LoopFusion.cpp 81.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion.
//
//===----------------------------------------------------------------------===//

#include "PassDetail.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopFusionUtils.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iomanip>
#include <sstream>
#define DEBUG_TYPE "affine-loop-fusion"

using llvm::SetVector;

using namespace mlir;

namespace {
/// Loop fusion pass. This pass currently supports a greedy fusion policy,
/// which fuses loop nests with single-writer/single-reader memref dependences
/// with the goal of improving locality.

// TODO: Support fusion of source loop nests which write to multiple
// memrefs, where each memref can have multiple users (if profitable).
// TODO: Extend this pass to check for fusion preventing dependences,
// and add support for more general loop fusion algorithms.

struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
  LoopFusion() = default;
  LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
             bool maximalFusion) {
    this->fastMemorySpace = fastMemorySpace;
    this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
    this->maximalFusion = maximalFusion;
  }

  void runOnFunction() override;
};

} // end anonymous namespace

std::unique_ptr<OperationPass<FuncOp>>
mlir::createLoopFusionPass(unsigned fastMemorySpace,
                           uint64_t localBufSizeThreshold, bool maximalFusion) {
  return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
                                      maximalFusion);
}

// TODO: Replace when this is modeled through side-effects/op traits
static bool isMemRefDereferencingOp(Operation &op) {
  return isa<AffineReadOpInterface, AffineWriteOpInterface, AffineDmaStartOp,
             AffineDmaWaitOp>(op);
}

namespace {

// LoopNestStateCollector walks loop nests and collects load and store
// operations, and whether or not an IfInst was encountered in the loop nest.
struct LoopNestStateCollector {
  SmallVector<AffineForOp, 4> forOps;
  SmallVector<Operation *, 4> loadOpInsts;
  SmallVector<Operation *, 4> storeOpInsts;
  bool hasNonForRegion = false;

  void collect(Operation *opToWalk) {
    opToWalk->walk([&](Operation *op) {
      if (isa<AffineForOp>(op))
        forOps.push_back(cast<AffineForOp>(op));
      else if (op->getNumRegions() != 0)
        hasNonForRegion = true;
      else if (isa<AffineReadOpInterface>(op))
        loadOpInsts.push_back(op);
      else if (isa<AffineWriteOpInterface>(op))
        storeOpInsts.push_back(op);
    });
  }
};

// MemRefDependenceGraph is a graph data structure where graph nodes are
// top-level operations in a FuncOp which contain load/store ops, and edges
// are memref dependences between the nodes.
// TODO: Add a more flexible dependence graph representation.
// TODO: Add a depth parameter to dependence graph construction.
struct MemRefDependenceGraph {
public:
  // Node represents a node in the graph. A Node is either an entire loop nest
  // rooted at the top level which contains loads/stores, or a top level
  // load/store.
  struct Node {
    // The unique identifier of this node in the graph.
    unsigned id;
    // The top-level statement which is (or contains) a load/store.
    Operation *op;
    // List of load operations.
    SmallVector<Operation *, 4> loads;
    // List of store op insts.
    SmallVector<Operation *, 4> stores;
    Node(unsigned id, Operation *op) : id(id), op(op) {}

    // Returns the load op count for 'memref'.
    unsigned getLoadOpCount(Value memref) {
      unsigned loadOpCount = 0;
      for (auto *loadOpInst : loads) {
        if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
          ++loadOpCount;
      }
      return loadOpCount;
    }

    // Returns the store op count for 'memref'.
    unsigned getStoreOpCount(Value memref) {
      unsigned storeOpCount = 0;
      for (auto *storeOpInst : stores) {
        if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
          ++storeOpCount;
      }
      return storeOpCount;
    }

    // Returns all store ops in 'storeOps' which access 'memref'.
    void getStoreOpsForMemref(Value memref,
                              SmallVectorImpl<Operation *> *storeOps) {
      for (auto *storeOpInst : stores) {
        if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
          storeOps->push_back(storeOpInst);
      }
    }

    // Returns all load ops in 'loadOps' which access 'memref'.
    void getLoadOpsForMemref(Value memref,
                             SmallVectorImpl<Operation *> *loadOps) {
      for (auto *loadOpInst : loads) {
        if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
          loadOps->push_back(loadOpInst);
      }
    }

    // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
    // has at least one load and store operation.
    void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
      llvm::SmallDenseSet<Value, 2> loadMemrefs;
      for (auto *loadOpInst : loads) {
        loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
      }
      for (auto *storeOpInst : stores) {
        auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
        if (loadMemrefs.count(memref) > 0)
          loadAndStoreMemrefSet->insert(memref);
      }
    }
  };

  // Edge represents a data dependence between nodes in the graph.
  struct Edge {
    // The id of the node at the other end of the edge.
    // If this edge is stored in Edge = Node.inEdges[i], then
    // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
    // If this edge is stored in Edge = Node.outEdges[i], then
    // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
    unsigned id;
    // The SSA value on which this edge represents a dependence.
    // If the value is a memref, then the dependence is between graph nodes
    // which contain accesses to the same memref 'value'. If the value is a
    // non-memref value, then the dependence is between a graph node which
    // defines an SSA value and another graph node which uses the SSA value
    // (e.g. a constant operation defining a value which is used inside a loop
    // nest).
    Value value;
  };

  // Map from node id to Node.
  DenseMap<unsigned, Node> nodes;
  // Map from node id to list of input edges.
  DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
  // Map from node id to list of output edges.
  DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
  // Map from memref to a count on the dependence edges associated with that
  // memref.
  DenseMap<Value, unsigned> memrefEdgeCount;
  // The next unique identifier to use for newly created graph nodes.
  unsigned nextNodeId = 0;

  MemRefDependenceGraph() {}

  // Initializes the dependence graph based on operations in 'f'.
  // Returns true on success, false otherwise.
  bool init(FuncOp f);

  // Returns the graph node for 'id'.
  Node *getNode(unsigned id) {
    auto it = nodes.find(id);
    assert(it != nodes.end());
    return &it->second;
  }

  // Returns the graph node for 'forOp'.
  Node *getForOpNode(AffineForOp forOp) {
    for (auto &idAndNode : nodes)
      if (idAndNode.second.op == forOp.getOperation())
        return &idAndNode.second;
    return nullptr;
  }

  // Adds a node with 'op' to the graph and returns its unique identifier.
  unsigned addNode(Operation *op) {
    Node node(nextNodeId++, op);
    nodes.insert({node.id, node});
    return node.id;
  }

  // Remove node 'id' (and its associated edges) from graph.
  void removeNode(unsigned id) {
    // Remove each edge in 'inEdges[id]'.
    if (inEdges.count(id) > 0) {
      SmallVector<Edge, 2> oldInEdges = inEdges[id];
      for (auto &inEdge : oldInEdges) {
        removeEdge(inEdge.id, id, inEdge.value);
      }
    }
    // Remove each edge in 'outEdges[id]'.
    if (outEdges.count(id) > 0) {
      SmallVector<Edge, 2> oldOutEdges = outEdges[id];
      for (auto &outEdge : oldOutEdges) {
        removeEdge(id, outEdge.id, outEdge.value);
      }
    }
    // Erase remaining node state.
    inEdges.erase(id);
    outEdges.erase(id);
    nodes.erase(id);
  }

  // Returns true if node 'id' writes to any memref which escapes (or is an
  // argument to) the function/block. Returns false otherwise.
  bool writesToLiveInOrEscapingMemrefs(unsigned id) {
    Node *node = getNode(id);
    for (auto *storeOpInst : node->stores) {
      auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
      auto *op = memref.getDefiningOp();
      // Return true if 'memref' is a block argument.
      if (!op)
        return true;
      // Return true if any use of 'memref' escapes the function.
      for (auto *user : memref.getUsers())
        if (!isMemRefDereferencingOp(*user))
          return true;
    }
    return false;
  }

  // Returns the unique AffineWriteOpInterface in `node` that meets all the
  // following:
  //   *) store is the only one that writes to a function-local memref live out
  //      of `node`,
  //   *) store is not the source of a self-dependence on `node`.
  // Otherwise, returns a null AffineWriteOpInterface.
  AffineWriteOpInterface getUniqueOutgoingStore(Node *node) {
    AffineWriteOpInterface uniqueStore;

