LoopFusion.cpp
81.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopFusionUtils.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iomanip>
#include <sstream>
#define DEBUG_TYPE "affine-loop-fusion"
using llvm::SetVector;
using namespace mlir;
namespace {
/// Loop fusion pass. This pass currently supports a greedy fusion policy,
/// which fuses loop nests with single-writer/single-reader memref dependences
/// with the goal of improving locality.
// TODO: Support fusion of source loop nests which write to multiple
// memrefs, where each memref can have multiple users (if profitable).
// TODO: Extend this pass to check for fusion preventing dependences,
// and add support for more general loop fusion algorithms.
struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
LoopFusion() = default;
LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
bool maximalFusion) {
this->fastMemorySpace = fastMemorySpace;
this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
this->maximalFusion = maximalFusion;
}
void runOnFunction() override;
};
} // end anonymous namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLoopFusionPass(unsigned fastMemorySpace,
uint64_t localBufSizeThreshold, bool maximalFusion) {
return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
maximalFusion);
}
// TODO: Replace when this is modeled through side-effects/op traits
static bool isMemRefDereferencingOp(Operation &op) {
return isa<AffineReadOpInterface, AffineWriteOpInterface, AffineDmaStartOp,
AffineDmaWaitOp>(op);
}
namespace {
// LoopNestStateCollector walks loop nests and collects load and store
// operations, and whether or not an IfInst was encountered in the loop nest.
struct LoopNestStateCollector {
SmallVector<AffineForOp, 4> forOps;
SmallVector<Operation *, 4> loadOpInsts;
SmallVector<Operation *, 4> storeOpInsts;
bool hasNonForRegion = false;
void collect(Operation *opToWalk) {
opToWalk->walk([&](Operation *op) {
if (isa<AffineForOp>(op))
forOps.push_back(cast<AffineForOp>(op));
else if (op->getNumRegions() != 0)
hasNonForRegion = true;
else if (isa<AffineReadOpInterface>(op))
loadOpInsts.push_back(op);
else if (isa<AffineWriteOpInterface>(op))
storeOpInsts.push_back(op);
});
}
};
// MemRefDependenceGraph is a graph data structure where graph nodes are
// top-level operations in a FuncOp which contain load/store ops, and edges
// are memref dependences between the nodes.
// TODO: Add a more flexible dependence graph representation.
// TODO: Add a depth parameter to dependence graph construction.
struct MemRefDependenceGraph {
public:
// Node represents a node in the graph. A Node is either an entire loop nest
// rooted at the top level which contains loads/stores, or a top level
// load/store.
struct Node {
// The unique identifier of this node in the graph.
unsigned id;
// The top-level statement which is (or contains) a load/store.
Operation *op;
// List of load operations.
SmallVector<Operation *, 4> loads;
// List of store op insts.
SmallVector<Operation *, 4> stores;
Node(unsigned id, Operation *op) : id(id), op(op) {}
// Returns the load op count for 'memref'.
unsigned getLoadOpCount(Value memref) {
unsigned loadOpCount = 0;
for (auto *loadOpInst : loads) {
if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
++loadOpCount;
}
return loadOpCount;
}
// Returns the store op count for 'memref'.
unsigned getStoreOpCount(Value memref) {
unsigned storeOpCount = 0;
for (auto *storeOpInst : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
++storeOpCount;
}
return storeOpCount;
}
// Returns all store ops in 'storeOps' which access 'memref'.
void getStoreOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *storeOps) {
for (auto *storeOpInst : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
storeOps->push_back(storeOpInst);
}
}
// Returns all load ops in 'loadOps' which access 'memref'.
void getLoadOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *loadOps) {
for (auto *loadOpInst : loads) {
if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
loadOps->push_back(loadOpInst);
}
}
// Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
// has at least one load and store operation.
void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
llvm::SmallDenseSet<Value, 2> loadMemrefs;
for (auto *loadOpInst : loads) {
loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
}
for (auto *storeOpInst : stores) {
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
if (loadMemrefs.count(memref) > 0)
loadAndStoreMemrefSet->insert(memref);
}
}
};
// Edge represents a data dependence between nodes in the graph.
struct Edge {
// The id of the node at the other end of the edge.
// If this edge is stored in Edge = Node.inEdges[i], then
// 'Node.inEdges[i].id' is the identifier of the source node of the edge.
// If this edge is stored in Edge = Node.outEdges[i], then
// 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
unsigned id;
// The SSA value on which this edge represents a dependence.
// If the value is a memref, then the dependence is between graph nodes
// which contain accesses to the same memref 'value'. If the value is a
// non-memref value, then the dependence is between a graph node which
// defines an SSA value and another graph node which uses the SSA value
// (e.g. a constant operation defining a value which is used inside a loop
// nest).
Value value;
};
// Map from node id to Node.
DenseMap<unsigned, Node> nodes;
// Map from node id to list of input edges.
DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
// Map from node id to list of output edges.
DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
// Map from memref to a count on the dependence edges associated with that
// memref.
DenseMap<Value, unsigned> memrefEdgeCount;
// The next unique identifier to use for newly created graph nodes.
unsigned nextNodeId = 0;
MemRefDependenceGraph() {}
// Initializes the dependence graph based on operations in 'f'.
// Returns true on success, false otherwise.
bool init(FuncOp f);
// Returns the graph node for 'id'.
Node *getNode(unsigned id) {
auto it = nodes.find(id);
assert(it != nodes.end());
return &it->second;
}
// Returns the graph node for 'forOp'.
Node *getForOpNode(AffineForOp forOp) {
for (auto &idAndNode : nodes)
if (idAndNode.second.op == forOp.getOperation())
return &idAndNode.second;
return nullptr;
}
// Adds a node with 'op' to the graph and returns its unique identifier.
unsigned addNode(Operation *op) {
Node node(nextNodeId++, op);
nodes.insert({node.id, node});
return node.id;
}
// Remove node 'id' (and its associated edges) from graph.
void removeNode(unsigned id) {
// Remove each edge in 'inEdges[id]'.
if (inEdges.count(id) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[id];
for (auto &inEdge : oldInEdges) {
removeEdge(inEdge.id, id, inEdge.value);
}
}
// Remove each edge in 'outEdges[id]'.
if (outEdges.count(id) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[id];
for (auto &outEdge : oldOutEdges) {
removeEdge(id, outEdge.id, outEdge.value);
}
}
// Erase remaining node state.
inEdges.erase(id);
outEdges.erase(id);
nodes.erase(id);
}
// Returns true if node 'id' writes to any memref which escapes (or is an
// argument to) the function/block. Returns false otherwise.
bool writesToLiveInOrEscapingMemrefs(unsigned id) {
Node *node = getNode(id);
for (auto *storeOpInst : node->stores) {
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
auto *op = memref.getDefiningOp();
// Return true if 'memref' is a block argument.
if (!op)
return true;
// Return true if any use of 'memref' escapes the function.
for (auto *user : memref.getUsers())
if (!isMemRefDereferencingOp(*user))
return true;
}
return false;
}
// Returns the unique AffineWriteOpInterface in `node` that meets all the
// following:
// *) store is the only one that writes to a function-local memref live out
// of `node`,
// *) store is not the source of a self-dependence on `node`.
// Otherwise, returns a null AffineWriteOpInterface.
AffineWriteOpInterface getUniqueOutgoingStore(Node *node) {
AffineWriteOpInterface uniqueStore;
// Return null if `node` doesn't have any outgoing edges.
auto outEdgeIt = outEdges.find(node->id);
if (outEdgeIt == outEdges.end())
return nullptr;
const auto &nodeOutEdges = outEdgeIt->second;
for (auto *op : node->stores) {
auto storeOp = cast<AffineWriteOpInterface>(op);
auto memref = storeOp.getMemRef();
// Skip this store if there are no dependences on its memref. This means
// that store either:
// *) writes to a memref that is only read within the same loop nest
// (self-dependence edges are not represented in graph at the moment),
// *) writes to a function live out memref (function parameter), or
// *) is dead.
if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) {
return (edge.value != memref);
}))
continue;
if (uniqueStore)
// Found multiple stores to function-local live-out memrefs.
return nullptr;
// Found first store to function-local live-out memref.
uniqueStore = storeOp;
}
return uniqueStore;
}
// Returns true if node 'id' can be removed from the graph. Returns false
// otherwise. A node can be removed from the graph iff the following
// conditions are met:
// *) The node does not write to any memref which escapes (or is a
// function/block argument).
