ObjectFileELF.cpp 123 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
//===-- ObjectFileELF.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ObjectFileELF.h"

#include <algorithm>
#include <cassert>
#include <unordered_map>

#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Host/LZMA.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RangeMap.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/Timer.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MipsABIFlags.h"

#define CASE_AND_STREAM(s, def, width)                                         \
  case def:                                                                    \
    s->Printf("%-*s", width, #def);                                            \
    break;

using namespace lldb;
using namespace lldb_private;
using namespace elf;
using namespace llvm::ELF;

LLDB_PLUGIN_DEFINE(ObjectFileELF)

namespace {

// ELF note owner definitions
const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
const char *const LLDB_NT_OWNER_GNU = "GNU";
const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE";
const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
const char *const LLDB_NT_OWNER_ANDROID = "Android";
const char *const LLDB_NT_OWNER_CORE = "CORE";
const char *const LLDB_NT_OWNER_LINUX = "LINUX";

// ELF note type definitions
const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;

const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
const elf_word LLDB_NT_GNU_ABI_SIZE = 16;

const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;

const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1;
const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4;
const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7;
const elf_word LLDB_NT_NETBSD_PROCINFO = 1;

// GNU ABI note OS constants
const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;

//===----------------------------------------------------------------------===//
/// \class ELFRelocation
/// Generic wrapper for ELFRel and ELFRela.
///
/// This helper class allows us to parse both ELFRel and ELFRela relocation
/// entries in a generic manner.
class ELFRelocation {
public:
  /// Constructs an ELFRelocation entry with a personality as given by @p
  /// type.
  ///
  /// \param type Either DT_REL or DT_RELA.  Any other value is invalid.
  ELFRelocation(unsigned type);

  ~ELFRelocation();

  bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);

  static unsigned RelocType32(const ELFRelocation &rel);

  static unsigned RelocType64(const ELFRelocation &rel);

  static unsigned RelocSymbol32(const ELFRelocation &rel);

  static unsigned RelocSymbol64(const ELFRelocation &rel);

  static unsigned RelocOffset32(const ELFRelocation &rel);

  static unsigned RelocOffset64(const ELFRelocation &rel);

  static unsigned RelocAddend32(const ELFRelocation &rel);

  static unsigned RelocAddend64(const ELFRelocation &rel);

private:
  typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;

  RelocUnion reloc;
};

ELFRelocation::ELFRelocation(unsigned type) {
  if (type == DT_REL || type == SHT_REL)
    reloc = new ELFRel();
  else if (type == DT_RELA || type == SHT_RELA)
    reloc = new ELFRela();
  else {
    assert(false && "unexpected relocation type");
    reloc = static_cast<ELFRel *>(nullptr);
  }
}

ELFRelocation::~ELFRelocation() {
  if (reloc.is<ELFRel *>())
    delete reloc.get<ELFRel *>();
  else
    delete reloc.get<ELFRela *>();
}

bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
                          lldb::offset_t *offset) {
  if (reloc.is<ELFRel *>())
    return reloc.get<ELFRel *>()->Parse(data, offset);
  else
    return reloc.get<ELFRela *>()->Parse(data, offset);
}

unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>());
  else
    return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>());
}

unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>());
  else
    return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>());
}

unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>());
  else
    return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>());
}

unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>());
  else
    return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>());
}

unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return rel.reloc.get<ELFRel *>()->r_offset;
  else
    return rel.reloc.get<ELFRela *>()->r_offset;
}

unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return rel.reloc.get<ELFRel *>()->r_offset;
  else
    return rel.reloc.get<ELFRela *>()->r_offset;
}

unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return 0;
  else
    return rel.reloc.get<ELFRela *>()->r_addend;
}

unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
  if (rel.reloc.is<ELFRel *>())
    return 0;
  else
    return rel.reloc.get<ELFRela *>()->r_addend;
}

} // end anonymous namespace

static user_id_t SegmentID(size_t PHdrIndex) {
  return ~user_id_t(PHdrIndex);
}

bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
  // Read all fields.
  if (data.GetU32(offset, &n_namesz, 3) == nullptr)
    return false;