    // Return null if `node` doesn't have any outgoing edges.
    auto outEdgeIt = outEdges.find(node->id);
    if (outEdgeIt == outEdges.end())
      return nullptr;

    const auto &nodeOutEdges = outEdgeIt->second;
    for (auto *op : node->stores) {
      auto storeOp = cast<AffineWriteOpInterface>(op);
      auto memref = storeOp.getMemRef();
      // Skip this store if there are no dependences on its memref. This means
      // that store either:
      // *) writes to a memref that is only read within the same loop nest
      //    (self-dependence edges are not represented in graph at the moment),
      // *) writes to a function live out memref (function parameter), or
      // *) is dead.
      if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) {
            return (edge.value != memref);
          }))
        continue;

      if (uniqueStore)
        // Found multiple stores to function-local live-out memrefs.
        return nullptr;
      // Found first store to function-local live-out memref.
      uniqueStore = storeOp;
    }

    return uniqueStore;
  }

  // Returns true if node 'id' can be removed from the graph. Returns false
  // otherwise. A node can be removed from the graph iff the following
  // conditions are met:
  // *) The node does not write to any memref which escapes (or is a
  //    function/block argument).
  // *) The node has no successors in the dependence graph.
  bool canRemoveNode(unsigned id) {
    if (writesToLiveInOrEscapingMemrefs(id))
      return false;
    Node *node = getNode(id);
    for (auto *storeOpInst : node->stores) {
      // Return false if there exist out edges from 'id' on 'memref'.
      auto storeMemref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
      if (getOutEdgeCount(id, storeMemref) > 0)
        return false;
    }
    return true;
  }

  // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
  // is for 'value' if non-null, or for any value otherwise. Returns false
  // otherwise.
  bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
    if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
      return false;
    }
    bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
      return edge.id == dstId && (!value || edge.value == value);
    });
    bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
      return edge.id == srcId && (!value || edge.value == value);
    });
    return hasOutEdge && hasInEdge;
  }

  // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
  void addEdge(unsigned srcId, unsigned dstId, Value value) {
    if (!hasEdge(srcId, dstId, value)) {
      outEdges[srcId].push_back({dstId, value});
      inEdges[dstId].push_back({srcId, value});
      if (value.getType().isa<MemRefType>())
        memrefEdgeCount[value]++;
    }
  }

  // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
  void removeEdge(unsigned srcId, unsigned dstId, Value value) {
    assert(inEdges.count(dstId) > 0);
    assert(outEdges.count(srcId) > 0);
    if (value.getType().isa<MemRefType>()) {
      assert(memrefEdgeCount.count(value) > 0);
      memrefEdgeCount[value]--;
    }
    // Remove 'srcId' from 'inEdges[dstId]'.
    for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
      if ((*it).id == srcId && (*it).value == value) {
        inEdges[dstId].erase(it);
        break;
      }
    }
    // Remove 'dstId' from 'outEdges[srcId]'.
    for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
      if ((*it).id == dstId && (*it).value == value) {
        outEdges[srcId].erase(it);
        break;
      }
    }
  }

  // Returns true if there is a path in the dependence graph from node 'srcId'
  // to node 'dstId'. Returns false otherwise.
  bool hasDependencePath(unsigned srcId, unsigned dstId) {
    // Worklist state is: <node-id, next-output-edge-index-to-visit>
    SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
    worklist.push_back({srcId, 0});
    // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
    while (!worklist.empty()) {
      auto &idAndIndex = worklist.back();
      // Return true if we have reached 'dstId'.
      if (idAndIndex.first == dstId)
        return true;
      // Pop and continue if node has no out edges, or if all out edges have
      // already been visited.
      if (outEdges.count(idAndIndex.first) == 0 ||
          idAndIndex.second == outEdges[idAndIndex.first].size()) {
        worklist.pop_back();
        continue;
      }
      // Get graph edge to traverse.
      Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
      // Increment next output edge index for 'idAndIndex'.
      ++idAndIndex.second;
      // Add node at 'edge.id' to worklist.
      worklist.push_back({edge.id, 0});
    }
    return false;
  }

  // Returns the input edge count for node 'id' and 'memref' from src nodes
  // which access 'memref' with a store operation.
  unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
    unsigned inEdgeCount = 0;
    if (inEdges.count(id) > 0)
      for (auto &inEdge : inEdges[id])
        if (inEdge.value == memref) {
          Node *srcNode = getNode(inEdge.id);
          // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
          if (srcNode->getStoreOpCount(memref) > 0)
            ++inEdgeCount;
        }
    return inEdgeCount;
  }

  // Returns the output edge count for node 'id' and 'memref' (if non-null),
  // otherwise returns the total output edge count from node 'id'.
  unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
    unsigned outEdgeCount = 0;
    if (outEdges.count(id) > 0)
      for (auto &outEdge : outEdges[id])
        if (!memref || outEdge.value == memref)
          ++outEdgeCount;
    return outEdgeCount;
  }

  // Computes and returns an insertion point operation, before which the
  // the fused <srcId, dstId> loop nest can be inserted while preserving
  // dependences. Returns nullptr if no such insertion point is found.
  Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
    if (outEdges.count(srcId) == 0)
      return getNode(dstId)->op;

    // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
    SmallPtrSet<Operation *, 2> srcDepInsts;
    for (auto &outEdge : outEdges[srcId])
      if (outEdge.id != dstId)
        srcDepInsts.insert(getNode(outEdge.id)->op);

    // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
    SmallPtrSet<Operation *, 2> dstDepInsts;
    for (auto &inEdge : inEdges[dstId])
      if (inEdge.id != srcId)
        dstDepInsts.insert(getNode(inEdge.id)->op);

    Operation *srcNodeInst = getNode(srcId)->op;
    Operation *dstNodeInst = getNode(dstId)->op;

    // Computing insertion point:
    // *) Walk all operation positions in Block operation list in the
    //    range (src, dst). For each operation 'op' visited in this search:
    //   *) Store in 'firstSrcDepPos' the first position where 'op' has a
    //      dependence edge from 'srcNode'.
    //   *) Store in 'lastDstDepPost' the last position where 'op' has a
    //      dependence edge to 'dstNode'.
    // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
    //    operation insertion point (or return null pointer if no such
    //    insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
    SmallVector<Operation *, 2> depInsts;
    Optional<unsigned> firstSrcDepPos;
    Optional<unsigned> lastDstDepPos;
    unsigned pos = 0;
    for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
         it != Block::iterator(dstNodeInst); ++it) {
      Operation *op = &(*it);
      if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
        firstSrcDepPos = pos;
      if (dstDepInsts.count(op) > 0)
        lastDstDepPos = pos;
      depInsts.push_back(op);
      ++pos;
    }

    if (firstSrcDepPos.hasValue()) {
      if (lastDstDepPos.hasValue()) {
        if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
          // No valid insertion point exists which preserves dependences.
          return nullptr;
        }
      }
      // Return the insertion point at 'firstSrcDepPos'.
      return depInsts[firstSrcDepPos.getValue()];
    }
    // No dependence targets in range (or only dst deps in range), return
    // 'dstNodInst' insertion point.
    return dstNodeInst;
  }

  // Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef'
  // has been replaced in node at 'dstId' by a private memref depending
  // on the value of 'createPrivateMemRef'.
  void updateEdges(unsigned srcId, unsigned dstId, Value oldMemRef,
                   bool createPrivateMemRef) {
    // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
    if (inEdges.count(srcId) > 0) {
      SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
      for (auto &inEdge : oldInEdges) {
        // Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'.
        if (inEdge.value != oldMemRef)
          addEdge(inEdge.id, dstId, inEdge.value);
      }
    }
    // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
    if (outEdges.count(srcId) > 0) {
      SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
      for (auto &outEdge : oldOutEdges) {
        // Remove any out edges from 'srcId' to 'dstId' across memrefs.
        if (outEdge.id == dstId)
          removeEdge(srcId, outEdge.id, outEdge.value);
      }
    }
    // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
    // replaced by a private memref). These edges could come from nodes
    // other than 'srcId' which were removed in the previous step.
    if (inEdges.count(dstId) > 0 && createPrivateMemRef) {
      SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
      for (auto &inEdge : oldInEdges)
        if (inEdge.value == oldMemRef)
          removeEdge(inEdge.id, dstId, inEdge.value);
    }
  }

  // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
  // of sibling node 'sidId' into node 'dstId'.
  void updateEdges(unsigned sibId, unsigned dstId) {
    // For each edge in 'inEdges[sibId]':
    // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
    // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
    if (inEdges.count(sibId) > 0) {
      SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
      for (auto &inEdge : oldInEdges) {
        addEdge(inEdge.id, dstId, inEdge.value);
        removeEdge(inEdge.id, sibId, inEdge.value);
      }
    }

    // For each edge in 'outEdges[sibId]' to node 'id'
    // *) Add new edge from 'dstId' to 'outEdge.id'.
    // *) Remove edge from 'sibId' to 'outEdge.id'.
    if (outEdges.count(sibId) > 0) {
      SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
      for (auto &outEdge : oldOutEdges) {
        addEdge(dstId, outEdge.id, outEdge.value);
        removeEdge(sibId, outEdge.id, outEdge.value);
      }
    }
  }