// *) The node has no successors in the dependence graph.
bool canRemoveNode(unsigned id) {
if (writesToLiveInOrEscapingMemrefs(id))
return false;
Node *node = getNode(id);
for (auto *storeOpInst : node->stores) {
// Return false if there exist out edges from 'id' on 'memref'.
auto storeMemref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
if (getOutEdgeCount(id, storeMemref) > 0)
return false;
}
return true;
}
// Returns true iff there is an edge from node 'srcId' to node 'dstId' which
// is for 'value' if non-null, or for any value otherwise. Returns false
// otherwise.
bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
return false;
}
bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
return edge.id == dstId && (!value || edge.value == value);
});
bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
return edge.id == srcId && (!value || edge.value == value);
});
return hasOutEdge && hasInEdge;
}
// Adds an edge from node 'srcId' to node 'dstId' for 'value'.
void addEdge(unsigned srcId, unsigned dstId, Value value) {
if (!hasEdge(srcId, dstId, value)) {
outEdges[srcId].push_back({dstId, value});
inEdges[dstId].push_back({srcId, value});
if (value.getType().isa<MemRefType>())
memrefEdgeCount[value]++;
}
}
// Removes an edge from node 'srcId' to node 'dstId' for 'value'.
void removeEdge(unsigned srcId, unsigned dstId, Value value) {
assert(inEdges.count(dstId) > 0);
assert(outEdges.count(srcId) > 0);
if (value.getType().isa<MemRefType>()) {
assert(memrefEdgeCount.count(value) > 0);
memrefEdgeCount[value]--;
}
// Remove 'srcId' from 'inEdges[dstId]'.
for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
if ((*it).id == srcId && (*it).value == value) {
inEdges[dstId].erase(it);
break;
}
}
// Remove 'dstId' from 'outEdges[srcId]'.
for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
if ((*it).id == dstId && (*it).value == value) {
outEdges[srcId].erase(it);
break;
}
}
}
// Returns true if there is a path in the dependence graph from node 'srcId'
// to node 'dstId'. Returns false otherwise.
bool hasDependencePath(unsigned srcId, unsigned dstId) {
// Worklist state is: <node-id, next-output-edge-index-to-visit>
SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
worklist.push_back({srcId, 0});
// Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
while (!worklist.empty()) {
auto &idAndIndex = worklist.back();
// Return true if we have reached 'dstId'.
if (idAndIndex.first == dstId)
return true;
// Pop and continue if node has no out edges, or if all out edges have
// already been visited.
if (outEdges.count(idAndIndex.first) == 0 ||
idAndIndex.second == outEdges[idAndIndex.first].size()) {
worklist.pop_back();
continue;
}
// Get graph edge to traverse.
Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
// Increment next output edge index for 'idAndIndex'.
++idAndIndex.second;
// Add node at 'edge.id' to worklist.
worklist.push_back({edge.id, 0});
}
return false;
}
// Returns the input edge count for node 'id' and 'memref' from src nodes
// which access 'memref' with a store operation.
unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
unsigned inEdgeCount = 0;
if (inEdges.count(id) > 0)
for (auto &inEdge : inEdges[id])
if (inEdge.value == memref) {
Node *srcNode = getNode(inEdge.id);
// Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
if (srcNode->getStoreOpCount(memref) > 0)
++inEdgeCount;
}
return inEdgeCount;
}
// Returns the output edge count for node 'id' and 'memref' (if non-null),
// otherwise returns the total output edge count from node 'id'.
unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
unsigned outEdgeCount = 0;
if (outEdges.count(id) > 0)
for (auto &outEdge : outEdges[id])
if (!memref || outEdge.value == memref)
++outEdgeCount;
return outEdgeCount;
}
// Computes and returns an insertion point operation, before which the
// the fused <srcId, dstId> loop nest can be inserted while preserving
// dependences. Returns nullptr if no such insertion point is found.
Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
if (outEdges.count(srcId) == 0)
return getNode(dstId)->op;
// Build set of insts in range (srcId, dstId) which depend on 'srcId'.
SmallPtrSet<Operation *, 2> srcDepInsts;
for (auto &outEdge : outEdges[srcId])
if (outEdge.id != dstId)
srcDepInsts.insert(getNode(outEdge.id)->op);
// Build set of insts in range (srcId, dstId) on which 'dstId' depends.
SmallPtrSet<Operation *, 2> dstDepInsts;
for (auto &inEdge : inEdges[dstId])
if (inEdge.id != srcId)
dstDepInsts.insert(getNode(inEdge.id)->op);
Operation *srcNodeInst = getNode(srcId)->op;
Operation *dstNodeInst = getNode(dstId)->op;
// Computing insertion point:
// *) Walk all operation positions in Block operation list in the
// range (src, dst). For each operation 'op' visited in this search:
// *) Store in 'firstSrcDepPos' the first position where 'op' has a
// dependence edge from 'srcNode'.
// *) Store in 'lastDstDepPost' the last position where 'op' has a
// dependence edge to 'dstNode'.
// *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
// operation insertion point (or return null pointer if no such
// insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
SmallVector<Operation *, 2> depInsts;
Optional<unsigned> firstSrcDepPos;
Optional<unsigned> lastDstDepPos;
unsigned pos = 0;
for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
it != Block::iterator(dstNodeInst); ++it) {
Operation *op = &(*it);
if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
firstSrcDepPos = pos;
if (dstDepInsts.count(op) > 0)
lastDstDepPos = pos;
depInsts.push_back(op);
++pos;
}
if (firstSrcDepPos.hasValue()) {
if (lastDstDepPos.hasValue()) {
if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
// No valid insertion point exists which preserves dependences.
return nullptr;
}
}
// Return the insertion point at 'firstSrcDepPos'.
return depInsts[firstSrcDepPos.getValue()];
}
// No dependence targets in range (or only dst deps in range), return
// 'dstNodInst' insertion point.
return dstNodeInst;
}
// Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef'
// has been replaced in node at 'dstId' by a private memref depending
// on the value of 'createPrivateMemRef'.
void updateEdges(unsigned srcId, unsigned dstId, Value oldMemRef,
bool createPrivateMemRef) {
// For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
if (inEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
for (auto &inEdge : oldInEdges) {
// Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'.
if (inEdge.value != oldMemRef)
addEdge(inEdge.id, dstId, inEdge.value);
}
}
// For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
if (outEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
for (auto &outEdge : oldOutEdges) {
// Remove any out edges from 'srcId' to 'dstId' across memrefs.
if (outEdge.id == dstId)
removeEdge(srcId, outEdge.id, outEdge.value);
}
}
// Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
// replaced by a private memref). These edges could come from nodes
// other than 'srcId' which were removed in the previous step.
if (inEdges.count(dstId) > 0 && createPrivateMemRef) {
SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
for (auto &inEdge : oldInEdges)
if (inEdge.value == oldMemRef)
removeEdge(inEdge.id, dstId, inEdge.value);
}
}
// Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
// of sibling node 'sidId' into node 'dstId'.
void updateEdges(unsigned sibId, unsigned dstId) {
// For each edge in 'inEdges[sibId]':
// *) Add new edge from source node 'inEdge.id' to 'dstNode'.
// *) Remove edge from source node 'inEdge.id' to 'sibNode'.
if (inEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
for (auto &inEdge : oldInEdges) {
addEdge(inEdge.id, dstId, inEdge.value);
removeEdge(inEdge.id, sibId, inEdge.value);
}
}
// For each edge in 'outEdges[sibId]' to node 'id'
// *) Add new edge from 'dstId' to 'outEdge.id'.