  // The name field is required to be nul-terminated, and n_namesz includes the
  // terminating nul in observed implementations (contrary to the ELF-64 spec).
  // A special case is needed for cores generated by some older Linux versions,
  // which write a note named "CORE" without a nul terminator and n_namesz = 4.
  if (n_namesz == 4) {
    char buf[4];
    if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
      return false;
    if (strncmp(buf, "CORE", 4) == 0) {
      n_name = "CORE";
      *offset += 4;
      return true;
    }
  }

  const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
  if (cstr == nullptr) {
    Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
    LLDB_LOGF(log, "Failed to parse note name lacking nul terminator");

    return false;
  }
  n_name = cstr;
  return true;
}

static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
  const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
  uint32_t endian = header.e_ident[EI_DATA];
  uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
  uint32_t fileclass = header.e_ident[EI_CLASS];

  // If there aren't any elf flags available (e.g core elf file) then return
  // default
  // 32 or 64 bit arch (without any architecture revision) based on object file's class.
  if (header.e_type == ET_CORE) {
    switch (fileclass) {
    case llvm::ELF::ELFCLASS32:
      return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
                                     : ArchSpec::eMIPSSubType_mips32;
    case llvm::ELF::ELFCLASS64:
      return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
                                     : ArchSpec::eMIPSSubType_mips64;
    default:
      return arch_variant;
    }
  }

  switch (mips_arch) {
  case llvm::ELF::EF_MIPS_ARCH_1:
  case llvm::ELF::EF_MIPS_ARCH_2:
  case llvm::ELF::EF_MIPS_ARCH_32:
    return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
                                   : ArchSpec::eMIPSSubType_mips32;
  case llvm::ELF::EF_MIPS_ARCH_32R2:
    return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
                                   : ArchSpec::eMIPSSubType_mips32r2;
  case llvm::ELF::EF_MIPS_ARCH_32R6:
    return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
                                   : ArchSpec::eMIPSSubType_mips32r6;
  case llvm::ELF::EF_MIPS_ARCH_3:
  case llvm::ELF::EF_MIPS_ARCH_4:
  case llvm::ELF::EF_MIPS_ARCH_5:
  case llvm::ELF::EF_MIPS_ARCH_64:
    return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
                                   : ArchSpec::eMIPSSubType_mips64;
  case llvm::ELF::EF_MIPS_ARCH_64R2:
    return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
                                   : ArchSpec::eMIPSSubType_mips64r2;
  case llvm::ELF::EF_MIPS_ARCH_64R6:
    return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
                                   : ArchSpec::eMIPSSubType_mips64r6;
  default:
    break;
  }

  return arch_variant;
}

static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
  if (header.e_machine == llvm::ELF::EM_MIPS)
    return mipsVariantFromElfFlags(header);

  return LLDB_INVALID_CPUTYPE;
}

char ObjectFileELF::ID;

// Arbitrary constant used as UUID prefix for core files.
const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);

// Static methods.
void ObjectFileELF::Initialize() {
  PluginManager::RegisterPlugin(GetPluginNameStatic(),
                                GetPluginDescriptionStatic(), CreateInstance,
                                CreateMemoryInstance, GetModuleSpecifications);
}

void ObjectFileELF::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() {
  static ConstString g_name("elf");
  return g_name;
}

const char *ObjectFileELF::GetPluginDescriptionStatic() {
  return "ELF object file reader.";
}

ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
                                          DataBufferSP &data_sp,
                                          lldb::offset_t data_offset,
                                          const lldb_private::FileSpec *file,
                                          lldb::offset_t file_offset,
                                          lldb::offset_t length) {
  if (!data_sp) {
    data_sp = MapFileData(*file, length, file_offset);
    if (!data_sp)
      return nullptr;
    data_offset = 0;
  }

  assert(data_sp);

  if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
    return nullptr;

  const uint8_t *magic = data_sp->GetBytes() + data_offset;
  if (!ELFHeader::MagicBytesMatch(magic))
    return nullptr;