  // Adds ops in 'loads' and 'stores' to node at 'id'.
  void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
                 const SmallVectorImpl<Operation *> &stores) {
    Node *node = getNode(id);
    for (auto *loadOpInst : loads)
      node->loads.push_back(loadOpInst);
    for (auto *storeOpInst : stores)
      node->stores.push_back(storeOpInst);
  }

  void clearNodeLoadAndStores(unsigned id) {
    Node *node = getNode(id);
    node->loads.clear();
    node->stores.clear();
  }

  // Calls 'callback' for each input edge incident to node 'id' which carries a
  // memref dependence.
  void forEachMemRefInputEdge(unsigned id,
                              const std::function<void(Edge)> &callback) {
    if (inEdges.count(id) > 0)
      forEachMemRefEdge(inEdges[id], callback);
  }

  // Calls 'callback' for each output edge from node 'id' which carries a
  // memref dependence.
  void forEachMemRefOutputEdge(unsigned id,
                               const std::function<void(Edge)> &callback) {
    if (outEdges.count(id) > 0)
      forEachMemRefEdge(outEdges[id], callback);
  }

  // Calls 'callback' for each edge in 'edges' which carries a memref
  // dependence.
  void forEachMemRefEdge(ArrayRef<Edge> edges,
                         const std::function<void(Edge)> &callback) {
    for (const auto &edge : edges) {
      // Skip if 'edge' is not a memref dependence edge.
      if (!edge.value.getType().isa<MemRefType>())
        continue;
      assert(nodes.count(edge.id) > 0);
      // Skip if 'edge.id' is not a loop nest.
      if (!isa<AffineForOp>(getNode(edge.id)->op))
        continue;
      // Visit current input edge 'edge'.
      callback(edge);
    }
  }

  void print(raw_ostream &os) const {
    os << "\nMemRefDependenceGraph\n";
    os << "\nNodes:\n";
    for (const auto &idAndNode : nodes) {
      os << "Node: " << idAndNode.first << "\n";
      auto it = inEdges.find(idAndNode.first);
      if (it != inEdges.end()) {
        for (const auto &e : it->second)
          os << "  InEdge: " << e.id << " " << e.value << "\n";
      }
      it = outEdges.find(idAndNode.first);
      if (it != outEdges.end()) {
        for (const auto &e : it->second)
          os << "  OutEdge: " << e.id << " " << e.value << "\n";
      }
    }
  }
  void dump() const { print(llvm::errs()); }
};

} // end anonymous namespace

// Initializes the data dependence graph by walking operations in 'f'.
// Assigns each node in the graph a node id based on program order in 'f'.
// TODO: Add support for taking a Block arg to construct the
// dependence graph at a different depth.
bool MemRefDependenceGraph::init(FuncOp f) {
  DenseMap<Value, SetVector<unsigned>> memrefAccesses;

  // TODO: support multi-block functions.
  if (!llvm::hasSingleElement(f))
    return false;

  DenseMap<Operation *, unsigned> forToNodeMap;
  for (auto &op : f.front()) {
    if (auto forOp = dyn_cast<AffineForOp>(op)) {
      // Create graph node 'id' to represent top-level 'forOp' and record
      // all loads and store accesses it contains.
      LoopNestStateCollector collector;
      collector.collect(&op);
      // Return false if a non 'affine.for' region was found (not currently
      // supported).
      if (collector.hasNonForRegion)
        return false;
      Node node(nextNodeId++, &op);
      for (auto *opInst : collector.loadOpInsts) {
        node.loads.push_back(opInst);
        auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
        memrefAccesses[memref].insert(node.id);
      }
      for (auto *opInst : collector.storeOpInsts) {
        node.stores.push_back(opInst);
        auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
        memrefAccesses[memref].insert(node.id);
      }
      forToNodeMap[&op] = node.id;
      nodes.insert({node.id, node});
    } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
      // Create graph node for top-level load op.
      Node node(nextNodeId++, &op);
      node.loads.push_back(&op);
      auto memref = cast<AffineReadOpInterface>(op).getMemRef();
      memrefAccesses[memref].insert(node.id);
      nodes.insert({node.id, node});
    } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
      // Create graph node for top-level store op.
      Node node(nextNodeId++, &op);
      node.stores.push_back(&op);
      auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
      memrefAccesses[memref].insert(node.id);
      nodes.insert({node.id, node});
    } else if (op.getNumRegions() != 0) {
      // Return false if another region is found (not currently supported).
      return false;
    } else if (op.getNumResults() > 0 && !op.use_empty()) {
      // Create graph node for top-level producer of SSA values, which
      // could be used by loop nest nodes.
      Node node(nextNodeId++, &op);
      nodes.insert({node.id, node});
    }
  }

  // Add dependence edges between nodes which produce SSA values and their
  // users.
  for (auto &idAndNode : nodes) {
    const Node &node = idAndNode.second;
    if (!node.loads.empty() || !node.stores.empty())
      continue;
    auto *opInst = node.op;
    for (auto value : opInst->getResults()) {
      for (auto *user : value.getUsers()) {
        SmallVector<AffineForOp, 4> loops;
        getLoopIVs(*user, &loops);
        if (loops.empty())
          continue;
        assert(forToNodeMap.count(loops[0].getOperation()) > 0);
        unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
        addEdge(node.id, userLoopNestId, value);
      }
    }
  }

  // Walk memref access lists and add graph edges between dependent nodes.
  for (auto &memrefAndList : memrefAccesses) {
    unsigned n = memrefAndList.second.size();
    for (unsigned i = 0; i < n; ++i) {
      unsigned srcId = memrefAndList.second[i];
      bool srcHasStore =
          getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
      for (unsigned j = i + 1; j < n; ++j) {
        unsigned dstId = memrefAndList.second[j];
        bool dstHasStore =
            getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
        if (srcHasStore || dstHasStore)
          addEdge(srcId, dstId, memrefAndList.first);
      }
    }
  }
  return true;
}

// Removes load operations from 'srcLoads' which operate on 'memref', and
// adds them to 'dstLoads'.
static void moveLoadsAccessingMemrefTo(Value memref,
                                       SmallVectorImpl<Operation *> *srcLoads,
                                       SmallVectorImpl<Operation *> *dstLoads) {
  dstLoads->clear();
  SmallVector<Operation *, 4> srcLoadsToKeep;
  for (auto *load : *srcLoads) {
    if (cast<AffineReadOpInterface>(load).getMemRef() == memref)
      dstLoads->push_back(load);
    else
      srcLoadsToKeep.push_back(load);
  }
  srcLoads->swap(srcLoadsToKeep);
}

// Returns the innermost common loop depth for the set of operations in 'ops'.
static unsigned getInnermostCommonLoopDepth(ArrayRef<Operation *> ops) {
  unsigned numOps = ops.size();
  assert(numOps > 0);

  std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
  unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
  for (unsigned i = 0; i < numOps; ++i) {
    getLoopIVs(*ops[i], &loops[i]);
    loopDepthLimit =
        std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
  }

  unsigned loopDepth = 0;
  for (unsigned d = 0; d < loopDepthLimit; ++d) {
    unsigned i;
    for (i = 1; i < numOps; ++i) {
      if (loops[i - 1][d] != loops[i][d])
        break;
    }
    if (i != numOps)
      break;
    ++loopDepth;
  }
  return loopDepth;
}

// Returns the maximum loop depth at which no dependences between 'loadOpInsts'
// and 'storeOpInsts' are satisfied.
static unsigned getMaxLoopDepth(ArrayRef<Operation *> loadOpInsts,
                                ArrayRef<Operation *> storeOpInsts) {
  // Merge loads and stores into the same array.
  SmallVector<Operation *, 2> ops(loadOpInsts.begin(), loadOpInsts.end());
  ops.append(storeOpInsts.begin(), storeOpInsts.end());

  // Compute the innermost common loop depth for loads and stores.
  unsigned loopDepth = getInnermostCommonLoopDepth(ops);

  // Return common loop depth for loads if there are no store ops.
  if (storeOpInsts.empty())
    return loopDepth;