// *) Remove edge from 'sibId' to 'outEdge.id'.
if (outEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
for (auto &outEdge : oldOutEdges) {
addEdge(dstId, outEdge.id, outEdge.value);
removeEdge(sibId, outEdge.id, outEdge.value);
}
}
}
// Adds ops in 'loads' and 'stores' to node at 'id'.
void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
const SmallVectorImpl<Operation *> &stores) {
Node *node = getNode(id);
for (auto *loadOpInst : loads)
node->loads.push_back(loadOpInst);
for (auto *storeOpInst : stores)
node->stores.push_back(storeOpInst);
}
void clearNodeLoadAndStores(unsigned id) {
Node *node = getNode(id);
node->loads.clear();
node->stores.clear();
}
// Calls 'callback' for each input edge incident to node 'id' which carries a
// memref dependence.
void forEachMemRefInputEdge(unsigned id,
const std::function<void(Edge)> &callback) {
if (inEdges.count(id) > 0)
forEachMemRefEdge(inEdges[id], callback);
}
// Calls 'callback' for each output edge from node 'id' which carries a
// memref dependence.
void forEachMemRefOutputEdge(unsigned id,
const std::function<void(Edge)> &callback) {
if (outEdges.count(id) > 0)
forEachMemRefEdge(outEdges[id], callback);
}
// Calls 'callback' for each edge in 'edges' which carries a memref
// dependence.
void forEachMemRefEdge(ArrayRef<Edge> edges,
const std::function<void(Edge)> &callback) {
for (const auto &edge : edges) {
// Skip if 'edge' is not a memref dependence edge.
if (!edge.value.getType().isa<MemRefType>())
continue;
assert(nodes.count(edge.id) > 0);
// Skip if 'edge.id' is not a loop nest.
if (!isa<AffineForOp>(getNode(edge.id)->op))
continue;
// Visit current input edge 'edge'.
callback(edge);
}
}
void print(raw_ostream &os) const {
os << "\nMemRefDependenceGraph\n";
os << "\nNodes:\n";
for (const auto &idAndNode : nodes) {
os << "Node: " << idAndNode.first << "\n";
auto it = inEdges.find(idAndNode.first);
if (it != inEdges.end()) {
for (const auto &e : it->second)
os << " InEdge: " << e.id << " " << e.value << "\n";
}
it = outEdges.find(idAndNode.first);
if (it != outEdges.end()) {
for (const auto &e : it->second)
os << " OutEdge: " << e.id << " " << e.value << "\n";
}
}
}
void dump() const { print(llvm::errs()); }
};
} // end anonymous namespace
// Initializes the data dependence graph by walking operations in 'f'.
// Assigns each node in the graph a node id based on program order in 'f'.
// TODO: Add support for taking a Block arg to construct the
// dependence graph at a different depth.
bool MemRefDependenceGraph::init(FuncOp f) {
DenseMap<Value, SetVector<unsigned>> memrefAccesses;
// TODO: support multi-block functions.
if (!llvm::hasSingleElement(f))
return false;
DenseMap<Operation *, unsigned> forToNodeMap;
for (auto &op : f.front()) {
if (auto forOp = dyn_cast<AffineForOp>(op)) {
// Create graph node 'id' to represent top-level 'forOp' and record
// all loads and store accesses it contains.
LoopNestStateCollector collector;
collector.collect(&op);
// Return false if a non 'affine.for' region was found (not currently
// supported).
if (collector.hasNonForRegion)
return false;
Node node(nextNodeId++, &op);
for (auto *opInst : collector.loadOpInsts) {
node.loads.push_back(opInst);
auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
for (auto *opInst : collector.storeOpInsts) {
node.stores.push_back(opInst);
auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
forToNodeMap[&op] = node.id;
nodes.insert({node.id, node});
} else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
// Create graph node for top-level load op.
Node node(nextNodeId++, &op);
node.loads.push_back(&op);
auto memref = cast<AffineReadOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
// Create graph node for top-level store op.
Node node(nextNodeId++, &op);
node.stores.push_back(&op);
auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (op.getNumRegions() != 0) {
// Return false if another region is found (not currently supported).
return false;
} else if (op.getNumResults() > 0 && !op.use_empty()) {
// Create graph node for top-level producer of SSA values, which
// could be used by loop nest nodes.
Node node(nextNodeId++, &op);
nodes.insert({node.id, node});
}
}
// Add dependence edges between nodes which produce SSA values and their
// users.
for (auto &idAndNode : nodes) {
const Node &node = idAndNode.second;
if (!node.loads.empty() || !node.stores.empty())
continue;
auto *opInst = node.op;
for (auto value : opInst->getResults()) {
for (auto *user : value.getUsers()) {
SmallVector<AffineForOp, 4> loops;
getLoopIVs(*user, &loops);
if (loops.empty())
continue;
assert(forToNodeMap.count(loops[0].getOperation()) > 0);
unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
addEdge(node.id, userLoopNestId, value);
}
}
}
// Walk memref access lists and add graph edges between dependent nodes.
for (auto &memrefAndList : memrefAccesses) {
unsigned n = memrefAndList.second.size();
for (unsigned i = 0; i < n; ++i) {
unsigned srcId = memrefAndList.second[i];
bool srcHasStore =
getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
for (unsigned j = i + 1; j < n; ++j) {
unsigned dstId = memrefAndList.second[j];
bool dstHasStore =
getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
if (srcHasStore || dstHasStore)
addEdge(srcId, dstId, memrefAndList.first);
}
}
}
return true;
}
// Removes load operations from 'srcLoads' which operate on 'memref', and
// adds them to 'dstLoads'.
static void moveLoadsAccessingMemrefTo(Value memref,
SmallVectorImpl<Operation *> *srcLoads,
SmallVectorImpl<Operation *> *dstLoads) {
dstLoads->clear();
SmallVector<Operation *, 4> srcLoadsToKeep;
for (auto *load : *srcLoads) {
if (cast<AffineReadOpInterface>(load).getMemRef() == memref)
dstLoads->push_back(load);
else
srcLoadsToKeep.push_back(load);
}
srcLoads->swap(srcLoadsToKeep);
}
// Returns the innermost common loop depth for the set of operations in 'ops'.
static unsigned getInnermostCommonLoopDepth(ArrayRef<Operation *> ops) {
unsigned numOps = ops.size();
assert(numOps > 0);
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
for (unsigned i = 0; i < numOps; ++i) {
getLoopIVs(*ops[i], &loops[i]);
loopDepthLimit =
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
}
unsigned loopDepth = 0;
for (unsigned d = 0; d < loopDepthLimit; ++d) {
unsigned i;
for (i = 1; i < numOps; ++i) {
if (loops[i - 1][d] != loops[i][d])
break;
}
if (i != numOps)
break;
++loopDepth;
}
return loopDepth;
}
// Returns the maximum loop depth at which no dependences between 'loadOpInsts'
// and 'storeOpInsts' are satisfied.
static unsigned getMaxLoopDepth(ArrayRef<Operation *> loadOpInsts,
ArrayRef<Operation *> storeOpInsts) {
// Merge loads and stores into the same array.
SmallVector<Operation *, 2> ops(loadOpInsts.begin(), loadOpInsts.end());
ops.append(storeOpInsts.begin(), storeOpInsts.end());
// Compute the innermost common loop depth for loads and stores.
unsigned loopDepth = getInnermostCommonLoopDepth(ops);
// Return common loop depth for loads if there are no store ops.
if (storeOpInsts.empty())
return loopDepth;
// Check dependences on all pairs of ops in 'ops' and store the minimum
// loop depth at which a dependence is satisfied.
for (unsigned i = 0, e = ops.size(); i < e; ++i) {
auto *srcOpInst = ops[i];
MemRefAccess srcAccess(srcOpInst);
for (unsigned j = 0; j < e; ++j) {
auto *dstOpInst = ops[j];
MemRefAccess dstAccess(dstOpInst);
unsigned numCommonLoops =
getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
FlatAffineConstraints dependenceConstraints;
// TODO: Cache dependence analysis results, check cache here.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
if (hasDependence(result)) {
// Store minimum loop depth and break because we want the min 'd' at
// which there is a dependence.
loopDepth = std::min(loopDepth, d - 1);
break;
}
}
}
}
return loopDepth;
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
// This can increase the loop depth at which we can fuse a slice, since we are
// pushing loop carried dependence to a greater depth in the loop nest.
static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
assert(isa<AffineForOp>(node->op));
AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
node->op = newRootForOp.getOperation();
}
// TODO: improve/complete this when we have target data.
