirNamedAttributeGet("value", indexOneLiteral);
  MlirOperationState constOneState =
      mlirOperationStateGet("std.constant", location);
  mlirOperationStateAddResults(&constOneState, 1, &indexType);
  mlirOperationStateAddAttributes(&constOneState, 1, &indexOneValueAttr);
  MlirOperation constOne = mlirOperationCreate(&constOneState);
  mlirBlockAppendOwnedOperation(funcBody, constOne);

  MlirValue dimValue = mlirOperationGetResult(dim, 0);
  MlirValue constOneValue = mlirOperationGetResult(constOne, 0);
  MlirValue loopOperands[] = {constZeroValue, dimValue, constOneValue};
  MlirOperationState loopState = mlirOperationStateGet("scf.for", location);
  mlirOperationStateAddOperands(&loopState, 3, loopOperands);
  mlirOperationStateAddOwnedRegions(&loopState, 1, &loopBodyRegion);
  MlirOperation loop = mlirOperationCreate(&loopState);
  mlirBlockAppendOwnedOperation(funcBody, loop);

  populateLoopBody(ctx, loopBody, location, funcBody);

  MlirOperationState retState = mlirOperationStateGet("std.return", location);
  MlirOperation ret = mlirOperationCreate(&retState);
  mlirBlockAppendOwnedOperation(funcBody, ret);

  return moduleOp;
}

struct OpListNode {
  MlirOperation op;
  struct OpListNode *next;
};
typedef struct OpListNode OpListNode;

struct ModuleStats {
  unsigned numOperations;
  unsigned numAttributes;
  unsigned numBlocks;
  unsigned numRegions;
  unsigned numValues;
};
typedef struct ModuleStats ModuleStats;

void collectStatsSingle(OpListNode *head, ModuleStats *stats) {
  MlirOperation operation = head->op;
  stats->numOperations += 1;
  stats->numValues += mlirOperationGetNumResults(operation);
  stats->numAttributes += mlirOperationGetNumAttributes(operation);

  unsigned numRegions = mlirOperationGetNumRegions(operation);

  stats->numRegions += numRegions;

  for (unsigned i = 0; i < numRegions; ++i) {
    MlirRegion region = mlirOperationGetRegion(operation, i);
    for (MlirBlock block = mlirRegionGetFirstBlock(region);
         !mlirBlockIsNull(block); block = mlirBlockGetNextInRegion(block)) {
      ++stats->numBlocks;
      stats->numValues += mlirBlockGetNumArguments(block);

      for (MlirOperation child = mlirBlockGetFirstOperation(block);
           !mlirOperationIsNull(child);
           child = mlirOperationGetNextInBlock(child)) {
        OpListNode *node = malloc(sizeof(OpListNode));
        node->op = child;
        node->next = head->next;
        head->next = node;
      }
    }
  }
}

void collectStats(MlirOperation operation) {
  OpListNode *head = malloc(sizeof(OpListNode));
  head->op = operation;
  head->next = NULL;

  ModuleStats stats;
  stats.numOperations = 0;
  stats.numAttributes = 0;
  stats.numBlocks = 0;
  stats.numRegions = 0;
  stats.numValues = 0;

  do {
    collectStatsSingle(head, &stats);
    OpListNode *next = head->next;
    free(head);
    head = next;
  } while (head);

  fprintf(stderr, "Number of operations: %u\n", stats.numOperations);
  fprintf(stderr, "Number of attributes: %u\n", stats.numAttributes);
  fprintf(stderr, "Number of blocks: %u\n", stats.numBlocks);
  fprintf(stderr, "Number of regions: %u\n", stats.numRegions);
  fprintf(stderr, "Number of values: %u\n", stats.numValues);
}

static void printToStderr(const char *str, intptr_t len, void *userData) {
  (void)userData;
  fwrite(str, 1, len, stderr);
}

static void printFirstOfEach(MlirOperation operation) {
  // Assuming we are given a module, go to the first operation of the first
  // function.
  MlirRegion region = mlirOperationGetRegion(operation, 0);
  MlirBlock block = mlirRegionGetFirstBlock(region);
  operation = mlirBlockGetFirstOperation(block);
  region = mlirOperationGetRegion(operation, 0);
  block = mlirRegionGetFirstBlock(region);
  operation = mlirBlockGetFirstOperation(block);

  // In the module we created, the first operation of the first function is an
  // "std.dim", which has an attribute an a single result that we can use to
  // test the printing mechanism.
  mlirBlockPrint(block, printToStderr, NULL);
  fprintf(stderr, "\n");
  mlirOperationPrint(operation, printToStderr, NULL);
  fprintf(stderr, "\n");

  MlirNamedAttribute namedAttr = mlirOperationGetAttribute(operation, 0);
  mlirAttributePrint(namedAttr.attribute, printToStderr, NULL);
  fprintf(stderr, "\n");

  MlirValue value = mlirOperationGetResult(operation, 0);
  mlirValuePrint(value, printToStderr, NULL);
  fprintf(stderr, "\n");

  MlirType type = mlirValueGetType(value);
  mlirTypePrint(type, printToStderr, NULL);
  fprintf(stderr, "\n");
}

/// Creates an operation with a region containing multiple blocks with
/// operations and dumps it. The blocks and operations are inserted using
/// block/operation-relative API and their final order is checked.
static void buildWithInsertionsAndPrint(MlirContext ctx) {
  MlirLocation loc = mlirLocationUnknownGet(ctx);