  // Check dependences on all pairs of ops in 'ops' and store the minimum
  // loop depth at which a dependence is satisfied.
  for (unsigned i = 0, e = ops.size(); i < e; ++i) {
    auto *srcOpInst = ops[i];
    MemRefAccess srcAccess(srcOpInst);
    for (unsigned j = 0; j < e; ++j) {
      auto *dstOpInst = ops[j];
      MemRefAccess dstAccess(dstOpInst);

      unsigned numCommonLoops =
          getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
      for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
        FlatAffineConstraints dependenceConstraints;
        // TODO: Cache dependence analysis results, check cache here.
        DependenceResult result = checkMemrefAccessDependence(
            srcAccess, dstAccess, d, &dependenceConstraints,
            /*dependenceComponents=*/nullptr);
        if (hasDependence(result)) {
          // Store minimum loop depth and break because we want the min 'd' at
          // which there is a dependence.
          loopDepth = std::min(loopDepth, d - 1);
          break;
        }
      }
    }
  }
  return loopDepth;
}

// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
// This can increase the loop depth at which we can fuse a slice, since we are
// pushing loop carried dependence to a greater depth in the loop nest.
static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
  assert(isa<AffineForOp>(node->op));
  AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
  node->op = newRootForOp.getOperation();
}

//  TODO: improve/complete this when we have target data.
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
  auto elementType = memRefType.getElementType();

  unsigned sizeInBits;
  if (elementType.isIntOrFloat()) {
    sizeInBits = elementType.getIntOrFloatBitWidth();
  } else {
    auto vectorType = elementType.cast<VectorType>();
    sizeInBits =
        vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
  }
  return llvm::divideCeil(sizeInBits, 8);
}

// Creates and returns a private (single-user) memref for fused loop rooted
// at 'forOp', with (potentially reduced) memref size based on the
// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
// TODO: consider refactoring the common code from generateDma and
// this one.
static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
                                 unsigned dstLoopDepth,
                                 Optional<unsigned> fastMemorySpace,
                                 uint64_t localBufSizeThreshold) {
  auto *forInst = forOp.getOperation();

  // Create builder to insert alloc op just before 'forOp'.
  OpBuilder b(forInst);
  // Builder to create constants at the top level.
  OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
  // Create new memref type based on slice bounds.
  auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
  auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
  unsigned rank = oldMemRefType.getRank();

  // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
  MemRefRegion region(srcStoreOpInst->getLoc());
  bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
  (void)validRegion;
  assert(validRegion && "unexpected memref region failure");
  SmallVector<int64_t, 4> newShape;
  std::vector<SmallVector<int64_t, 4>> lbs;
  SmallVector<int64_t, 8> lbDivisors;
  lbs.reserve(rank);
  // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
  // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
  Optional<int64_t> numElements =
      region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
  assert(numElements.hasValue() &&
         "non-constant number of elts in local buffer");

  const FlatAffineConstraints *cst = region.getConstraints();
  // 'outerIVs' holds the values that this memory region is symbolic/parametric
  // on; this would correspond to loop IVs surrounding the level at which the
  // slice is being materialized.
  SmallVector<Value, 8> outerIVs;
  cst->getIdValues(rank, cst->getNumIds(), &outerIVs);

  // Build 'rank' AffineExprs from MemRefRegion 'lbs'
  SmallVector<AffineExpr, 4> offsets;
  offsets.reserve(rank);
  for (unsigned d = 0; d < rank; ++d) {
    assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");

    AffineExpr offset = top.getAffineConstantExpr(0);
    for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
      offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
    }
    assert(lbDivisors[d] > 0);
    offset =
        (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
    offsets.push_back(offset);
  }

  // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
  // by 'srcStoreOpInst'.
  uint64_t bufSize =
      getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
  unsigned newMemSpace;
  if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
    newMemSpace = fastMemorySpace.getValue();
  } else {
    newMemSpace = oldMemRefType.getMemorySpace();
  }
  auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
                                       {}, newMemSpace);

  // Create new private memref for fused loop 'forOp'. 'newShape' is always
  // a constant shape.
  // TODO: Create/move alloc ops for private memrefs closer to their
  // consumer loop nests to reduce their live range. Currently they are added
  // at the beginning of the function, because loop nests can be reordered
  // during the fusion pass.
  Value newMemRef = top.create<AllocOp>(forOp.getLoc(), newMemRefType);

  // Build an AffineMap to remap access functions based on lower bound offsets.
  SmallVector<AffineExpr, 4> remapExprs;
  remapExprs.reserve(rank);
  for (unsigned i = 0; i < rank; i++) {
    auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);

    auto remapExpr =
        simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
    remapExprs.push_back(remapExpr);
  }

  auto indexRemap =
      AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());

  // Replace all users of 'oldMemRef' with 'newMemRef'.
  LogicalResult res =
      replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
                               /*extraOperands=*/outerIVs,
                               /*symbolOperands=*/{},
                               /*domInstFilter=*/&*forOp.getBody()->begin());
  assert(succeeded(res) &&
         "replaceAllMemrefUsesWith should always succeed here");
  (void)res;
  return newMemRef;
}

/// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
/// 'dstId'), if there is any non-affine operation accessing 'memref', return
/// false. Otherwise, return true.
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
                                       Value memref,
                                       MemRefDependenceGraph *mdg) {
  auto *srcNode = mdg->getNode(srcId);
  auto *dstNode = mdg->getNode(dstId);
  Value::user_range users = memref.getUsers();
  // For each MemRefDependenceGraph's node that is between 'srcNode' and
  // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
  // non-affine operation in the node accesses the 'memref'.
  for (auto &idAndNode : mdg->nodes) {
    Operation *op = idAndNode.second.op;
    // Take care of operations between 'srcNode' and 'dstNode'.
    if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
      // Walk inside the operation to find any use of the memref.
      // Interrupt the walk if found.
      auto walkResult = op->walk([&](Operation *user) {
        // Skip affine ops.
        if (isMemRefDereferencingOp(*user))
          return WalkResult::advance();
        // Find a non-affine op that uses the memref.
        if (llvm::is_contained(users, user))
          return WalkResult::interrupt();
        return WalkResult::advance();
      });
      if (walkResult.wasInterrupted())
        return true;
    }
  }
  return false;
}

/// Check whether a memref value in node 'srcId' has a non-affine that
/// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
/// 'dstNode').
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
                                       MemRefDependenceGraph *mdg) {
  // Collect memref values in node 'srcId'.
  auto *srcNode = mdg->getNode(srcId);
  llvm::SmallDenseSet<Value, 2> memRefValues;
  srcNode->op->walk([&](Operation *op) {
    // Skip affine ops.
    if (isa<AffineForOp>(op))
      return WalkResult::advance();
    for (Value v : op->getOperands())
      // Collect memref values only.
      if (v.getType().isa<MemRefType>())
        memRefValues.insert(v);
    return WalkResult::advance();
  });
  // Looking for users between node 'srcId' and node 'dstId'.
  for (Value memref : memRefValues)
    if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
      return true;
  return false;
}

// Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId'
// may write to multiple memrefs but it is required that only one of them,
// 'srcLiveOutStoreOp', has output edges.
// Returns true if 'dstNode's read/write region to 'memref' is a super set of
// 'srcNode's write region to 'memref' and 'srcId' has only one output edge.
// TODO: Generalize this to handle more live in/out cases.
static bool
canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId,
                               AffineWriteOpInterface srcLiveOutStoreOp,
                               MemRefDependenceGraph *mdg) {
  assert(srcLiveOutStoreOp && "Expected a valid store op");
  auto *dstNode = mdg->getNode(dstId);
  Value memref = srcLiveOutStoreOp.getMemRef();
  // Return false if 'srcNode' has more than one output edge on 'memref'.
  if (mdg->getOutEdgeCount(srcId, memref) > 1)
    return false;

  // Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'.
  MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc());
  if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) {
    LLVM_DEBUG(llvm::dbgs()
               << "Unable to compute MemRefRegion for source operation\n.");
    return false;
  }
  SmallVector<int64_t, 4> srcShape;
  // Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'.
  // by 'srcStoreOp' at depth 'dstLoopDepth'.
  Optional<int64_t> srcNumElements =
      srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape);
  if (!srcNumElements.hasValue())
    return false;

  // Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'.
  // TODO: Compute 'unionboundingbox' of all write regions (one for
  // each store op in 'dstStoreOps').
  SmallVector<Operation *, 2> dstStoreOps;
  dstNode->getStoreOpsForMemref(memref, &dstStoreOps);
  SmallVector<Operation *, 2> dstLoadOps;
  dstNode->getLoadOpsForMemref(memref, &dstLoadOps);

  auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0];
  MemRefRegion dstRegion(dstOpInst->getLoc());
  if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) {
    LLVM_DEBUG(llvm::dbgs()
               << "Unable to compute MemRefRegion for dest operation\n.");
    return false;
  }
  SmallVector<int64_t, 4> dstShape;
  // Query 'dstRegion' for 'dstShape' and 'dstNumElements'.
  // by 'dstOpInst' at depth 'dstLoopDepth'.
  Optional<int64_t> dstNumElements =
      dstRegion.getConstantBoundingSizeAndShape(&dstShape);
  if (!dstNumElements.hasValue())
    return false;