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
auto elementType = memRefType.getElementType();
unsigned sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else {
auto vectorType = elementType.cast<VectorType>();
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
}
return llvm::divideCeil(sizeInBits, 8);
}
// Creates and returns a private (single-user) memref for fused loop rooted
// at 'forOp', with (potentially reduced) memref size based on the
// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
// TODO: consider refactoring the common code from generateDma and
// this one.
static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
unsigned dstLoopDepth,
Optional<unsigned> fastMemorySpace,
uint64_t localBufSizeThreshold) {
auto *forInst = forOp.getOperation();
// Create builder to insert alloc op just before 'forOp'.
OpBuilder b(forInst);
// Builder to create constants at the top level.
OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
// Create new memref type based on slice bounds.
auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
unsigned rank = oldMemRefType.getRank();
// Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
MemRefRegion region(srcStoreOpInst->getLoc());
bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
(void)validRegion;
assert(validRegion && "unexpected memref region failure");
SmallVector<int64_t, 4> newShape;
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
// Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
// by 'srcStoreOpInst' at depth 'dstLoopDepth'.
Optional<int64_t> numElements =
region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
assert(numElements.hasValue() &&
"non-constant number of elts in local buffer");
const FlatAffineConstraints *cst = region.getConstraints();
// 'outerIVs' holds the values that this memory region is symbolic/parametric
// on; this would correspond to loop IVs surrounding the level at which the
// slice is being materialized.
SmallVector<Value, 8> outerIVs;
cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
// Build 'rank' AffineExprs from MemRefRegion 'lbs'
SmallVector<AffineExpr, 4> offsets;
offsets.reserve(rank);
for (unsigned d = 0; d < rank; ++d) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
}
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
offsets.push_back(offset);
}
// Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
// by 'srcStoreOpInst'.
uint64_t bufSize =
getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
unsigned newMemSpace;
if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
newMemSpace = fastMemorySpace.getValue();
} else {
newMemSpace = oldMemRefType.getMemorySpace();
}
auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
{}, newMemSpace);
// Create new private memref for fused loop 'forOp'. 'newShape' is always
// a constant shape.
// TODO: Create/move alloc ops for private memrefs closer to their
// consumer loop nests to reduce their live range. Currently they are added
// at the beginning of the function, because loop nests can be reordered
// during the fusion pass.
Value newMemRef = top.create<AllocOp>(forOp.getLoc(), newMemRefType);
// Build an AffineMap to remap access functions based on lower bound offsets.
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
auto remapExpr =
simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
remapExprs.push_back(remapExpr);
}
auto indexRemap =
AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
// Replace all users of 'oldMemRef' with 'newMemRef'.
LogicalResult res =
replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
/*extraOperands=*/outerIVs,
/*symbolOperands=*/{},
/*domInstFilter=*/&*forOp.getBody()->begin());
assert(succeeded(res) &&
"replaceAllMemrefUsesWith should always succeed here");
(void)res;
return newMemRef;
}
/// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
/// 'dstId'), if there is any non-affine operation accessing 'memref', return
/// false. Otherwise, return true.
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
Value memref,
MemRefDependenceGraph *mdg) {
auto *srcNode = mdg->getNode(srcId);
auto *dstNode = mdg->getNode(dstId);
Value::user_range users = memref.getUsers();
// For each MemRefDependenceGraph's node that is between 'srcNode' and
// 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
// non-affine operation in the node accesses the 'memref'.
for (auto &idAndNode : mdg->nodes) {
Operation *op = idAndNode.second.op;
// Take care of operations between 'srcNode' and 'dstNode'.
if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
// Walk inside the operation to find any use of the memref.
// Interrupt the walk if found.
auto walkResult = op->walk([&](Operation *user) {
// Skip affine ops.
if (isMemRefDereferencingOp(*user))
return WalkResult::advance();
// Find a non-affine op that uses the memref.
if (llvm::is_contained(users, user))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (walkResult.wasInterrupted())
return true;
}
}
return false;
}
/// Check whether a memref value in node 'srcId' has a non-affine that
/// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
/// 'dstNode').
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
MemRefDependenceGraph *mdg) {
// Collect memref values in node 'srcId'.
auto *srcNode = mdg->getNode(srcId);
llvm::SmallDenseSet<Value, 2> memRefValues;
srcNode->op->walk([&](Operation *op) {
// Skip affine ops.
if (isa<AffineForOp>(op))
return WalkResult::advance();
for (Value v : op->getOperands())
// Collect memref values only.
if (v.getType().isa<MemRefType>())
memRefValues.insert(v);
return WalkResult::advance();
});
// Looking for users between node 'srcId' and node 'dstId'.
for (Value memref : memRefValues)
if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
return true;
return false;
}
// Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId'
// may write to multiple memrefs but it is required that only one of them,
// 'srcLiveOutStoreOp', has output edges.
// Returns true if 'dstNode's read/write region to 'memref' is a super set of
// 'srcNode's write region to 'memref' and 'srcId' has only one output edge.
// TODO: Generalize this to handle more live in/out cases.
static bool
canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId,
AffineWriteOpInterface srcLiveOutStoreOp,
MemRefDependenceGraph *mdg) {
assert(srcLiveOutStoreOp && "Expected a valid store op");
auto *dstNode = mdg->getNode(dstId);
Value memref = srcLiveOutStoreOp.getMemRef();
// Return false if 'srcNode' has more than one output edge on 'memref'.
if (mdg->getOutEdgeCount(srcId, memref) > 1)
return false;
// Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'.
MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc());
if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute MemRefRegion for source operation\n.");
return false;
}
SmallVector<int64_t, 4> srcShape;
// Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'.
// by 'srcStoreOp' at depth 'dstLoopDepth'.
Optional<int64_t> srcNumElements =
srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape);
if (!srcNumElements.hasValue())
return false;
// Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'.
// TODO: Compute 'unionboundingbox' of all write regions (one for
// each store op in 'dstStoreOps').
SmallVector<Operation *, 2> dstStoreOps;
dstNode->getStoreOpsForMemref(memref, &dstStoreOps);
SmallVector<Operation *, 2> dstLoadOps;
dstNode->getLoadOpsForMemref(memref, &dstLoadOps);
auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0];
MemRefRegion dstRegion(dstOpInst->getLoc());
if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute MemRefRegion for dest operation\n.");
return false;
}
SmallVector<int64_t, 4> dstShape;
// Query 'dstRegion' for 'dstShape' and 'dstNumElements'.
// by 'dstOpInst' at depth 'dstLoopDepth'.
Optional<int64_t> dstNumElements =
dstRegion.getConstantBoundingSizeAndShape(&dstShape);
if (!dstNumElements.hasValue())
return false;
// Return false if write region is not a superset of 'srcNodes' write
// region to 'memref'.
// TODO: Check the shape and lower bounds here too.
if (srcNumElements != dstNumElements)
return false;
// Return false if 'memref' is used by a non-affine operation that is
// between node 'srcId' and node 'dstId'.
if (hasNonAffineUsersOnThePath(srcId, dstId, mdg))
return false;
return true;
}
// Checks the profitability of fusing a backwards slice of the loop nest
// surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
// The argument 'srcStoreOpInst' is used to calculate the storage reduction on
// the memref being produced and consumed, which is an input to the cost model.