  MlirRegion owningRegion = mlirRegionCreate();
  MlirBlock nullBlock = mlirRegionGetFirstBlock(owningRegion);
  MlirOperationState state = mlirOperationStateGet("insertion.order.test", loc);
  mlirOperationStateAddOwnedRegions(&state, 1, &owningRegion);
  MlirOperation op = mlirOperationCreate(&state);
  MlirRegion region = mlirOperationGetRegion(op, 0);

  // Use integer types of different bitwidth as block arguments in order to
  // differentiate blocks.
  MlirType i1 = mlirIntegerTypeGet(ctx, 1);
  MlirType i2 = mlirIntegerTypeGet(ctx, 2);
  MlirType i3 = mlirIntegerTypeGet(ctx, 3);
  MlirType i4 = mlirIntegerTypeGet(ctx, 4);
  MlirBlock block1 = mlirBlockCreate(1, &i1);
  MlirBlock block2 = mlirBlockCreate(1, &i2);
  MlirBlock block3 = mlirBlockCreate(1, &i3);
  MlirBlock block4 = mlirBlockCreate(1, &i4);
  // Insert blocks so as to obtain the 1-2-3-4 order,
  mlirRegionInsertOwnedBlockBefore(region, nullBlock, block3);
  mlirRegionInsertOwnedBlockBefore(region, block3, block2);
  mlirRegionInsertOwnedBlockAfter(region, nullBlock, block1);
  mlirRegionInsertOwnedBlockAfter(region, block3, block4);

  MlirOperationState op1State = mlirOperationStateGet("dummy.op1", loc);
  MlirOperationState op2State = mlirOperationStateGet("dummy.op2", loc);
  MlirOperationState op3State = mlirOperationStateGet("dummy.op3", loc);
  MlirOperationState op4State = mlirOperationStateGet("dummy.op4", loc);
  MlirOperationState op5State = mlirOperationStateGet("dummy.op5", loc);
  MlirOperationState op6State = mlirOperationStateGet("dummy.op6", loc);
  MlirOperationState op7State = mlirOperationStateGet("dummy.op7", loc);
  MlirOperation op1 = mlirOperationCreate(&op1State);
  MlirOperation op2 = mlirOperationCreate(&op2State);
  MlirOperation op3 = mlirOperationCreate(&op3State);
  MlirOperation op4 = mlirOperationCreate(&op4State);
  MlirOperation op5 = mlirOperationCreate(&op5State);
  MlirOperation op6 = mlirOperationCreate(&op6State);
  MlirOperation op7 = mlirOperationCreate(&op7State);

  // Insert operations in the first block so as to obtain the 1-2-3-4 order.
  MlirOperation nullOperation = mlirBlockGetFirstOperation(block1);
  assert(mlirOperationIsNull(nullOperation));
  mlirBlockInsertOwnedOperationBefore(block1, nullOperation, op3);
  mlirBlockInsertOwnedOperationBefore(block1, op3, op2);
  mlirBlockInsertOwnedOperationAfter(block1, nullOperation, op1);
  mlirBlockInsertOwnedOperationAfter(block1, op3, op4);

  // Append operations to the rest of blocks to make them non-empty and thus
  // printable.
  mlirBlockAppendOwnedOperation(block2, op5);
  mlirBlockAppendOwnedOperation(block3, op6);
  mlirBlockAppendOwnedOperation(block4, op7);

  mlirOperationDump(op);
  mlirOperationDestroy(op);
}

/// Dumps instances of all standard types to check that C API works correctly.
/// Additionally, performs simple identity checks that a standard type
/// constructed with C API can be inspected and has the expected type. The
/// latter achieves full coverage of C API for standard types. Returns 0 on
/// success and a non-zero error code on failure.
static int printStandardTypes(MlirContext ctx) {
  // Integer types.
  MlirType i32 = mlirIntegerTypeGet(ctx, 32);
  MlirType si32 = mlirIntegerTypeSignedGet(ctx, 32);
  MlirType ui32 = mlirIntegerTypeUnsignedGet(ctx, 32);
  if (!mlirTypeIsAInteger(i32) || mlirTypeIsAF32(i32))
    return 1;
  if (!mlirTypeIsAInteger(si32) || !mlirIntegerTypeIsSigned(si32))
    return 2;
  if (!mlirTypeIsAInteger(ui32) || !mlirIntegerTypeIsUnsigned(ui32))
    return 3;
  if (mlirTypeEqual(i32, ui32) || mlirTypeEqual(i32, si32))
    return 4;
  if (mlirIntegerTypeGetWidth(i32) != mlirIntegerTypeGetWidth(si32))
    return 5;
  mlirTypeDump(i32);
  fprintf(stderr, "\n");
  mlirTypeDump(si32);
  fprintf(stderr, "\n");
  mlirTypeDump(ui32);
  fprintf(stderr, "\n");

  // Index type.
  MlirType index = mlirIndexTypeGet(ctx);
  if (!mlirTypeIsAIndex(index))
    return 6;
  mlirTypeDump(index);
  fprintf(stderr, "\n");