  // Update the data to contain the entire file if it doesn't already
  if (data_sp->GetByteSize() < length) {
    data_sp = MapFileData(*file, length, file_offset);
    if (!data_sp)
      return nullptr;
    data_offset = 0;
    magic = data_sp->GetBytes();
  }

  unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
  if (address_size == 4 || address_size == 8) {
    std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF(
        module_sp, data_sp, data_offset, file, file_offset, length));
    ArchSpec spec = objfile_up->GetArchitecture();
    if (spec && objfile_up->SetModulesArchitecture(spec))
      return objfile_up.release();
  }

  return nullptr;
}

ObjectFile *ObjectFileELF::CreateMemoryInstance(
    const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
    const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
  if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
    const uint8_t *magic = data_sp->GetBytes();
    if (ELFHeader::MagicBytesMatch(magic)) {
      unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
      if (address_size == 4 || address_size == 8) {
        std::unique_ptr<ObjectFileELF> objfile_up(
            new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
        ArchSpec spec = objfile_up->GetArchitecture();
        if (spec && objfile_up->SetModulesArchitecture(spec))
          return objfile_up.release();
      }
    }
  }
  return nullptr;
}

bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
                                    lldb::addr_t data_offset,
                                    lldb::addr_t data_length) {
  if (data_sp &&
      data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
    const uint8_t *magic = data_sp->GetBytes() + data_offset;
    return ELFHeader::MagicBytesMatch(magic);
  }
  return false;
}

static uint32_t calc_crc32(uint32_t init, const DataExtractor &data) {
  return llvm::crc32(
      init, llvm::makeArrayRef(data.GetDataStart(), data.GetByteSize()));
}

uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
    const ProgramHeaderColl &program_headers, DataExtractor &object_data) {

  uint32_t core_notes_crc = 0;

  for (const ELFProgramHeader &H : program_headers) {
    if (H.p_type == llvm::ELF::PT_NOTE) {
      const elf_off ph_offset = H.p_offset;
      const size_t ph_size = H.p_filesz;

      DataExtractor segment_data;
      if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
        // The ELF program header contained incorrect data, probably corefile
        // is incomplete or corrupted.
        break;
      }

      core_notes_crc = calc_crc32(core_notes_crc, segment_data);
    }
  }

  return core_notes_crc;
}

static const char *OSABIAsCString(unsigned char osabi_byte) {
#define _MAKE_OSABI_CASE(x)                                                    \
  case x:                                                                      \
    return #x
  switch (osabi_byte) {
    _MAKE_OSABI_CASE(ELFOSABI_NONE);
    _MAKE_OSABI_CASE(ELFOSABI_HPUX);
    _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
    _MAKE_OSABI_CASE(ELFOSABI_GNU);
    _MAKE_OSABI_CASE(ELFOSABI_HURD);
    _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
    _MAKE_OSABI_CASE(ELFOSABI_AIX);
    _MAKE_OSABI_CASE(ELFOSABI_IRIX);
    _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
    _MAKE_OSABI_CASE(ELFOSABI_TRU64);
    _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
    _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
    _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
    _MAKE_OSABI_CASE(ELFOSABI_NSK);
    _MAKE_OSABI_CASE(ELFOSABI_AROS);
    _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
    _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
    _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
    _MAKE_OSABI_CASE(ELFOSABI_ARM);
    _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
  default:
    return "<unknown-osabi>";
  }
#undef _MAKE_OSABI_CASE
}

//
// WARNING : This function is being deprecated
// It's functionality has moved to ArchSpec::SetArchitecture This function is
// only being kept to validate the move.
//
// TODO : Remove this function
static bool GetOsFromOSABI(unsigned char osabi_byte,
                           llvm::Triple::OSType &ostype) {
  switch (osabi_byte) {
  case ELFOSABI_AIX:
    ostype = llvm::Triple::OSType::AIX;
    break;
  case ELFOSABI_FREEBSD:
    ostype = llvm::Triple::OSType::FreeBSD;
    break;
  case ELFOSABI_GNU:
    ostype = llvm::Triple::OSType::Linux;
    break;
  case ELFOSABI_NETBSD:
    ostype = llvm::Triple::OSType::NetBSD;
    break;
  case ELFOSABI_OPENBSD:
    ostype = llvm::Triple::OSType::OpenBSD;
    break;
  case ELFOSABI_SOLARIS:
    ostype = llvm::Triple::OSType::Solaris;
    break;
  default:
    ostype = llvm::Triple::OSType::UnknownOS;
  }
  return ostype != llvm::Triple::OSType::UnknownOS;
}