// For producer-consumer fusion, 'srcStoreOpInst' will be the same as
// 'srcOpInst', as we are slicing w.r.t to that producer.
// For input-reuse fusion, 'srcOpInst' will be the src loop nest LoadOp which
// reads from the same memref as dst loop nest load ops, and 'srcStoreOpInst'
// will be the unique store op in the src node, which will be used to check
// that the write region is the same after input-reuse fusion.
// Returns true if it is profitable to fuse the candidate loop nests. Returns
// false otherwise. `dstLoopDepth` is set to the most profitable depth at which
// to materialize the source loop nest slice.
// The profitability model executes the following steps:
// *) Computes the backward computation slice at 'srcOpInst'. This
// computation slice of the loop nest surrounding 'srcOpInst' is
// represented by modified src loop bounds in 'sliceState', which are
// functions of loop IVs in the loop nest surrounding 'srcOpInst'.
// *) Computes the cost of unfused src/dst loop nests (currently the cost of a
// loop nest is the total number of dynamic operation instances in the loop
// nest).
// *) Computes the cost of fusing a slice of the src loop nest into the dst
// loop nest at various values of dst loop depth, attempting to fuse
// the largest computation slice at the maximal dst loop depth (closest to
// the load) to minimize reuse distance and potentially enable subsequent
// load/store forwarding.
// NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for
// the same memref as is written by 'srcOpInst', then the union of slice
// loop bounds is used to compute the slice and associated slice cost.
// NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
// nest, at which the src computation slice is inserted/fused.
// NOTE: We attempt to maximize the dst loop depth, but there are cases
// where a particular setting for 'dstLoopNest' might fuse an unsliced
// loop (within the src computation slice) at a depth which results in
// excessive recomputation (see unit tests for examples).
// *) Compares the total cost of the unfused loop nests to the min cost fused
// loop nest computed in the previous step, and returns true if the latter
// is lower.
static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
ArrayRef<Operation *> dstLoadOpInsts,
ArrayRef<Operation *> dstStoreOpInsts,
ComputationSliceState *sliceState,
unsigned *dstLoopDepth, bool maximalFusion,
double computeToleranceThreshold) {
LLVM_DEBUG({
llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
llvm::dbgs() << ' ' << *srcOpInst << " and destination op(s)\n";
for (auto dstOpInst : dstLoadOpInsts) {
llvm::dbgs() << " " << *dstOpInst << "\n";
};
});
// Compute cost of sliced and unsliced src loop nest.
SmallVector<AffineForOp, 4> srcLoopIVs;
getLoopIVs(*srcOpInst, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Walk src loop nest and collect stats.
LoopNestStats srcLoopNestStats;
if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
return false;
// Compute cost of dst loop nest.
SmallVector<AffineForOp, 4> dstLoopIVs;
getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
LoopNestStats dstLoopNestStats;
if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats))
return false;
// Compute the maximum loop depth at which we can can insert the src slice
// and still satisfy dest loop nest dependences, for producer-consumer fusion.
unsigned maxDstLoopDepth =
(srcOpInst == srcStoreOpInst)
? getMaxLoopDepth(dstLoadOpInsts, dstStoreOpInsts)
: dstLoopIVs.size();
if (maxDstLoopDepth == 0) {
LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxDstLoopDepth == 0 .\n");
return false;
}
// Search for min cost value for 'dstLoopDepth'. At each value of
// 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice
// bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
// of these bounds). Next the union slice bounds are used to calculate
// the cost of the slice and the cost of the slice inserted into the dst
// loop nest at 'dstLoopDepth'.
uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
double maxStorageReduction = 0.0;
Optional<uint64_t> sliceMemEstimate = None;
SmallVector<ComputationSliceState, 4> sliceStates;
sliceStates.resize(maxDstLoopDepth);
// The best loop depth at which to materialize the slice.
Optional<unsigned> bestDstLoopDepth = None;
// Compute op instance count for the src loop nest without iteration slicing.
uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
// Compute src loop nest write region size.
MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute MemRefRegion for source operation\n.");
return false;
}
Optional<int64_t> maybeSrcWriteRegionSizeBytes =
srcWriteRegion.getRegionSize();
if (!maybeSrcWriteRegionSizeBytes.hasValue())
return false;
int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
// Compute op instance count for the src loop nest.
uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats);
// Evaluate all depth choices for materializing the slice in the destination
// loop nest.
for (unsigned i = maxDstLoopDepth; i >= 1; --i) {
// Compute the union of slice bounds of all ops in 'dstLoadOpInsts'.
if (failed(mlir::computeSliceUnion({srcOpInst}, dstLoadOpInsts,
/*loopDepth=*/i,
/*numCommonLoops=*/0,
/*isBackwardSlice=*/true,
&sliceStates[i - 1]))) {
LLVM_DEBUG(llvm::dbgs()
<< "computeSliceUnion failed for loopDepth: " << i << "\n");
continue;
}
int64_t fusedLoopNestComputeCost;
if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0],
dstLoopNestStats, &sliceStates[i - 1],
&fusedLoopNestComputeCost)) {
LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
continue;
}
double additionalComputeFraction =
fusedLoopNestComputeCost /
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1;
// Determine what the slice write MemRefRegion would be, if the src loop
// nest slice 'sliceStates[i - 1]' were to be inserted into the dst loop
// nest at loop depth 'i'
MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
&sliceStates[i - 1]))) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to compute slice write region at loopDepth: " << i
<< "\n");
continue;
}
Optional<int64_t> maybeSliceWriteRegionSizeBytes =
sliceWriteRegion.getRegionSize();
if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
maybeSliceWriteRegionSizeBytes.getValue() == 0) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to get slice write region size at loopDepth: " << i
<< "\n");
continue;
}
int64_t sliceWriteRegionSizeBytes =
maybeSliceWriteRegionSizeBytes.getValue();
// If we are fusing for reuse, check that write regions remain the same.
// TODO: Write region check should check sizes and offsets in
// each dimension, so that we are sure they are covering the same memref
// region. Also, move this out to a isMemRefRegionSuperSet helper function.
if (srcOpInst != srcStoreOpInst &&
sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
continue;
double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
static_cast<double>(sliceWriteRegionSizeBytes);
LLVM_DEBUG({
std::stringstream msg;
msg << " evaluating fusion profitability at depth : " << i << "\n"
<< std::fixed << std::setprecision(2)
<< " additional compute fraction: "
<< 100.0 * additionalComputeFraction << "%\n"
<< " storage reduction factor: " << storageReduction << "x\n"
<< " fused nest cost: " << fusedLoopNestComputeCost << "\n"
<< " src write region size: " << srcWriteRegionSizeBytes << "\n"
<< " slice write region size: " << sliceWriteRegionSizeBytes
<< "\n";
llvm::dbgs() << msg.str();
});
// TODO: This is a placeholder cost model.
// Among all choices that add an acceptable amount of redundant computation
// (as per computeToleranceThreshold), we will simply pick the one that
// reduces the intermediary size the most.
if ((storageReduction > maxStorageReduction) &&
(maximalFusion ||
(additionalComputeFraction < computeToleranceThreshold))) {
maxStorageReduction = storageReduction;
bestDstLoopDepth = i;
minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
sliceMemEstimate = sliceWriteRegionSizeBytes;
}
}
// A simple cost model: fuse if it reduces the memory footprint. If
// -maximal-fusion is set, fuse nevertheless.
if (!maximalFusion && !bestDstLoopDepth.hasValue()) {
LLVM_DEBUG(
llvm::dbgs()
<< "All fusion choices involve more than the threshold amount of "
"redundant computation; NOT fusing.\n");
return false;
}
if (!bestDstLoopDepth.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
return false;
}
// Set dstLoopDepth based on best values from search.