  // Floating-point types.
  MlirType bf16 = mlirBF16TypeGet(ctx);
  MlirType f16 = mlirF16TypeGet(ctx);
  MlirType f32 = mlirF32TypeGet(ctx);
  MlirType f64 = mlirF64TypeGet(ctx);
  if (!mlirTypeIsABF16(bf16))
    return 7;
  if (!mlirTypeIsAF16(f16))
    return 9;
  if (!mlirTypeIsAF32(f32))
    return 10;
  if (!mlirTypeIsAF64(f64))
    return 11;
  mlirTypeDump(bf16);
  fprintf(stderr, "\n");
  mlirTypeDump(f16);
  fprintf(stderr, "\n");
  mlirTypeDump(f32);
  fprintf(stderr, "\n");
  mlirTypeDump(f64);
  fprintf(stderr, "\n");

  // None type.
  MlirType none = mlirNoneTypeGet(ctx);
  if (!mlirTypeIsANone(none))
    return 12;
  mlirTypeDump(none);
  fprintf(stderr, "\n");

  // Complex type.
  MlirType cplx = mlirComplexTypeGet(f32);
  if (!mlirTypeIsAComplex(cplx) ||
      !mlirTypeEqual(mlirComplexTypeGetElementType(cplx), f32))
    return 13;
  mlirTypeDump(cplx);
  fprintf(stderr, "\n");

  // Vector (and Shaped) type. ShapedType is a common base class for vectors,
  // memrefs and tensors, one cannot create instances of this class so it is
  // tested on an instance of vector type.
  int64_t shape[] = {2, 3};
  MlirType vector =
      mlirVectorTypeGet(sizeof(shape) / sizeof(int64_t), shape, f32);
  if (!mlirTypeIsAVector(vector) || !mlirTypeIsAShaped(vector))
    return 14;
  if (!mlirTypeEqual(mlirShapedTypeGetElementType(vector), f32) ||
      !mlirShapedTypeHasRank(vector) || mlirShapedTypeGetRank(vector) != 2 ||
      mlirShapedTypeGetDimSize(vector, 0) != 2 ||
      mlirShapedTypeIsDynamicDim(vector, 0) ||
      mlirShapedTypeGetDimSize(vector, 1) != 3 ||
      !mlirShapedTypeHasStaticShape(vector))
    return 15;
  mlirTypeDump(vector);
  fprintf(stderr, "\n");

  // Ranked tensor type.
  MlirType rankedTensor =
      mlirRankedTensorTypeGet(sizeof(shape) / sizeof(int64_t), shape, f32);
  if (!mlirTypeIsATensor(rankedTensor) ||
      !mlirTypeIsARankedTensor(rankedTensor))
    return 16;
  mlirTypeDump(rankedTensor);
  fprintf(stderr, "\n");

  // Unranked tensor type.
  MlirType unrankedTensor = mlirUnrankedTensorTypeGet(f32);
  if (!mlirTypeIsATensor(unrankedTensor) ||
      !mlirTypeIsAUnrankedTensor(unrankedTensor) ||
      mlirShapedTypeHasRank(unrankedTensor))
    return 17;
  mlirTypeDump(unrankedTensor);
  fprintf(stderr, "\n");

  // MemRef type.
  MlirType memRef = mlirMemRefTypeContiguousGet(
      f32, sizeof(shape) / sizeof(int64_t), shape, 2);
  if (!mlirTypeIsAMemRef(memRef) ||
      mlirMemRefTypeGetNumAffineMaps(memRef) != 0 ||
      mlirMemRefTypeGetMemorySpace(memRef) != 2)
    return 18;
  mlirTypeDump(memRef);
  fprintf(stderr, "\n");

  // Unranked MemRef type.
  MlirType unrankedMemRef = mlirUnrankedMemRefTypeGet(f32, 4);
  if (!mlirTypeIsAUnrankedMemRef(unrankedMemRef) ||
      mlirTypeIsAMemRef(unrankedMemRef) ||
      mlirUnrankedMemrefGetMemorySpace(unrankedMemRef) != 4)
    return 19;
  mlirTypeDump(unrankedMemRef);
  fprintf(stderr, "\n");

  // Tuple type.
  MlirType types[] = {unrankedMemRef, f32};
  MlirType tuple = mlirTupleTypeGet(ctx, 2, types);
  if (!mlirTypeIsATuple(tuple) || mlirTupleTypeGetNumTypes(tuple) != 2 ||
      !mlirTypeEqual(mlirTupleTypeGetType(tuple, 0), unrankedMemRef) ||
      !mlirTypeEqual(mlirTupleTypeGetType(tuple, 1), f32))
    return 20;
  mlirTypeDump(tuple);
  fprintf(stderr, "\n");

  // Function type.
  MlirType funcInputs[2] = {mlirIndexTypeGet(ctx), mlirIntegerTypeGet(ctx, 1)};
  MlirType funcResults[3] = {mlirIntegerTypeGet(ctx, 16),
                             mlirIntegerTypeGet(ctx, 32),
                             mlirIntegerTypeGet(ctx, 64)};
  MlirType funcType = mlirFunctionTypeGet(ctx, 2, funcInputs, 3, funcResults);
  if (mlirFunctionTypeGetNumInputs(funcType) != 2)
    return 21;
  if (mlirFunctionTypeGetNumResults(funcType) != 3)
    return 22;
  if (!mlirTypeEqual(funcInputs[0], mlirFunctionTypeGetInput(funcType, 0)) ||
      !mlirTypeEqual(funcInputs[1], mlirFunctionTypeGetInput(funcType, 1)))
    return 23;
  if (!mlirTypeEqual(funcResults[0], mlirFunctionTypeGetResult(funcType, 0)) ||
      !mlirTypeEqual(funcResults[1], mlirFunctionTypeGetResult(funcType, 1)) ||
      !mlirTypeEqual(funcResults[2], mlirFunctionTypeGetResult(funcType, 2)))
    return 24;
  mlirTypeDump(funcType);
  fprintf(stderr, "\n");