size_t ObjectFileELF::GetModuleSpecifications(
    const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
    lldb::offset_t data_offset, lldb::offset_t file_offset,
    lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));

  const size_t initial_count = specs.GetSize();

  if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
    DataExtractor data;
    data.SetData(data_sp);
    elf::ELFHeader header;
    lldb::offset_t header_offset = data_offset;
    if (header.Parse(data, &header_offset)) {
      if (data_sp) {
        ModuleSpec spec(file);

        const uint32_t sub_type = subTypeFromElfHeader(header);
        spec.GetArchitecture().SetArchitecture(
            eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);

        if (spec.GetArchitecture().IsValid()) {
          llvm::Triple::OSType ostype;
          llvm::Triple::VendorType vendor;
          llvm::Triple::OSType spec_ostype =
              spec.GetArchitecture().GetTriple().getOS();

          LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module OSABI: %s",
                    __FUNCTION__, file.GetPath().c_str(),
                    OSABIAsCString(header.e_ident[EI_OSABI]));

          // SetArchitecture should have set the vendor to unknown
          vendor = spec.GetArchitecture().GetTriple().getVendor();
          assert(vendor == llvm::Triple::UnknownVendor);
          UNUSED_IF_ASSERT_DISABLED(vendor);

          //
          // Validate it is ok to remove GetOsFromOSABI
          GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
          assert(spec_ostype == ostype);
          if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
            LLDB_LOGF(log,
                      "ObjectFileELF::%s file '%s' set ELF module OS type "
                      "from ELF header OSABI.",
                      __FUNCTION__, file.GetPath().c_str());
          }

          if (data_sp->GetByteSize() < length)
            data_sp = MapFileData(file, -1, file_offset);
          if (data_sp)
            data.SetData(data_sp);
          // In case there is header extension in the section #0, the header we
          // parsed above could have sentinel values for e_phnum, e_shnum, and
          // e_shstrndx.  In this case we need to reparse the header with a
          // bigger data source to get the actual values.
          if (header.HasHeaderExtension()) {
            lldb::offset_t header_offset = data_offset;
            header.Parse(data, &header_offset);
          }

          uint32_t gnu_debuglink_crc = 0;
          std::string gnu_debuglink_file;
          SectionHeaderColl section_headers;
          lldb_private::UUID &uuid = spec.GetUUID();

          GetSectionHeaderInfo(section_headers, data, header, uuid,
                               gnu_debuglink_file, gnu_debuglink_crc,
                               spec.GetArchitecture());

          llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();

          LLDB_LOGF(log,
                    "ObjectFileELF::%s file '%s' module set to triple: %s "
                    "(architecture %s)",
                    __FUNCTION__, file.GetPath().c_str(),
                    spec_triple.getTriple().c_str(),
                    spec.GetArchitecture().GetArchitectureName());

          if (!uuid.IsValid()) {
            uint32_t core_notes_crc = 0;

            if (!gnu_debuglink_crc) {
              static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
              lldb_private::Timer scoped_timer(
                  func_cat,
                  "Calculating module crc32 %s with size %" PRIu64 " KiB",
                  file.GetLastPathComponent().AsCString(),
                  (length - file_offset) / 1024);