*dstLoopDepth = bestDstLoopDepth.getValue();
LLVM_DEBUG(
llvm::dbgs() << " LoopFusion fusion stats:"
<< "\n best loop depth: " << bestDstLoopDepth
<< "\n src loop nest compute cost: " << srcLoopNestCost
<< "\n dst loop nest compute cost: " << dstLoopNestCost
<< "\n fused loop nest compute cost: "
<< minFusedLoopNestComputeCost << "\n");
auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]);
auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
Optional<double> storageReduction = None;
if (!maximalFusion) {
if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
LLVM_DEBUG(
llvm::dbgs()
<< " fusion memory benefit cannot be evaluated; NOT fusing.\n");
return false;
}
auto srcMemSizeVal = srcMemSize.getValue();
auto dstMemSizeVal = dstMemSize.getValue();
assert(sliceMemEstimate.hasValue() && "expected value");
auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n"
<< " dst mem: " << dstMemSizeVal << "\n"
<< " fused mem: " << fusedMem << "\n"
<< " slice mem: " << sliceMemEstimate << "\n");
if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
return false;
}
storageReduction =
100.0 *
(1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
}
double additionalComputeFraction =
100.0 * (minFusedLoopNestComputeCost /
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1);
(void)additionalComputeFraction;
LLVM_DEBUG({
std::stringstream msg;
msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
<< std::setprecision(2) << additionalComputeFraction
<< "% redundant computation and a ";
msg << (storageReduction.hasValue()
? std::to_string(storageReduction.getValue())
: "<unknown>");
msg << "% storage reduction.\n";
llvm::dbgs() << msg.str();
});
// Update return parameter 'sliceState' with 'bestSliceState'.
ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1];
sliceState->lbs = bestSliceState->lbs;
sliceState->ubs = bestSliceState->ubs;
sliceState->lbOperands = bestSliceState->lbOperands;
sliceState->ubOperands = bestSliceState->ubOperands;
// Canonicalize slice bound affine maps.
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
if (sliceState->lbs[i] != AffineMap()) {
canonicalizeMapAndOperands(&sliceState->lbs[i],
&sliceState->lbOperands[i]);
}
if (sliceState->ubs[i] != AffineMap()) {
canonicalizeMapAndOperands(&sliceState->ubs[i],
&sliceState->ubOperands[i]);
}
}
return true;
}
namespace {
// GreedyFusion greedily fuses loop nests which have a producer/consumer or
// input-reuse relationship on a memref, with the goal of improving locality.
//
// The steps of the producer-consumer fusion algorithm are as follows:
//
// *) A worklist is initialized with node ids from the dependence graph.
// *) For each node id in the worklist:
// *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
// candidate destination AffineForOp into which fusion will be attempted.
// *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
// *) For each LoadOp in 'dstLoadOps' do:
// *) Look up dependent loop nests which have a single store op to the same
// memref.
// *) Check if dependences would be violated by the fusion.
// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
// bounds to be functions of 'dstLoopNest' IVs and symbols.
// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
// at a loop depth determined by the cost model in 'isFusionProfitable'.
// *) Add the newly fused load/store operations to the state,
// and also add newly fused load ops to 'dstLoopOps' to be considered
// as fusion dst load ops in another iteration.
// *) Remove old src loop nest and its associated state.
//
// The steps of the input-reuse fusion algorithm are as follows:
//
// *) Initialize 'worklist' with node ids from the dependence graph.
// *) For each 'dstNode' in the worklist:
// *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
// loads from the same memref, but which has no dependence paths to/from.
// *) Get a computation slice of 'sibLoopNest', which adjusts its loop
// bounds to be functions of 'dstLoopNest' IVs and symbols.
// *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
// at a loop depth determined by the cost model in 'isFusionProfitable'.
// This function also checks that the memref write region of 'sibLoopNest',
// is preserved in the fused loop nest.
// *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
//
// Given a graph where top-level operations are vertices in the set 'V' and
// edges in the set 'E' are dependences between vertices, this algorithm
// takes O(V) time for initialization, and has runtime O(V + E).
//
// This greedy algorithm is not 'maximal' due to the current restriction of
// fusing along single producer consumer edges, but there is a TODO: to fix
// this.
//
// TODO: Experiment with other fusion policies.
struct GreedyFusion {
public:
// The data dependence graph to traverse during fusion.
MemRefDependenceGraph *mdg;
// Worklist of graph nodes visited during the fusion pass.
SmallVector<unsigned, 8> worklist;
// Set of graph nodes which are present on the worklist.
llvm::SmallDenseSet<unsigned, 16> worklistSet;
// Parameter for local buffer size threshold.
unsigned localBufSizeThreshold;
// Parameter for fast memory space.
Optional<unsigned> fastMemorySpace;
// If true, ignore any additional (redundant) computation tolerance threshold
// that would have prevented fusion.
bool maximalFusion;
// The amount of additional computation that is tolerated while fusing
// pair-wise as a fraction of the total computation.
double computeToleranceThreshold;
using Node = MemRefDependenceGraph::Node;
GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
Optional<unsigned> fastMemorySpace, bool maximalFusion,
double computeToleranceThreshold)
: mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
computeToleranceThreshold(computeToleranceThreshold) {}
// Initializes 'worklist' with nodes from 'mdg'
void init() {
// TODO: Add a priority queue for prioritizing nodes by different
// metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
worklist.clear();
worklistSet.clear();
for (auto &idAndNode : mdg->nodes) {
const Node &node = idAndNode.second;
worklist.push_back(node.id);
worklistSet.insert(node.id);
}
}
// Run the GreedyFusion pass.
// *) First pass through the nodes fuses single-use producer nodes into their
// unique consumer.
// *) Second pass fuses sibling nodes which share no dependence edges.
// *) Third pass fuses any remaining producer nodes into their users.
void run() {
// TODO: Run this repeatedly until a fixed-point is reached.
fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
fuseSiblingNodes();
fuseProducerConsumerNodes(
/*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
eraseUnusedMemRefAllocations();
}
void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
init();
while (!worklist.empty()) {
unsigned dstId = worklist.back();
worklist.pop_back();
worklistSet.erase(dstId);
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(dstId) == 0)
continue;
// Get 'dstNode' into which to attempt fusion.
auto *dstNode = mdg->getNode(dstId);
// Skip if 'dstNode' is not a loop nest.
if (!isa<AffineForOp>(dstNode->op))
continue;
// Sink sequential loops in 'dstNode' (and thus raise parallel loops)
// while preserving relative order. This can increase the maximum loop
// depth at which we can fuse a slice of a producer loop nest into a
// consumer loop nest.
sinkSequentialLoops(dstNode);
SmallVector<Operation *, 4> loads = dstNode->loads;
SmallVector<Operation *, 4> dstLoadOpInsts;
DenseSet<Value> visitedMemrefs;
while (!loads.empty()) {
// Get memref of load on top of the stack.
auto memref = cast<AffineReadOpInterface>(loads.back()).getMemRef();
if (visitedMemrefs.count(memref) > 0)
continue;
visitedMemrefs.insert(memref);
// Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'.
moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts);
// Skip if no input edges along which to fuse.
if (mdg->inEdges.count(dstId) == 0)
continue;
// Iterate through in-edges for 'dstId' and src node id for any
// edges on 'memref'.
SmallVector<unsigned, 2> srcNodeIds;
for (auto &srcEdge : mdg->inEdges[dstId]) {
// Skip 'srcEdge' if not for 'memref'.
if (srcEdge.value != memref)
continue;
srcNodeIds.push_back(srcEdge.id);
}
for (unsigned srcId : srcNodeIds) {
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(srcId) == 0)
continue;
// Get 'srcNode' from which to attempt fusion into 'dstNode'.
auto *srcNode = mdg->getNode(srcId);
// Skip if 'srcNode' is not a loop nest.
if (!isa<AffineForOp>(srcNode->op))
continue;
// Skip if 'srcNode' has more than one live-out store to a
// function-local memref.
// TODO: Support more generic multi-output src loop nests
// fusion.
auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode);
if (!srcStoreOp) {
// Get the src store op at the deepest loop depth.