  return 0;
}

void callbackSetFixedLengthString(const char *data, intptr_t len,
                                  void *userData) {
  strncpy(userData, data, len);
}

int printStandardAttributes(MlirContext ctx) {
  MlirAttribute floating =
      mlirFloatAttrDoubleGet(ctx, mlirF64TypeGet(ctx), 2.0);
  if (!mlirAttributeIsAFloat(floating) ||
      fabs(mlirFloatAttrGetValueDouble(floating) - 2.0) > 1E-6)
    return 1;
  mlirAttributeDump(floating);

  MlirAttribute integer = mlirIntegerAttrGet(mlirIntegerTypeGet(ctx, 32), 42);
  if (!mlirAttributeIsAInteger(integer) ||
      mlirIntegerAttrGetValueInt(integer) != 42)
    return 2;
  mlirAttributeDump(integer);

  MlirAttribute boolean = mlirBoolAttrGet(ctx, 1);
  if (!mlirAttributeIsABool(boolean) || !mlirBoolAttrGetValue(boolean))
    return 3;
  mlirAttributeDump(boolean);

  const char data[] = "abcdefghijklmnopqestuvwxyz";
  MlirAttribute opaque =
      mlirOpaqueAttrGet(ctx, "std", 3, data, mlirNoneTypeGet(ctx));
  if (!mlirAttributeIsAOpaque(opaque) ||
      strcmp("std", mlirOpaqueAttrGetDialectNamespace(opaque)))
    return 4;

  MlirStringRef opaqueData = mlirOpaqueAttrGetData(opaque);
  if (opaqueData.length != 3 ||
      strncmp(data, opaqueData.data, opaqueData.length))
    return 5;
  mlirAttributeDump(opaque);

  MlirAttribute string = mlirStringAttrGet(ctx, 2, data + 3);
  if (!mlirAttributeIsAString(string))
    return 6;

  MlirStringRef stringValue = mlirStringAttrGetValue(string);
  if (stringValue.length != 2 ||
      strncmp(data + 3, stringValue.data, stringValue.length))
    return 7;
  mlirAttributeDump(string);

  MlirAttribute flatSymbolRef = mlirFlatSymbolRefAttrGet(ctx, 3, data + 5);
  if (!mlirAttributeIsAFlatSymbolRef(flatSymbolRef))
    return 8;

  MlirStringRef flatSymbolRefValue =
      mlirFlatSymbolRefAttrGetValue(flatSymbolRef);
  if (flatSymbolRefValue.length != 3 ||
      strncmp(data + 5, flatSymbolRefValue.data, flatSymbolRefValue.length))
    return 9;
  mlirAttributeDump(flatSymbolRef);

  MlirAttribute symbols[] = {flatSymbolRef, flatSymbolRef};
  MlirAttribute symbolRef = mlirSymbolRefAttrGet(ctx, 2, data + 8, 2, symbols);
  if (!mlirAttributeIsASymbolRef(symbolRef) ||
      mlirSymbolRefAttrGetNumNestedReferences(symbolRef) != 2 ||
      !mlirAttributeEqual(mlirSymbolRefAttrGetNestedReference(symbolRef, 0),
                          flatSymbolRef) ||
      !mlirAttributeEqual(mlirSymbolRefAttrGetNestedReference(symbolRef, 1),
                          flatSymbolRef))
    return 10;

  MlirStringRef symbolRefLeaf = mlirSymbolRefAttrGetLeafReference(symbolRef);
  MlirStringRef symbolRefRoot = mlirSymbolRefAttrGetRootReference(symbolRef);
  if (symbolRefLeaf.length != 3 ||
      strncmp(data + 5, symbolRefLeaf.data, symbolRefLeaf.length) ||
      symbolRefRoot.length != 2 ||
      strncmp(data + 8, symbolRefRoot.data, symbolRefRoot.length))
    return 11;
  mlirAttributeDump(symbolRef);

  MlirAttribute type = mlirTypeAttrGet(mlirF32TypeGet(ctx));
  if (!mlirAttributeIsAType(type) ||
      !mlirTypeEqual(mlirF32TypeGet(ctx), mlirTypeAttrGetValue(type)))
    return 12;
  mlirAttributeDump(type);