  // Return false if write region is not a superset of 'srcNodes' write
  // region to 'memref'.
  // TODO: Check the shape and lower bounds here too.
  if (srcNumElements != dstNumElements)
    return false;

  // Return false if 'memref' is used by a non-affine operation that is
  // between node 'srcId' and node 'dstId'.
  if (hasNonAffineUsersOnThePath(srcId, dstId, mdg))
    return false;

  return true;
}

// Checks the profitability of fusing a backwards slice of the loop nest
// surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
// The argument 'srcStoreOpInst' is used to calculate the storage reduction on
// the memref being produced and consumed, which is an input to the cost model.
// For producer-consumer fusion, 'srcStoreOpInst' will be the same as
// 'srcOpInst', as we are slicing w.r.t to that producer.
// For input-reuse fusion, 'srcOpInst' will be the src loop nest LoadOp which
// reads from the same memref as dst loop nest load ops, and 'srcStoreOpInst'
// will be the unique store op in the src node, which will be used to check
// that the write region is the same after input-reuse fusion.
// Returns true if it is profitable to fuse the candidate loop nests. Returns
// false otherwise. `dstLoopDepth` is set to the most profitable depth at which
// to materialize the source loop nest slice.
// The profitability model executes the following steps:
// *) Computes the backward computation slice at 'srcOpInst'. This
//    computation slice of the loop nest surrounding 'srcOpInst' is
//    represented by modified src loop bounds in 'sliceState', which are
//    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
// *) Computes the cost of unfused src/dst loop nests (currently the cost of a
//    loop nest is the total number of dynamic operation instances in the loop
//    nest).
// *) Computes the cost of fusing a slice of the src loop nest into the dst
//    loop nest at various values of dst loop depth, attempting to fuse
//    the largest computation slice at the maximal dst loop depth (closest to
//    the load) to minimize reuse distance and potentially enable subsequent
//    load/store forwarding.
//    NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for
//    the same memref as is written by 'srcOpInst', then the union of slice
//    loop bounds is used to compute the slice and associated slice cost.
//    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
//    nest, at which the src computation slice is inserted/fused.
//    NOTE: We attempt to maximize the dst loop depth, but there are cases
//    where a particular setting for 'dstLoopNest' might fuse an unsliced
//    loop (within the src computation slice) at a depth which results in
//    excessive recomputation (see unit tests for examples).
// *) Compares the total cost of the unfused loop nests to the min cost fused
//    loop nest computed in the previous step, and returns true if the latter
//    is lower.
static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
                               ArrayRef<Operation *> dstLoadOpInsts,
                               ArrayRef<Operation *> dstStoreOpInsts,
                               ComputationSliceState *sliceState,
                               unsigned *dstLoopDepth, bool maximalFusion,
                               double computeToleranceThreshold) {
  LLVM_DEBUG({
    llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
    llvm::dbgs() << ' ' << *srcOpInst << " and destination op(s)\n";
    for (auto dstOpInst : dstLoadOpInsts) {
      llvm::dbgs() << " " << *dstOpInst << "\n";
    };
  });

  // Compute cost of sliced and unsliced src loop nest.
  SmallVector<AffineForOp, 4> srcLoopIVs;
  getLoopIVs(*srcOpInst, &srcLoopIVs);
  unsigned numSrcLoopIVs = srcLoopIVs.size();

  // Walk src loop nest and collect stats.
  LoopNestStats srcLoopNestStats;
  if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
    return false;

  // Compute cost of dst loop nest.
  SmallVector<AffineForOp, 4> dstLoopIVs;
  getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);

  LoopNestStats dstLoopNestStats;
  if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats))
    return false;

  // Compute the maximum loop depth at which we can can insert the src slice
  // and still satisfy dest loop nest dependences, for producer-consumer fusion.
  unsigned maxDstLoopDepth =
      (srcOpInst == srcStoreOpInst)
          ? getMaxLoopDepth(dstLoadOpInsts, dstStoreOpInsts)
          : dstLoopIVs.size();
  if (maxDstLoopDepth == 0) {
    LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxDstLoopDepth == 0 .\n");
    return false;
  }

  // Search for min cost value for 'dstLoopDepth'. At each value of
  // 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice
  // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
  // of these bounds). Next the union slice bounds are used to calculate
  // the cost of the slice and the cost of the slice inserted into the dst
  // loop nest at 'dstLoopDepth'.
  uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
  double maxStorageReduction = 0.0;
  Optional<uint64_t> sliceMemEstimate = None;

  SmallVector<ComputationSliceState, 4> sliceStates;
  sliceStates.resize(maxDstLoopDepth);
  // The best loop depth at which to materialize the slice.
  Optional<unsigned> bestDstLoopDepth = None;

  // Compute op instance count for the src loop nest without iteration slicing.
  uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);

  // Compute src loop nest write region size.
  MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
  if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
    LLVM_DEBUG(llvm::dbgs()
               << "Unable to compute MemRefRegion for source operation\n.");
    return false;
  }

  Optional<int64_t> maybeSrcWriteRegionSizeBytes =
      srcWriteRegion.getRegionSize();
  if (!maybeSrcWriteRegionSizeBytes.hasValue())
    return false;
  int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();

  // Compute op instance count for the src loop nest.
  uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats);

  // Evaluate all depth choices for materializing the slice in the destination
  // loop nest.
  for (unsigned i = maxDstLoopDepth; i >= 1; --i) {
    // Compute the union of slice bounds of all ops in 'dstLoadOpInsts'.
    if (failed(mlir::computeSliceUnion({srcOpInst}, dstLoadOpInsts,
                                       /*loopDepth=*/i,
                                       /*numCommonLoops=*/0,
                                       /*isBackwardSlice=*/true,
                                       &sliceStates[i - 1]))) {
      LLVM_DEBUG(llvm::dbgs()
                 << "computeSliceUnion failed for loopDepth: " << i << "\n");
      continue;
    }

    int64_t fusedLoopNestComputeCost;
    if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0],
                              dstLoopNestStats, &sliceStates[i - 1],
                              &fusedLoopNestComputeCost)) {
      LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
      continue;
    }

    double additionalComputeFraction =
        fusedLoopNestComputeCost /
            (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
        1;

    // Determine what the slice write MemRefRegion would be, if the src loop
    // nest slice 'sliceStates[i - 1]' were to be inserted into the dst loop
    // nest at loop depth 'i'
    MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
    if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
                                        &sliceStates[i - 1]))) {
      LLVM_DEBUG(llvm::dbgs()
                 << "Failed to compute slice write region at loopDepth: " << i
                 << "\n");
      continue;
    }

    Optional<int64_t> maybeSliceWriteRegionSizeBytes =
        sliceWriteRegion.getRegionSize();
    if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
        maybeSliceWriteRegionSizeBytes.getValue() == 0) {
      LLVM_DEBUG(llvm::dbgs()
                 << "Failed to get slice write region size at loopDepth: " << i
                 << "\n");
      continue;
    }
    int64_t sliceWriteRegionSizeBytes =
        maybeSliceWriteRegionSizeBytes.getValue();

    // If we are fusing for reuse, check that write regions remain the same.
    // TODO: Write region check should check sizes and offsets in
    // each dimension, so that we are sure they are covering the same memref
    // region. Also, move this out to a isMemRefRegionSuperSet helper function.
    if (srcOpInst != srcStoreOpInst &&
        sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
      continue;

    double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
                              static_cast<double>(sliceWriteRegionSizeBytes);

    LLVM_DEBUG({
      std::stringstream msg;
      msg << "  evaluating fusion profitability at depth : " << i << "\n"
          << std::fixed << std::setprecision(2)
          << "   additional compute fraction: "
          << 100.0 * additionalComputeFraction << "%\n"
          << "   storage reduction factor: " << storageReduction << "x\n"
          << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
          << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
          << "   slice write region size: " << sliceWriteRegionSizeBytes
          << "\n";
      llvm::dbgs() << msg.str();
    });

    // TODO: This is a placeholder cost model.
    // Among all choices that add an acceptable amount of redundant computation
    // (as per computeToleranceThreshold), we will simply pick the one that
    // reduces the intermediary size the most.
    if ((storageReduction > maxStorageReduction) &&
        (maximalFusion ||
         (additionalComputeFraction < computeToleranceThreshold))) {
      maxStorageReduction = storageReduction;
      bestDstLoopDepth = i;
      minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
      sliceMemEstimate = sliceWriteRegionSizeBytes;
    }
  }

  // A simple cost model: fuse if it reduces the memory footprint. If
  // -maximal-fusion is set, fuse nevertheless.