// We will use 'LoopFusionUtils::canFuseLoops' to check fusion
// feasibility for loops with multiple stores.
unsigned maxLoopDepth = 0;
for (auto *op : srcNode->stores) {
auto storeOp = cast<AffineWriteOpInterface>(op);
if (storeOp.getMemRef() != memref) {
srcStoreOp = nullptr;
break;
}
unsigned loopDepth = getNestingDepth(storeOp);
if (loopDepth > maxLoopDepth) {
maxLoopDepth = loopDepth;
srcStoreOp = storeOp;
}
}
if (!srcStoreOp)
continue;
}
// Unique outgoing store found must write to 'memref' since 'memref'
// is the one that established the producer-consumer relationship
// between 'srcNode' and 'dstNode'.
assert(srcStoreOp.getMemRef() == memref &&
"Found store to unexpected memref");
// Skip if 'srcNode' writes to any live in or escaping memrefs,
// and cannot be fused.
bool writesToLiveInOrOut =
mdg->writesToLiveInOrEscapingMemrefs(srcNode->id);
if (writesToLiveInOrOut &&
!canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg))
continue;
// Don't create a private memref if 'writesToLiveInOrOut'.
bool createPrivateMemref = !writesToLiveInOrOut;
// Don't create a private memref if 'srcNode' has in edges on
// 'memref', or if 'dstNode' has out edges on 'memref'.
if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 ||
mdg->getOutEdgeCount(dstNode->id, memref) > 0) {
createPrivateMemref = false;
}
// Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'.
if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount)
continue;
// Compute an operation list insertion point for the fused loop
// nest which preserves dependences.
Operation *insertPointInst =
mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
if (insertPointInst == nullptr)
continue;
// Compute the innermost common loop depth for dstNode loads/stores.
SmallVector<Operation *, 2> dstOps(dstNode->loads.begin(),
dstNode->loads.end());
dstOps.append(dstNode->stores.begin(), dstNode->stores.end());
unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstOps);
// Check the feasibility of fusing src loop nest into dst loop nest
// at loop depths in range [1, dstLoopDepthTest].
// TODO: Use slice union computation and union of memref
// read/write regions to cost model and fusion.
bool canFuse = false;
for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
ComputationSliceState sliceUnion;
FusionResult result = mlir::canFuseLoops(
cast<AffineForOp>(srcNode->op), cast<AffineForOp>(dstNode->op),
/*dstLoopDepth=*/i, &sliceUnion);
if (result.value == FusionResult::Success)
canFuse = true;
}
// Skip if fusion is not feasible at all loop depths.
if (!canFuse)
continue;
// Gather 'dstNode' store ops to 'memref'.
SmallVector<Operation *, 2> dstStoreOpInsts;
for (auto *storeOpInst : dstNode->stores)
if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() == memref)
dstStoreOpInsts.push_back(storeOpInst);
unsigned bestDstLoopDepth;
mlir::ComputationSliceState sliceState;
// Check if fusion would be profitable.
if (!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts,
dstStoreOpInsts, &sliceState,
&bestDstLoopDepth, maximalFusion,
computeToleranceThreshold))
continue;
// Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
auto sliceLoopNest = mlir::insertBackwardComputationSlice(
srcStoreOp, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
if (sliceLoopNest) {
LLVM_DEBUG(llvm::dbgs() << "\tslice loop nest:\n"
<< *sliceLoopNest.getOperation() << "\n");
// Move 'dstAffineForOp' before 'insertPointInst' if needed.
auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
if (insertPointInst != dstAffineForOp.getOperation()) {
dstAffineForOp.getOperation()->moveBefore(insertPointInst);
}
// Update edges between 'srcNode' and 'dstNode'.
mdg->updateEdges(srcNode->id, dstNode->id, memref,
createPrivateMemref);
// Collect slice loop stats.
LoopNestStateCollector sliceCollector;
sliceCollector.collect(sliceLoopNest.getOperation());
// Promote single iteration slice loops to single IV value.
for (auto forOp : sliceCollector.forOps) {
promoteIfSingleIteration(forOp);
}
if (createPrivateMemref) {
// Create private memref for 'memref' in 'dstAffineForOp'.
SmallVector<Operation *, 4> storesForMemref;
for (auto *storeOpInst : sliceCollector.storeOpInsts) {
if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() ==
memref)
storesForMemref.push_back(storeOpInst);
}
// TODO: Use union of memref write regions to compute
// private memref footprint.
auto newMemRef = createPrivateMemRef(
dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
fastMemorySpace, localBufSizeThreshold);
visitedMemrefs.insert(newMemRef);
// Create new node in dependence graph for 'newMemRef' alloc op.
unsigned newMemRefNodeId =
mdg->addNode(newMemRef.getDefiningOp());
// Add edge from 'newMemRef' node to dstNode.
mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
}
// Collect dst loop stats after memref privatization transformation.
LoopNestStateCollector dstLoopCollector;
dstLoopCollector.collect(dstAffineForOp.getOperation());
// Add new load ops to current Node load op list 'loads' to
// continue fusing based on new operands.
for (auto *loadOpInst : dstLoopCollector.loadOpInsts) {
// NOTE: Change 'loads' to a hash set in case efficiency is an
// issue. We still use a vector since it's expected to be small.
if (!llvm::is_contained(loads, loadOpInst))
loads.push_back(loadOpInst);
}
// Clear visited memrefs after fusion so that previously visited src
// nodes are considered for fusion again in the context of the new
// fused node.
// TODO: This shouldn't be necessary if we visited candidates in the
// dependence graph in post-order or once we fully support
// multi-store producers. Currently, in a multi-store producer
// scenario such as A->B, A->C, B->C, we fail to fuse A+B due to the
// multiple outgoing edges. However, after fusing B+C, A has a
// single outgoing edge and can be fused if we revisit it in the
// context of the new fused B+C node.
visitedMemrefs.clear();
// Clear and add back loads and stores.
mdg->clearNodeLoadAndStores(dstNode->id);
mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
dstLoopCollector.storeOpInsts);
// Remove old src loop nest if it no longer has outgoing dependence
// edges, and if it does not write to a memref which escapes the
// function. If 'writesToLiveInOrOut' is true, then 'srcNode' has
// been fused into 'dstNode' and write region of 'dstNode' covers
// the write region of 'srcNode', and 'srcNode' has no other users
// so it is safe to remove.
if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) {
mdg->removeNode(srcNode->id);
srcNode->op->erase();
} else {
// Add remaining users of 'oldMemRef' back on the worklist (if not
// already there), as its replacement with a local/private memref
// has reduced dependences on 'oldMemRef' which may have created
// new fusion opportunities.
if (mdg->outEdges.count(srcNode->id) > 0) {
SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges =
mdg->outEdges[srcNode->id];
for (auto &outEdge : oldOutEdges) {
if (outEdge.value == memref &&
worklistSet.count(outEdge.id) == 0) {
worklist.push_back(outEdge.id);
worklistSet.insert(outEdge.id);
}
}
}
}
}
}
}
}
}
// Visits each node in the graph, and for each node, attempts to fuse it with
// its sibling nodes (nodes which share a parent, but no dependence edges).
void fuseSiblingNodes() {
init();
while (!worklist.empty()) {
unsigned dstId = worklist.back();
worklist.pop_back();
worklistSet.erase(dstId);
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(dstId) == 0)
continue;
// Get 'dstNode' into which to attempt fusion.
auto *dstNode = mdg->getNode(dstId);
// Skip if 'dstNode' is not a loop nest.
if (!isa<AffineForOp>(dstNode->op))
continue;
// Attempt to fuse 'dstNode' with its sibling nodes in the graph.
fuseWithSiblingNodes(dstNode);
}
}
// Attempt to fuse 'dstNode' with sibling nodes in the graph.
void fuseWithSiblingNodes(Node *dstNode) {
DenseSet<unsigned> visitedSibNodeIds;
std::pair<unsigned, Value> idAndMemref;
while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
unsigned sibId = idAndMemref.first;
Value memref = idAndMemref.second;
// TODO: Check that 'sibStoreOpInst' post-dominates all other
// stores to the same memref in 'sibNode' loop nest.
auto *sibNode = mdg->getNode(sibId);
// Compute an operation list insertion point for the fused loop
// nest which preserves dependences.
assert(sibNode->op->getBlock() == dstNode->op->getBlock());
Operation *insertPointInst =
sibNode->op->isBeforeInBlock(dstNode->op)
? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
: mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
if (insertPointInst == nullptr)
continue;
// Check if fusion would be profitable and at what depth.