  MlirAttribute unit = mlirUnitAttrGet(ctx);
  if (!mlirAttributeIsAUnit(unit))
    return 13;
  mlirAttributeDump(unit);

  int64_t shape[] = {1, 2};

  int bools[] = {0, 1};
  uint32_t uints32[] = {0u, 1u};
  int32_t ints32[] = {0, 1};
  uint64_t uints64[] = {0u, 1u};
  int64_t ints64[] = {0, 1};
  float floats[] = {0.0f, 1.0f};
  double doubles[] = {0.0, 1.0};
  MlirAttribute boolElements = mlirDenseElementsAttrBoolGet(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1)), 2, bools);
  MlirAttribute uint32Elements = mlirDenseElementsAttrUInt32Get(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeUnsignedGet(ctx, 32)), 2,
      uints32);
  MlirAttribute int32Elements = mlirDenseElementsAttrInt32Get(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 32)), 2,
      ints32);
  MlirAttribute uint64Elements = mlirDenseElementsAttrUInt64Get(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeUnsignedGet(ctx, 64)), 2,
      uints64);
  MlirAttribute int64Elements = mlirDenseElementsAttrInt64Get(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 64)), 2,
      ints64);
  MlirAttribute floatElements = mlirDenseElementsAttrFloatGet(
      mlirRankedTensorTypeGet(2, shape, mlirF32TypeGet(ctx)), 2, floats);
  MlirAttribute doubleElements = mlirDenseElementsAttrDoubleGet(
      mlirRankedTensorTypeGet(2, shape, mlirF64TypeGet(ctx)), 2, doubles);

  if (!mlirAttributeIsADenseElements(boolElements) ||
      !mlirAttributeIsADenseElements(uint32Elements) ||
      !mlirAttributeIsADenseElements(int32Elements) ||
      !mlirAttributeIsADenseElements(uint64Elements) ||
      !mlirAttributeIsADenseElements(int64Elements) ||
      !mlirAttributeIsADenseElements(floatElements) ||
      !mlirAttributeIsADenseElements(doubleElements))
    return 14;

  if (mlirDenseElementsAttrGetBoolValue(boolElements, 1) != 1 ||
      mlirDenseElementsAttrGetUInt32Value(uint32Elements, 1) != 1 ||
      mlirDenseElementsAttrGetInt32Value(int32Elements, 1) != 1 ||
      mlirDenseElementsAttrGetUInt64Value(uint64Elements, 1) != 1 ||
      mlirDenseElementsAttrGetInt64Value(int64Elements, 1) != 1 ||
      fabsf(mlirDenseElementsAttrGetFloatValue(floatElements, 1) - 1.0f) >
          1E-6f ||
      fabs(mlirDenseElementsAttrGetDoubleValue(doubleElements, 1) - 1.0) > 1E-6)
    return 15;

  mlirAttributeDump(boolElements);
  mlirAttributeDump(uint32Elements);
  mlirAttributeDump(int32Elements);
  mlirAttributeDump(uint64Elements);
  mlirAttributeDump(int64Elements);
  mlirAttributeDump(floatElements);
  mlirAttributeDump(doubleElements);

  MlirAttribute splatBool = mlirDenseElementsAttrBoolSplatGet(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1)), 1);
  MlirAttribute splatUInt32 = mlirDenseElementsAttrUInt32SplatGet(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 32)), 1);
  MlirAttribute splatInt32 = mlirDenseElementsAttrInt32SplatGet(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 32)), 1);
  MlirAttribute splatUInt64 = mlirDenseElementsAttrUInt64SplatGet(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 64)), 1);
  MlirAttribute splatInt64 = mlirDenseElementsAttrInt64SplatGet(
      mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 64)), 1);
  MlirAttribute splatFloat = mlirDenseElementsAttrFloatSplatGet(
      mlirRankedTensorTypeGet(2, shape, mlirF32TypeGet(ctx)), 1.0f);
  MlirAttribute splatDouble = mlirDenseElementsAttrDoubleSplatGet(
      mlirRankedTensorTypeGet(2, shape, mlirF64TypeGet(ctx)), 1.0);

  if (!mlirAttributeIsADenseElements(splatBool) ||
      !mlirDenseElementsAttrIsSplat(splatBool) ||
      !mlirAttributeIsADenseElements(splatUInt32) ||
      !mlirDenseElementsAttrIsSplat(splatUInt32) ||
      !mlirAttributeIsADenseElements(splatInt32) ||
      !mlirDenseElementsAttrIsSplat(splatInt32) ||
      !mlirAttributeIsADenseElements(splatUInt64) ||
      !mlirDenseElementsAttrIsSplat(splatUInt64) ||
      !mlirAttributeIsADenseElements(splatInt64) ||
      !mlirDenseElementsAttrIsSplat(splatInt64) ||
      !mlirAttributeIsADenseElements(splatFloat) ||
      !mlirDenseElementsAttrIsSplat(splatFloat) ||
      !mlirAttributeIsADenseElements(splatDouble) ||
      !mlirDenseElementsAttrIsSplat(splatDouble))
    return 16;

  if (mlirDenseElementsAttrGetBoolSplatValue(splatBool) != 1 ||
      mlirDenseElementsAttrGetUInt32SplatValue(splatUInt32) != 1 ||
      mlirDenseElementsAttrGetInt32SplatValue(splatInt32) != 1 ||
      mlirDenseElementsAttrGetUInt64SplatValue(splatUInt64) != 1 ||
      mlirDenseElementsAttrGetInt64SplatValue(splatInt64) != 1 ||
      fabsf(mlirDenseElementsAttrGetFloatSplatValue(splatFloat) - 1.0f) >
          1E-6f ||
      fabs(mlirDenseElementsAttrGetDoubleSplatValue(splatDouble) - 1.0) > 1E-6)
    return 17;

  mlirAttributeDump(splatBool);
  mlirAttributeDump(splatUInt32);
  mlirAttributeDump(splatInt32);
  mlirAttributeDump(splatUInt64);
  mlirAttributeDump(splatInt64);
  mlirAttributeDump(splatFloat);
  mlirAttributeDump(splatDouble);