  if (!maximalFusion && !bestDstLoopDepth.hasValue()) {
    LLVM_DEBUG(
        llvm::dbgs()
        << "All fusion choices involve more than the threshold amount of "
           "redundant computation; NOT fusing.\n");
    return false;
  }

  if (!bestDstLoopDepth.hasValue()) {
    LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
    return false;
  }

  // Set dstLoopDepth based on best values from search.
  *dstLoopDepth = bestDstLoopDepth.getValue();

  LLVM_DEBUG(
      llvm::dbgs() << " LoopFusion fusion stats:"
                   << "\n  best loop depth: " << bestDstLoopDepth
                   << "\n  src loop nest compute cost: " << srcLoopNestCost
                   << "\n  dst loop nest compute cost: " << dstLoopNestCost
                   << "\n  fused loop nest compute cost: "
                   << minFusedLoopNestComputeCost << "\n");

  auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]);
  auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);

  Optional<double> storageReduction = None;

  if (!maximalFusion) {
    if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
      LLVM_DEBUG(
          llvm::dbgs()
          << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
      return false;
    }

    auto srcMemSizeVal = srcMemSize.getValue();
    auto dstMemSizeVal = dstMemSize.getValue();

    assert(sliceMemEstimate.hasValue() && "expected value");
    auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();

    LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
                            << "   dst mem: " << dstMemSizeVal << "\n"
                            << "   fused mem: " << fusedMem << "\n"
                            << "   slice mem: " << sliceMemEstimate << "\n");

    if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
      LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
      return false;
    }
    storageReduction =
        100.0 *
        (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
  }

  double additionalComputeFraction =
      100.0 * (minFusedLoopNestComputeCost /
                   (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
               1);
  (void)additionalComputeFraction;
  LLVM_DEBUG({
    std::stringstream msg;
    msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
        << std::setprecision(2) << additionalComputeFraction
        << "% redundant computation and a ";
    msg << (storageReduction.hasValue()
                ? std::to_string(storageReduction.getValue())
                : "<unknown>");
    msg << "% storage reduction.\n";
    llvm::dbgs() << msg.str();
  });

  // Update return parameter 'sliceState' with 'bestSliceState'.
  ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1];
  sliceState->lbs = bestSliceState->lbs;
  sliceState->ubs = bestSliceState->ubs;
  sliceState->lbOperands = bestSliceState->lbOperands;
  sliceState->ubOperands = bestSliceState->ubOperands;

  // Canonicalize slice bound affine maps.
  for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
    if (sliceState->lbs[i] != AffineMap()) {
      canonicalizeMapAndOperands(&sliceState->lbs[i],
                                 &sliceState->lbOperands[i]);
    }
    if (sliceState->ubs[i] != AffineMap()) {
      canonicalizeMapAndOperands(&sliceState->ubs[i],
                                 &sliceState->ubOperands[i]);
    }
  }
  return true;
}

namespace {

// GreedyFusion greedily fuses loop nests which have a producer/consumer or
// input-reuse relationship on a memref, with the goal of improving locality.
//
// The steps of the producer-consumer fusion algorithm are as follows:
//
// *) A worklist is initialized with node ids from the dependence graph.
// *) For each node id in the worklist:
//   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
//      candidate destination AffineForOp into which fusion will be attempted.
//   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
//   *) For each LoadOp in 'dstLoadOps' do:
//      *) Look up dependent loop nests which have a single store op to the same
//         memref.
//      *) Check if dependences would be violated by the fusion.
//      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
//         bounds to be functions of 'dstLoopNest' IVs and symbols.
//      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
//         at a loop depth determined by the cost model in 'isFusionProfitable'.
//      *) Add the newly fused load/store operations to the state,
//         and also add newly fused load ops to 'dstLoopOps' to be considered
//         as fusion dst load ops in another iteration.
//      *) Remove old src loop nest and its associated state.
//
// The steps of the input-reuse fusion algorithm are as follows:
//
// *) Initialize 'worklist' with node ids from the dependence graph.
// *) For each 'dstNode' in the worklist:
//   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
//      loads from the same memref, but which has no dependence paths to/from.
//   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
//      bounds to be functions of 'dstLoopNest' IVs and symbols.
//   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
//      at a loop depth determined by the cost model in 'isFusionProfitable'.
//      This function also checks that the memref write region of 'sibLoopNest',
//      is preserved in the fused loop nest.
//   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
//
// Given a graph where top-level operations are vertices in the set 'V' and
// edges in the set 'E' are dependences between vertices, this algorithm
// takes O(V) time for initialization, and has runtime O(V + E).
//
// This greedy algorithm is not 'maximal' due to the current restriction of
// fusing along single producer consumer edges, but there is a TODO: to fix
// this.
//
// TODO: Experiment with other fusion policies.
struct GreedyFusion {
public:
  // The data dependence graph to traverse during fusion.
  MemRefDependenceGraph *mdg;
  // Worklist of graph nodes visited during the fusion pass.
  SmallVector<unsigned, 8> worklist;
  // Set of graph nodes which are present on the worklist.
  llvm::SmallDenseSet<unsigned, 16> worklistSet;
  // Parameter for local buffer size threshold.
  unsigned localBufSizeThreshold;
  // Parameter for fast memory space.
  Optional<unsigned> fastMemorySpace;
  // If true, ignore any additional (redundant) computation tolerance threshold
  // that would have prevented fusion.
  bool maximalFusion;
  // The amount of additional computation that is tolerated while fusing
  // pair-wise as a fraction of the total computation.
  double computeToleranceThreshold;

  using Node = MemRefDependenceGraph::Node;

  GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
               Optional<unsigned> fastMemorySpace, bool maximalFusion,
               double computeToleranceThreshold)
      : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
        fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
        computeToleranceThreshold(computeToleranceThreshold) {}

  // Initializes 'worklist' with nodes from 'mdg'
  void init() {
    // TODO: Add a priority queue for prioritizing nodes by different
    // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
    worklist.clear();
    worklistSet.clear();
    for (auto &idAndNode : mdg->nodes) {
      const Node &node = idAndNode.second;
      worklist.push_back(node.id);
      worklistSet.insert(node.id);
    }
  }

  // Run the GreedyFusion pass.
  // *) First pass through the nodes fuses single-use producer nodes into their
  //    unique consumer.
  // *) Second pass fuses sibling nodes which share no dependence edges.
  // *) Third pass fuses any remaining producer nodes into their users.
  void run() {
    // TODO: Run this repeatedly until a fixed-point is reached.
    fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
    fuseSiblingNodes();
    fuseProducerConsumerNodes(
        /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
    eraseUnusedMemRefAllocations();
  }

  void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
    init();
    while (!worklist.empty()) {
      unsigned dstId = worklist.back();
      worklist.pop_back();
      worklistSet.erase(dstId);

      // Skip if this node was removed (fused into another node).
      if (mdg->nodes.count(dstId) == 0)
        continue;
      // Get 'dstNode' into which to attempt fusion.
      auto *dstNode = mdg->getNode(dstId);
      // Skip if 'dstNode' is not a loop nest.
      if (!isa<AffineForOp>(dstNode->op))
        continue;
      // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
      // while preserving relative order. This can increase the maximum loop
      // depth at which we can fuse a slice of a producer loop nest into a
      // consumer loop nest.
      sinkSequentialLoops(dstNode);

      SmallVector<Operation *, 4> loads = dstNode->loads;
      SmallVector<Operation *, 4> dstLoadOpInsts;
      DenseSet<Value> visitedMemrefs;
      while (!loads.empty()) {
        // Get memref of load on top of the stack.
        auto memref = cast<AffineReadOpInterface>(loads.back()).getMemRef();
        if (visitedMemrefs.count(memref) > 0)
          continue;
        visitedMemrefs.insert(memref);
        // Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'.
        moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts);
        // Skip if no input edges along which to fuse.
        if (mdg->inEdges.count(dstId) == 0)
          continue;
        // Iterate through in-edges for 'dstId' and src node id for any
        // edges on 'memref'.
        SmallVector<unsigned, 2> srcNodeIds;
        for (auto &srcEdge : mdg->inEdges[dstId]) {
          // Skip 'srcEdge' if not for 'memref'.
          if (srcEdge.value != memref)
            continue;
          srcNodeIds.push_back(srcEdge.id);
        }
        for (unsigned srcId : srcNodeIds) {
          // Skip if this node was removed (fused into another node).
          if (mdg->nodes.count(srcId) == 0)
            continue;
          // Get 'srcNode' from which to attempt fusion into 'dstNode'.
          auto *srcNode = mdg->getNode(srcId);
          // Skip if 'srcNode' is not a loop nest.
          if (!isa<AffineForOp>(srcNode->op))
            continue;
          // Skip if 'srcNode' has more than one live-out store to a
          // function-local memref.
          // TODO: Support more generic multi-output src loop nests
          // fusion.
          auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode);
          if (!srcStoreOp) {
            // Get the src store op at the deepest loop depth.
            // We will use 'LoopFusionUtils::canFuseLoops' to check fusion
            // feasibility for loops with multiple stores.
            unsigned maxLoopDepth = 0;
            for (auto *op : srcNode->stores) {
              auto storeOp = cast<AffineWriteOpInterface>(op);
              if (storeOp.getMemRef() != memref) {
                srcStoreOp = nullptr;
                break;
              }
              unsigned loopDepth = getNestingDepth(storeOp);
              if (loopDepth > maxLoopDepth) {
                maxLoopDepth = loopDepth;
                srcStoreOp = storeOp;
              }
            }
            if (!srcStoreOp)
              continue;
          }