// Get unique 'sibNode' load op to 'memref'.
SmallVector<Operation *, 2> sibLoadOpInsts;
sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
// Currently findSiblingNodeToFuse searches for siblings with one load.
assert(sibLoadOpInsts.size() == 1);
Operation *sibLoadOpInst = sibLoadOpInsts[0];
assert(!sibNode->stores.empty());
// TODO: Choose the store which postdominates all other stores.
auto *sibStoreOpInst = sibNode->stores.back();
// Gather 'dstNode' load ops to 'memref'.
SmallVector<Operation *, 2> dstLoadOpInsts;
dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
// Gather 'dstNode' store ops to 'memref'.
SmallVector<Operation *, 2> dstStoreOpInsts;
dstNode->getStoreOpsForMemref(memref, &dstStoreOpInsts);
unsigned bestDstLoopDepth;
mlir::ComputationSliceState sliceState;
// Check if fusion would be profitable.
if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts,
dstStoreOpInsts, &sliceState, &bestDstLoopDepth,
maximalFusion, computeToleranceThreshold))
continue;
// Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
auto sliceLoopNest = mlir::insertBackwardComputationSlice(
sibLoadOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
if (sliceLoopNest != nullptr) {
auto dstForInst = cast<AffineForOp>(dstNode->op);
// Update operation position of fused loop nest (if needed).
if (insertPointInst != dstForInst.getOperation()) {
dstForInst.getOperation()->moveBefore(insertPointInst);
}
// Update data dependence graph state post fusion.
updateStateAfterSiblingFusion(sliceLoopNest, sibNode, dstNode);
}
}
}
// Searches function argument uses and the graph from 'dstNode' looking for a
// fusion candidate sibling node which shares no dependences with 'dstNode'
// but which loads from the same memref. Returns true and sets
// 'idAndMemrefToFuse' on success. Returns false otherwise.
bool findSiblingNodeToFuse(Node *dstNode,
DenseSet<unsigned> *visitedSibNodeIds,
std::pair<unsigned, Value> *idAndMemrefToFuse) {
// Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
// on 'memref'.
auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
// Skip if 'outEdge' is not a read-after-write dependence.
// TODO: Remove restrict to single load op restriction.
if (sibNode->getLoadOpCount(memref) != 1)
return false;
// Skip if there exists a path of dependent edges between
// 'sibNode' and 'dstNode'.
if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
mdg->hasDependencePath(dstNode->id, sibNode->id))
return false;
// Skip sib node if it loads to (and stores from) the same memref on
// which it also has an input dependence edge.
DenseSet<Value> loadAndStoreMemrefSet;
sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
}))
return false;
// Check that all stores are to the same memref.
DenseSet<Value> storeMemrefs;
for (auto *storeOpInst : sibNode->stores) {
storeMemrefs.insert(
cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
}
if (storeMemrefs.size() != 1)
return false;
// Skip if a memref value in one node is used by a non-affine memref
// access that lies between 'dstNode' and 'sibNode'.
if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
return false;
return true;
};
// Search for siblings which load the same memref function argument.
auto fn = dstNode->op->getParentOfType<FuncOp>();
for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
for (auto *user : fn.getArgument(i).getUsers()) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
// Gather loops surrounding 'use'.
SmallVector<AffineForOp, 4> loops;
getLoopIVs(*user, &loops);
// Skip 'use' if it is not within a loop nest.
if (loops.empty())
continue;
Node *sibNode = mdg->getForOpNode(loops[0]);
assert(sibNode != nullptr);
// Skip 'use' if it not a sibling to 'dstNode'.
if (sibNode->id == dstNode->id)
continue;
// Skip 'use' if it has been visited.
if (visitedSibNodeIds->count(sibNode->id) > 0)
continue;
// Skip 'use' if it does not load from the same memref as 'dstNode'.
auto memref = loadOp.getMemRef();
if (dstNode->getLoadOpCount(memref) == 0)
continue;
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
if (canFuseWithSibNode(sibNode, memref)) {
visitedSibNodeIds->insert(sibNode->id);
idAndMemrefToFuse->first = sibNode->id;
idAndMemrefToFuse->second = memref;
return true;
}
}
}
}
// Search for siblings by following edges through an intermediate src node.
// Collect candidate 'dstNode' input edges in 'inEdges'.
SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
mdg->forEachMemRefInputEdge(
dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
// Add 'inEdge' if it is a read-after-write dependence.
if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
inEdges.push_back(inEdge);
});
// Search for sibling nodes to fuse by visiting output edges from each input
// edge in 'inEdges'.
for (auto &inEdge : inEdges) {
// Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
mdg->forEachMemRefOutputEdge(
inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
unsigned sibNodeId = outEdge.id;
if (visitedSibNodeIds->count(sibNodeId) > 0)
return;
// Skip output edge if not a sibling using the same memref.
if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
return;
auto *sibNode = mdg->getNode(sibNodeId);
if (!isa<AffineForOp>(sibNode->op))
return;
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
if (canFuseWithSibNode(sibNode, outEdge.value)) {
// Add candidate 'outEdge' to sibling node.
outEdges.push_back(outEdge);
}
});
// Add first candidate if any were returned.
if (!outEdges.empty()) {
visitedSibNodeIds->insert(outEdges[0].id);
idAndMemrefToFuse->first = outEdges[0].id;
idAndMemrefToFuse->second = outEdges[0].value;
return true;
}
}
return false;
}
void updateStateAfterSiblingFusion(AffineForOp sliceLoopNest, Node *sibNode,
Node *dstNode) {
// Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
mdg->updateEdges(sibNode->id, dstNode->id);
// Collect slice loop stats.
LoopNestStateCollector sliceCollector;
sliceCollector.collect(sliceLoopNest.getOperation());
// Promote single iteration slice loops to single IV value.
for (auto forOp : sliceCollector.forOps) {
promoteIfSingleIteration(forOp);
}
// Collect dst loop stats after memref privatization transformation.
auto dstForInst = cast<AffineForOp>(dstNode->op);
LoopNestStateCollector dstLoopCollector;
dstLoopCollector.collect(dstForInst.getOperation());
// Clear and add back loads and stores
mdg->clearNodeLoadAndStores(dstNode->id);
mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
dstLoopCollector.storeOpInsts);
// Remove old sibling loop nest if it no longer has outgoing dependence
// edges, and it does not write to a memref which escapes the
// function.
if (mdg->getOutEdgeCount(sibNode->id) == 0) {
mdg->removeNode(sibNode->id);
sibNode->op->erase();
}
}
// Clean up any allocs with no users.
void eraseUnusedMemRefAllocations() {
for (auto &pair : mdg->memrefEdgeCount) {
if (pair.second > 0)
continue;
auto memref = pair.first;
// Skip if there exist other uses (return operation or function calls).
if (!memref.use_empty())
continue;
// Use list expected to match the dep graph info.
auto *op = memref.getDefiningOp();
if (isa_and_nonnull<AllocOp>(op))
op->erase();
}
}
};
} // end anonymous namespace
void LoopFusion::runOnFunction() {
MemRefDependenceGraph g;
if (!g.init(getFunction()))
return;
Optional<unsigned> fastMemorySpaceOpt;
if (fastMemorySpace.hasValue())
fastMemorySpaceOpt = fastMemorySpace;
unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
maximalFusion, computeToleranceThreshold);
fusion.run();
}