  mlirAttributeDump(mlirElementsAttrGetValue(floatElements, 2, uints64));
  mlirAttributeDump(mlirElementsAttrGetValue(doubleElements, 2, uints64));

  int64_t indices[] = {4, 7};
  int64_t two = 2;
  MlirAttribute indicesAttr = mlirDenseElementsAttrInt64Get(
      mlirRankedTensorTypeGet(1, &two, mlirIntegerTypeGet(ctx, 64)), 2,
      indices);
  MlirAttribute valuesAttr = mlirDenseElementsAttrFloatGet(
      mlirRankedTensorTypeGet(1, &two, mlirF32TypeGet(ctx)), 2, floats);
  MlirAttribute sparseAttr = mlirSparseElementsAttribute(
      mlirRankedTensorTypeGet(2, shape, mlirF32TypeGet(ctx)), indicesAttr,
      valuesAttr);
  mlirAttributeDump(sparseAttr);

  return 0;
}

int printAffineMap(MlirContext ctx) {
  MlirAffineMap emptyAffineMap = mlirAffineMapEmptyGet(ctx);
  MlirAffineMap affineMap = mlirAffineMapGet(ctx, 3, 2);
  MlirAffineMap constAffineMap = mlirAffineMapConstantGet(ctx, 2);
  MlirAffineMap multiDimIdentityAffineMap =
      mlirAffineMapMultiDimIdentityGet(ctx, 3);
  MlirAffineMap minorIdentityAffineMap =
      mlirAffineMapMinorIdentityGet(ctx, 3, 2);
  unsigned permutation[] = {1, 2, 0};
  MlirAffineMap permutationAffineMap = mlirAffineMapPermutationGet(
      ctx, sizeof(permutation) / sizeof(unsigned), permutation);

  mlirAffineMapDump(emptyAffineMap);
  mlirAffineMapDump(affineMap);
  mlirAffineMapDump(constAffineMap);
  mlirAffineMapDump(multiDimIdentityAffineMap);
  mlirAffineMapDump(minorIdentityAffineMap);
  mlirAffineMapDump(permutationAffineMap);

  if (!mlirAffineMapIsIdentity(emptyAffineMap) ||
      mlirAffineMapIsIdentity(affineMap) ||
      mlirAffineMapIsIdentity(constAffineMap) ||
      !mlirAffineMapIsIdentity(multiDimIdentityAffineMap) ||
      mlirAffineMapIsIdentity(minorIdentityAffineMap) ||
      mlirAffineMapIsIdentity(permutationAffineMap))
    return 1;

  if (!mlirAffineMapIsMinorIdentity(emptyAffineMap) ||
      mlirAffineMapIsMinorIdentity(affineMap) ||
      !mlirAffineMapIsMinorIdentity(multiDimIdentityAffineMap) ||
      !mlirAffineMapIsMinorIdentity(minorIdentityAffineMap) ||
      mlirAffineMapIsMinorIdentity(permutationAffineMap))
    return 2;

  if (!mlirAffineMapIsEmpty(emptyAffineMap) ||
      mlirAffineMapIsEmpty(affineMap) || mlirAffineMapIsEmpty(constAffineMap) ||
      mlirAffineMapIsEmpty(multiDimIdentityAffineMap) ||
      mlirAffineMapIsEmpty(minorIdentityAffineMap) ||
      mlirAffineMapIsEmpty(permutationAffineMap))
    return 3;

  if (mlirAffineMapIsSingleConstant(emptyAffineMap) ||
      mlirAffineMapIsSingleConstant(affineMap) ||
      !mlirAffineMapIsSingleConstant(constAffineMap) ||
      mlirAffineMapIsSingleConstant(multiDimIdentityAffineMap) ||
      mlirAffineMapIsSingleConstant(minorIdentityAffineMap) ||
      mlirAffineMapIsSingleConstant(permutationAffineMap))
    return 4;

  if (mlirAffineMapGetSingleConstantResult(constAffineMap) != 2)
    return 5;

  if (mlirAffineMapGetNumDims(emptyAffineMap) != 0 ||
      mlirAffineMapGetNumDims(affineMap) != 3 ||
      mlirAffineMapGetNumDims(constAffineMap) != 0 ||
      mlirAffineMapGetNumDims(multiDimIdentityAffineMap) != 3 ||
      mlirAffineMapGetNumDims(minorIdentityAffineMap) != 3 ||
      mlirAffineMapGetNumDims(permutationAffineMap) != 3)
    return 6;

  if (mlirAffineMapGetNumSymbols(emptyAffineMap) != 0 ||
      mlirAffineMapGetNumSymbols(affineMap) != 2 ||
      mlirAffineMapGetNumSymbols(constAffineMap) != 0 ||
      mlirAffineMapGetNumSymbols(multiDimIdentityAffineMap) != 0 ||
      mlirAffineMapGetNumSymbols(minorIdentityAffineMap) != 0 ||
      mlirAffineMapGetNumSymbols(permutationAffineMap) != 0)
    return 7;

  if (mlirAffineMapGetNumResults(emptyAffineMap) != 0 ||
      mlirAffineMapGetNumResults(affineMap) != 0 ||
      mlirAffineMapGetNumResults(constAffineMap) != 1 ||
      mlirAffineMapGetNumResults(multiDimIdentityAffineMap) != 3 ||
      mlirAffineMapGetNumResults(minorIdentityAffineMap) != 2 ||
      mlirAffineMapGetNumResults(permutationAffineMap) != 3)
    return 8;