          // Unique outgoing store found must write to 'memref' since 'memref'
          // is the one that established the producer-consumer relationship
          // between 'srcNode' and 'dstNode'.
          assert(srcStoreOp.getMemRef() == memref &&
                 "Found store to unexpected memref");

          // Skip if 'srcNode' writes to any live in or escaping memrefs,
          // and cannot be fused.
          bool writesToLiveInOrOut =
              mdg->writesToLiveInOrEscapingMemrefs(srcNode->id);
          if (writesToLiveInOrOut &&
              !canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg))
            continue;

          // Don't create a private memref if 'writesToLiveInOrOut'.
          bool createPrivateMemref = !writesToLiveInOrOut;
          // Don't create a private memref if 'srcNode' has in edges on
          // 'memref', or if 'dstNode' has out edges on 'memref'.
          if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 ||
              mdg->getOutEdgeCount(dstNode->id, memref) > 0) {
            createPrivateMemref = false;
          }

          // Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'.
          if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount)
            continue;

          // Compute an operation list insertion point for the fused loop
          // nest which preserves dependences.
          Operation *insertPointInst =
              mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
          if (insertPointInst == nullptr)
            continue;

          // Compute the innermost common loop depth for dstNode loads/stores.
          SmallVector<Operation *, 2> dstOps(dstNode->loads.begin(),
                                             dstNode->loads.end());
          dstOps.append(dstNode->stores.begin(), dstNode->stores.end());
          unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstOps);
          // Check the feasibility of fusing src loop nest into dst loop nest
          // at loop depths in range [1, dstLoopDepthTest].
          // TODO: Use slice union computation and union of memref
          // read/write regions to cost model and fusion.
          bool canFuse = false;
          for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
            ComputationSliceState sliceUnion;
            FusionResult result = mlir::canFuseLoops(
                cast<AffineForOp>(srcNode->op), cast<AffineForOp>(dstNode->op),
                /*dstLoopDepth=*/i, &sliceUnion);
            if (result.value == FusionResult::Success)
              canFuse = true;
          }

          // Skip if fusion is not feasible at all loop depths.
          if (!canFuse)
            continue;

          // Gather 'dstNode' store ops to 'memref'.
          SmallVector<Operation *, 2> dstStoreOpInsts;
          for (auto *storeOpInst : dstNode->stores)
            if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() == memref)
              dstStoreOpInsts.push_back(storeOpInst);

          unsigned bestDstLoopDepth;
          mlir::ComputationSliceState sliceState;
          // Check if fusion would be profitable.
          if (!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts,
                                  dstStoreOpInsts, &sliceState,
                                  &bestDstLoopDepth, maximalFusion,
                                  computeToleranceThreshold))
            continue;

          // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
          auto sliceLoopNest = mlir::insertBackwardComputationSlice(
              srcStoreOp, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
          if (sliceLoopNest) {
            LLVM_DEBUG(llvm::dbgs() << "\tslice loop nest:\n"
                                    << *sliceLoopNest.getOperation() << "\n");
            // Move 'dstAffineForOp' before 'insertPointInst' if needed.
            auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
            if (insertPointInst != dstAffineForOp.getOperation()) {
              dstAffineForOp.getOperation()->moveBefore(insertPointInst);
            }
            // Update edges between 'srcNode' and 'dstNode'.
            mdg->updateEdges(srcNode->id, dstNode->id, memref,
                             createPrivateMemref);

            // Collect slice loop stats.
            LoopNestStateCollector sliceCollector;
            sliceCollector.collect(sliceLoopNest.getOperation());
            // Promote single iteration slice loops to single IV value.
            for (auto forOp : sliceCollector.forOps) {
              promoteIfSingleIteration(forOp);
            }
            if (createPrivateMemref) {
              // Create private memref for 'memref' in 'dstAffineForOp'.
              SmallVector<Operation *, 4> storesForMemref;
              for (auto *storeOpInst : sliceCollector.storeOpInsts) {
                if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() ==
                    memref)
                  storesForMemref.push_back(storeOpInst);
              }
              // TODO: Use union of memref write regions to compute
              // private memref footprint.
              auto newMemRef = createPrivateMemRef(
                  dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
                  fastMemorySpace, localBufSizeThreshold);
              visitedMemrefs.insert(newMemRef);
              // Create new node in dependence graph for 'newMemRef' alloc op.
              unsigned newMemRefNodeId =
                  mdg->addNode(newMemRef.getDefiningOp());
              // Add edge from 'newMemRef' node to dstNode.
              mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
            }

            // Collect dst loop stats after memref privatization transformation.
            LoopNestStateCollector dstLoopCollector;
            dstLoopCollector.collect(dstAffineForOp.getOperation());

            // Add new load ops to current Node load op list 'loads' to
            // continue fusing based on new operands.
            for (auto *loadOpInst : dstLoopCollector.loadOpInsts) {
              // NOTE: Change 'loads' to a hash set in case efficiency is an
              // issue. We still use a vector since it's expected to be small.
              if (!llvm::is_contained(loads, loadOpInst))
                loads.push_back(loadOpInst);
            }
            // Clear visited memrefs after fusion so that previously visited src
            // nodes are considered for fusion again in the context of the new
            // fused node.
            // TODO: This shouldn't be necessary if we visited candidates in the
            // dependence graph in post-order or once we fully support
            // multi-store producers. Currently, in a multi-store producer
            // scenario such as A->B, A->C, B->C, we fail to fuse A+B due to the
            // multiple outgoing edges. However, after fusing B+C, A has a
            // single outgoing edge and can be fused if we revisit it in the
            // context of the new fused B+C node.
            visitedMemrefs.clear();

            // Clear and add back loads and stores.
            mdg->clearNodeLoadAndStores(dstNode->id);
            mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
                           dstLoopCollector.storeOpInsts);
            // Remove old src loop nest if it no longer has outgoing dependence
            // edges, and if it does not write to a memref which escapes the
            // function. If 'writesToLiveInOrOut' is true, then 'srcNode' has
            // been fused into 'dstNode' and write region of 'dstNode' covers
            // the write region of 'srcNode', and 'srcNode' has no other users
            // so it is safe to remove.
            if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) {
              mdg->removeNode(srcNode->id);
              srcNode->op->erase();
            } else {
              // Add remaining users of 'oldMemRef' back on the worklist (if not
              // already there), as its replacement with a local/private memref
              // has reduced dependences on 'oldMemRef' which may have created
              // new fusion opportunities.
              if (mdg->outEdges.count(srcNode->id) > 0) {
                SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges =
                    mdg->outEdges[srcNode->id];
                for (auto &outEdge : oldOutEdges) {
                  if (outEdge.value == memref &&
                      worklistSet.count(outEdge.id) == 0) {
                    worklist.push_back(outEdge.id);
                    worklistSet.insert(outEdge.id);
                  }
                }
              }
            }
          }
        }
      }
    }
  }

  // Visits each node in the graph, and for each node, attempts to fuse it with
  // its sibling nodes (nodes which share a parent, but no dependence edges).
  void fuseSiblingNodes() {
    init();
    while (!worklist.empty()) {
      unsigned dstId = worklist.back();
      worklist.pop_back();
      worklistSet.erase(dstId);

      // Skip if this node was removed (fused into another node).
      if (mdg->nodes.count(dstId) == 0)
        continue;
      // Get 'dstNode' into which to attempt fusion.
      auto *dstNode = mdg->getNode(dstId);
      // Skip if 'dstNode' is not a loop nest.
      if (!isa<AffineForOp>(dstNode->op))
        continue;
      // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
      fuseWithSiblingNodes(dstNode);
    }
  }

  // Attempt to fuse 'dstNode' with sibling nodes in the graph.
  void fuseWithSiblingNodes(Node *dstNode) {
    DenseSet<unsigned> visitedSibNodeIds;
    std::pair<unsigned, Value> idAndMemref;
    while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
      unsigned sibId = idAndMemref.first;
      Value memref = idAndMemref.second;
      // TODO: Check that 'sibStoreOpInst' post-dominates all other
      // stores to the same memref in 'sibNode' loop nest.
      auto *sibNode = mdg->getNode(sibId);
      // Compute an operation list insertion point for the fused loop
      // nest which preserves dependences.
      assert(sibNode->op->getBlock() == dstNode->op->getBlock());
      Operation *insertPointInst =
          sibNode->op->isBeforeInBlock(dstNode->op)
              ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
              : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
      if (insertPointInst == nullptr)
        continue;

      // Check if fusion would be profitable and at what depth.