  if (mlirAffineMapGetNumInputs(emptyAffineMap) != 0 ||
      mlirAffineMapGetNumInputs(affineMap) != 5 ||
      mlirAffineMapGetNumInputs(constAffineMap) != 0 ||
      mlirAffineMapGetNumInputs(multiDimIdentityAffineMap) != 3 ||
      mlirAffineMapGetNumInputs(minorIdentityAffineMap) != 3 ||
      mlirAffineMapGetNumInputs(permutationAffineMap) != 3)
    return 9;

  if (!mlirAffineMapIsProjectedPermutation(emptyAffineMap) ||
      !mlirAffineMapIsPermutation(emptyAffineMap) ||
      mlirAffineMapIsProjectedPermutation(affineMap) ||
      mlirAffineMapIsPermutation(affineMap) ||
      mlirAffineMapIsProjectedPermutation(constAffineMap) ||
      mlirAffineMapIsPermutation(constAffineMap) ||
      !mlirAffineMapIsProjectedPermutation(multiDimIdentityAffineMap) ||
      !mlirAffineMapIsPermutation(multiDimIdentityAffineMap) ||
      !mlirAffineMapIsProjectedPermutation(minorIdentityAffineMap) ||
      mlirAffineMapIsPermutation(minorIdentityAffineMap) ||
      !mlirAffineMapIsProjectedPermutation(permutationAffineMap) ||
      !mlirAffineMapIsPermutation(permutationAffineMap))
    return 10;

  intptr_t sub[] = {1};

  MlirAffineMap subMap = mlirAffineMapGetSubMap(
      multiDimIdentityAffineMap, sizeof(sub) / sizeof(intptr_t), sub);
  MlirAffineMap majorSubMap =
      mlirAffineMapGetMajorSubMap(multiDimIdentityAffineMap, 1);
  MlirAffineMap minorSubMap =
      mlirAffineMapGetMinorSubMap(multiDimIdentityAffineMap, 1);

  mlirAffineMapDump(subMap);
  mlirAffineMapDump(majorSubMap);
  mlirAffineMapDump(minorSubMap);

  return 0;
}

int registerOnlyStd() {
  MlirContext ctx = mlirContextCreate();
  // The built-in dialect is always loaded.
  if (mlirContextGetNumLoadedDialects(ctx) != 1)
    return 1;

  MlirDialect std =
      mlirContextGetOrLoadDialect(ctx, mlirStandardDialectGetNamespace());
  if (!mlirDialectIsNull(std))
    return 2;

  mlirContextRegisterStandardDialect(ctx);
  if (mlirContextGetNumRegisteredDialects(ctx) != 1)
    return 3;
  if (mlirContextGetNumLoadedDialects(ctx) != 1)
    return 4;

  std = mlirContextGetOrLoadDialect(ctx, mlirStandardDialectGetNamespace());
  if (mlirDialectIsNull(std))
    return 5;
  if (mlirContextGetNumLoadedDialects(ctx) != 2)
    return 6;

  MlirDialect alsoStd = mlirContextLoadStandardDialect(ctx);
  if (!mlirDialectEqual(std, alsoStd))
    return 7;

  MlirStringRef stdNs = mlirDialectGetNamespace(std);
  MlirStringRef alsoStdNs = mlirStandardDialectGetNamespace();
  if (stdNs.length != alsoStdNs.length ||
      strncmp(stdNs.data, alsoStdNs.data, stdNs.length))
    return 8;

  return 0;
}

int main() {
  MlirContext ctx = mlirContextCreate();
  mlirRegisterAllDialects(ctx);
  MlirLocation location = mlirLocationUnknownGet(ctx);

  MlirModule moduleOp = makeAdd(ctx, location);
  MlirOperation module = mlirModuleGetOperation(moduleOp);
  mlirOperationDump(module);
  // clang-format off
  // CHECK: module {
  // CHECK:   func @add(%[[ARG0:.*]]: memref<?xf32>, %[[ARG1:.*]]: memref<?xf32>) {
  // CHECK:     %[[C0:.*]] = constant 0 : index
  // CHECK:     %[[DIM:.*]] = dim %[[ARG0]], %[[C0]] : memref<?xf32>
  // CHECK:     %[[C1:.*]] = constant 1 : index
  // CHECK:     scf.for %[[I:.*]] = %[[C0]] to %[[DIM]] step %[[C1]] {
  // CHECK:       %[[LHS:.*]] = load %[[ARG0]][%[[I]]] : memref<?xf32>
  // CHECK:       %[[RHS:.*]] = load %[[ARG1]][%[[I]]] : memref<?xf32>
  // CHECK:       %[[SUM:.*]] = addf %[[LHS]], %[[RHS]] : f32
  // CHECK:       store %[[SUM]], %[[ARG0]][%[[I]]] : memref<?xf32>
  // CHECK:     }
  // CHECK:     return
  // CHECK:   }
  // CHECK: }
  // clang-format on

  collectStats(module);
  // clang-format off
  // CHECK: Number of operations: 13
  // CHECK: Number of attributes: 4
  // CHECK: Number of blocks: 3
  // CHECK: Number of regions: 3
  // CHECK: Number of values: 9
  // clang-format on