      // Get unique 'sibNode' load op to 'memref'.
      SmallVector<Operation *, 2> sibLoadOpInsts;
      sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
      // Currently findSiblingNodeToFuse searches for siblings with one load.
      assert(sibLoadOpInsts.size() == 1);
      Operation *sibLoadOpInst = sibLoadOpInsts[0];
      assert(!sibNode->stores.empty());
      // TODO: Choose the store which postdominates all other stores.
      auto *sibStoreOpInst = sibNode->stores.back();

      // Gather 'dstNode' load ops to 'memref'.
      SmallVector<Operation *, 2> dstLoadOpInsts;
      dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);

      // Gather 'dstNode' store ops to 'memref'.
      SmallVector<Operation *, 2> dstStoreOpInsts;
      dstNode->getStoreOpsForMemref(memref, &dstStoreOpInsts);

      unsigned bestDstLoopDepth;
      mlir::ComputationSliceState sliceState;

      // Check if fusion would be profitable.
      if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts,
                              dstStoreOpInsts, &sliceState, &bestDstLoopDepth,
                              maximalFusion, computeToleranceThreshold))
        continue;

      // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
      auto sliceLoopNest = mlir::insertBackwardComputationSlice(
          sibLoadOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
      if (sliceLoopNest != nullptr) {
        auto dstForInst = cast<AffineForOp>(dstNode->op);
        // Update operation position of fused loop nest (if needed).
        if (insertPointInst != dstForInst.getOperation()) {
          dstForInst.getOperation()->moveBefore(insertPointInst);
        }
        // Update data dependence graph state post fusion.
        updateStateAfterSiblingFusion(sliceLoopNest, sibNode, dstNode);
      }
    }
  }

  // Searches function argument uses and the graph from 'dstNode' looking for a
  // fusion candidate sibling node which shares no dependences with 'dstNode'
  // but which loads from the same memref. Returns true and sets
  // 'idAndMemrefToFuse' on success. Returns false otherwise.
  bool findSiblingNodeToFuse(Node *dstNode,
                             DenseSet<unsigned> *visitedSibNodeIds,
                             std::pair<unsigned, Value> *idAndMemrefToFuse) {
    // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
    // on 'memref'.
    auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
      // Skip if 'outEdge' is not a read-after-write dependence.
      // TODO: Remove restrict to single load op restriction.
      if (sibNode->getLoadOpCount(memref) != 1)
        return false;
      // Skip if there exists a path of dependent edges between
      // 'sibNode' and 'dstNode'.
      if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
          mdg->hasDependencePath(dstNode->id, sibNode->id))
        return false;
      // Skip sib node if it loads to (and stores from) the same memref on
      // which it also has an input dependence edge.
      DenseSet<Value> loadAndStoreMemrefSet;
      sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
      if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
            return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
          }))
        return false;

      // Check that all stores are to the same memref.
      DenseSet<Value> storeMemrefs;
      for (auto *storeOpInst : sibNode->stores) {
        storeMemrefs.insert(
            cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
      }
      if (storeMemrefs.size() != 1)
        return false;

      // Skip if a memref value in one node is used by a non-affine memref
      // access that lies between 'dstNode' and 'sibNode'.
      if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
          hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
        return false;
      return true;
    };

    // Search for siblings which load the same memref function argument.
    auto fn = dstNode->op->getParentOfType<FuncOp>();
    for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
      for (auto *user : fn.getArgument(i).getUsers()) {
        if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
          // Gather loops surrounding 'use'.
          SmallVector<AffineForOp, 4> loops;
          getLoopIVs(*user, &loops);
          // Skip 'use' if it is not within a loop nest.
          if (loops.empty())
            continue;
          Node *sibNode = mdg->getForOpNode(loops[0]);
          assert(sibNode != nullptr);
          // Skip 'use' if it not a sibling to 'dstNode'.
          if (sibNode->id == dstNode->id)
            continue;
          // Skip 'use' if it has been visited.
          if (visitedSibNodeIds->count(sibNode->id) > 0)
            continue;
          // Skip 'use' if it does not load from the same memref as 'dstNode'.
          auto memref = loadOp.getMemRef();
          if (dstNode->getLoadOpCount(memref) == 0)
            continue;
          // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
          if (canFuseWithSibNode(sibNode, memref)) {
            visitedSibNodeIds->insert(sibNode->id);
            idAndMemrefToFuse->first = sibNode->id;
            idAndMemrefToFuse->second = memref;
            return true;
          }
        }
      }
    }

    // Search for siblings by following edges through an intermediate src node.
    // Collect candidate 'dstNode' input edges in 'inEdges'.
    SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
    mdg->forEachMemRefInputEdge(
        dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
          // Add 'inEdge' if it is a read-after-write dependence.
          if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
              mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
            inEdges.push_back(inEdge);
        });

    // Search for sibling nodes to fuse by visiting output edges from each input
    // edge in 'inEdges'.
    for (auto &inEdge : inEdges) {
      // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
      SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
      mdg->forEachMemRefOutputEdge(
          inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
            unsigned sibNodeId = outEdge.id;
            if (visitedSibNodeIds->count(sibNodeId) > 0)
              return;
            // Skip output edge if not a sibling using the same memref.
            if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
              return;
            auto *sibNode = mdg->getNode(sibNodeId);
            if (!isa<AffineForOp>(sibNode->op))
              return;
            // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
            if (canFuseWithSibNode(sibNode, outEdge.value)) {
              // Add candidate 'outEdge' to sibling node.
              outEdges.push_back(outEdge);
            }
          });

      // Add first candidate if any were returned.
      if (!outEdges.empty()) {
        visitedSibNodeIds->insert(outEdges[0].id);
        idAndMemrefToFuse->first = outEdges[0].id;
        idAndMemrefToFuse->second = outEdges[0].value;
        return true;
      }
    }
    return false;
  }

  void updateStateAfterSiblingFusion(AffineForOp sliceLoopNest, Node *sibNode,
                                     Node *dstNode) {
    // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
    mdg->updateEdges(sibNode->id, dstNode->id);

    // Collect slice loop stats.
    LoopNestStateCollector sliceCollector;
    sliceCollector.collect(sliceLoopNest.getOperation());
    // Promote single iteration slice loops to single IV value.
    for (auto forOp : sliceCollector.forOps) {
      promoteIfSingleIteration(forOp);
    }

    // Collect dst loop stats after memref privatization transformation.
    auto dstForInst = cast<AffineForOp>(dstNode->op);
    LoopNestStateCollector dstLoopCollector;
    dstLoopCollector.collect(dstForInst.getOperation());
    // Clear and add back loads and stores
    mdg->clearNodeLoadAndStores(dstNode->id);
    mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
                   dstLoopCollector.storeOpInsts);
    // Remove old sibling loop nest if it no longer has outgoing dependence
    // edges, and it does not write to a memref which escapes the
    // function.
    if (mdg->getOutEdgeCount(sibNode->id) == 0) {
      mdg->removeNode(sibNode->id);
      sibNode->op->erase();
    }
  }

  // Clean up any allocs with no users.
  void eraseUnusedMemRefAllocations() {
    for (auto &pair : mdg->memrefEdgeCount) {
      if (pair.second > 0)
        continue;
      auto memref = pair.first;
      // Skip if there exist other uses (return operation or function calls).
      if (!memref.use_empty())
        continue;
      // Use list expected to match the dep graph info.
      auto *op = memref.getDefiningOp();
      if (isa_and_nonnull<AllocOp>(op))
        op->erase();
    }
  }
};

} // end anonymous namespace

void LoopFusion::runOnFunction() {
  MemRefDependenceGraph g;
  if (!g.init(getFunction()))
    return;

  Optional<unsigned> fastMemorySpaceOpt;
  if (fastMemorySpace.hasValue())
    fastMemorySpaceOpt = fastMemorySpace;
  unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
  GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
                      maximalFusion, computeToleranceThreshold);
  fusion.run();
}