  printFirstOfEach(module);
  // clang-format off
  // CHECK:   %[[C0:.*]] = constant 0 : index
  // CHECK:   %[[DIM:.*]] = dim %{{.*}}, %[[C0]] : memref<?xf32>
  // CHECK:   %[[C1:.*]] = constant 1 : index
  // CHECK:   scf.for %[[I:.*]] = %[[C0]] to %[[DIM]] step %[[C1]] {
  // CHECK:     %[[LHS:.*]] = load %{{.*}}[%[[I]]] : memref<?xf32>
  // CHECK:     %[[RHS:.*]] = load %{{.*}}[%[[I]]] : memref<?xf32>
  // CHECK:     %[[SUM:.*]] = addf %[[LHS]], %[[RHS]] : f32
  // CHECK:     store %[[SUM]], %{{.*}}[%[[I]]] : memref<?xf32>
  // CHECK:   }
  // CHECK: return
  // CHECK: constant 0 : index
  // CHECK: 0 : index
  // CHECK: constant 0 : index
  // CHECK: index
  // clang-format on

  mlirModuleDestroy(moduleOp);

  buildWithInsertionsAndPrint(ctx);
  // clang-format off
  // CHECK-LABEL:  "insertion.order.test"
  // CHECK:      ^{{.*}}(%{{.*}}: i1
  // CHECK:        "dummy.op1"
  // CHECK-NEXT:   "dummy.op2"
  // CHECK-NEXT:   "dummy.op3"
  // CHECK-NEXT:   "dummy.op4"
  // CHECK:      ^{{.*}}(%{{.*}}: i2
  // CHECK:        "dummy.op5"
  // CHECK:      ^{{.*}}(%{{.*}}: i3
  // CHECK:        "dummy.op6"
  // CHECK:      ^{{.*}}(%{{.*}}: i4
  // CHECK:        "dummy.op7"
  // clang-format on

  // clang-format off
  // CHECK-LABEL: @types
  // CHECK: i32
  // CHECK: si32
  // CHECK: ui32
  // CHECK: index
  // CHECK: bf16
  // CHECK: f16
  // CHECK: f32
  // CHECK: f64
  // CHECK: none
  // CHECK: complex<f32>
  // CHECK: vector<2x3xf32>
  // CHECK: tensor<2x3xf32>
  // CHECK: tensor<*xf32>
  // CHECK: memref<2x3xf32, 2>
  // CHECK: memref<*xf32, 4>
  // CHECK: tuple<memref<*xf32, 4>, f32>
  // CHECK: (index, i1) -> (i16, i32, i64)
  // CHECK: 0
  // clang-format on
  fprintf(stderr, "@types\n");
  int errcode = printStandardTypes(ctx);
  fprintf(stderr, "%d\n", errcode);

  // clang-format off
  // CHECK-LABEL: @attrs
  // CHECK: 2.000000e+00 : f64
  // CHECK: 42 : i32
  // CHECK: true
  // CHECK: #std.abc
  // CHECK: "de"
  // CHECK: @fgh
  // CHECK: @ij::@fgh::@fgh
  // CHECK: f32
  // CHECK: unit
  // CHECK: dense<{{\[}}[false, true]]> : tensor<1x2xi1>
  // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui32>
  // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi32>
  // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui64>
  // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi64>
  // CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf32>
  // CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf64>
  // CHECK: dense<true> : tensor<1x2xi1>
  // CHECK: dense<1> : tensor<1x2xi32>
  // CHECK: dense<1> : tensor<1x2xi32>
  // CHECK: dense<1> : tensor<1x2xi64>
  // CHECK: dense<1> : tensor<1x2xi64>
  // CHECK: dense<1.000000e+00> : tensor<1x2xf32>
  // CHECK: dense<1.000000e+00> : tensor<1x2xf64>
  // CHECK: 1.000000e+00 : f32
  // CHECK: 1.000000e+00 : f64
  // CHECK: sparse<[4, 7], [0.000000e+00, 1.000000e+00]> : tensor<1x2xf32>
  // clang-format on
  fprintf(stderr, "@attrs\n");
  errcode = printStandardAttributes(ctx);
  fprintf(stderr, "%d\n", errcode);

  // clang-format off
  // CHECK-LABEL: @affineMap
  // CHECK: () -> ()
  // CHECK: (d0, d1, d2)[s0, s1] -> ()
  // CHECK: () -> (2)
  // CHECK: (d0, d1, d2) -> (d0, d1, d2)
  // CHECK: (d0, d1, d2) -> (d1, d2)
  // CHECK: (d0, d1, d2) -> (d1, d2, d0)
  // CHECK: (d0, d1, d2) -> (d1)
  // CHECK: (d0, d1, d2) -> (d0)
  // CHECK: (d0, d1, d2) -> (d2)
  // CHECK: 0
  // clang-format on
  fprintf(stderr, "@affineMap\n");
  errcode = printAffineMap(ctx);
  fprintf(stderr, "%d\n", errcode);

  fprintf(stderr, "@registration\n");
  errcode = registerOnlyStd();
  fprintf(stderr, "%d\n", errcode);
  // clang-format off
  // CHECK-LABEL: @registration
  // CHECK: 0
  // clang-format on

  mlirContextDestroy(ctx);

  return 0;
}