              // For core files - which usually don't happen to have a
              // gnu_debuglink, and are pretty bulky - calculating whole
              // contents crc32 would be too much of luxury.  Thus we will need
              // to fallback to something simpler.
              if (header.e_type == llvm::ELF::ET_CORE) {
                ProgramHeaderColl program_headers;
                GetProgramHeaderInfo(program_headers, data, header);

                core_notes_crc =
                    CalculateELFNotesSegmentsCRC32(program_headers, data);
              } else {
                gnu_debuglink_crc = calc_crc32(0, data);
              }
            }
            using u32le = llvm::support::ulittle32_t;
            if (gnu_debuglink_crc) {
              // Use 4 bytes of crc from the .gnu_debuglink section.
              u32le data(gnu_debuglink_crc);
              uuid = UUID::fromData(&data, sizeof(data));
            } else if (core_notes_crc) {
              // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
              // it look different form .gnu_debuglink crc followed by 4 bytes
              // of note segments crc.
              u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
              uuid = UUID::fromData(data, sizeof(data));
            }
          }

          specs.Append(spec);
        }
      }
    }
  }

  return specs.GetSize() - initial_count;
}

// PluginInterface protocol
lldb_private::ConstString ObjectFileELF::GetPluginName() {
  return GetPluginNameStatic();
}

uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; }
// ObjectFile protocol

ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
                             DataBufferSP &data_sp, lldb::offset_t data_offset,
                             const FileSpec *file, lldb::offset_t file_offset,
                             lldb::offset_t length)
    : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset) {
  if (file)
    m_file = *file;
}

ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
                             DataBufferSP &header_data_sp,
                             const lldb::ProcessSP &process_sp,
                             addr_t header_addr)
    : ObjectFile(module_sp, process_sp, header_addr, header_data_sp) {}

bool ObjectFileELF::IsExecutable() const {
  return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
}

bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
                                   bool value_is_offset) {
  ModuleSP module_sp = GetModule();
  if (module_sp) {
    size_t num_loaded_sections = 0;
    SectionList *section_list = GetSectionList();
    if (section_list) {
      if (!value_is_offset) {
        addr_t base = GetBaseAddress().GetFileAddress();
        if (base == LLDB_INVALID_ADDRESS)
          return false;
        value -= base;
      }

      const size_t num_sections = section_list->GetSize();
      size_t sect_idx = 0;

      for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
        // Iterate through the object file sections to find all of the sections
        // that have SHF_ALLOC in their flag bits.
        SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
        if (section_sp->Test(SHF_ALLOC) ||
            section_sp->GetType() == eSectionTypeContainer) {
          lldb::addr_t load_addr = section_sp->GetFileAddress();
          // We don't want to update the load address of a section with type
          // eSectionTypeAbsoluteAddress as they already have the absolute load
          // address already specified
          if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
            load_addr += value;

          // On 32-bit systems the load address have to fit into 4 bytes. The
          // rest of the bytes are the overflow from the addition.
          if (GetAddressByteSize() == 4)
            load_addr &= 0xFFFFFFFF;

          if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
                                                                load_addr))
            ++num_loaded_sections;
        }
      }
      return num_loaded_sections > 0;
    }
  }
  return false;
}

ByteOrder ObjectFileELF::GetByteOrder() const {
  if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
    return eByteOrderBig;
  if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
    return eByteOrderLittle;
  return eByteOrderInvalid;
}

uint32_t ObjectFileELF::GetAddressByteSize() const {
  return m_data.GetAddressByteSize();
}

AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
  Symtab *symtab = GetSymtab();
  if (!symtab)
    return AddressClass::eUnknown;

  // The address class is determined based on the symtab. Ask it from the
  // object file what contains the symtab information.
  ObjectFile *symtab_objfile = symtab->GetObjectFile();
  if (symtab_objfile != nullptr && symtab_objfile != this)
    return symtab_objfile->GetAddressClass(file_addr);

  auto res = ObjectFile::GetAddressClass(file_addr);
  if (res != AddressClass::eCode)
    return res;

  auto ub = m_address_class_map.upper_bound(file_addr);
  if (ub == m_address_class_map.begin()) {
    // No entry in the address class map before the address. Return default
    // address class for an address in a code section.
    return AddressClass::eCode;
  }

  // Move iterator to the address class entry preceding address
  --ub;

  return ub->second;
}

size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
  return std::distance(m_section_headers.begin(), I);
}

size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
  return std::distance(m_section_headers.begin(), I);
}

bool ObjectFileELF::ParseHeader() {
  lldb::offset_t offset = 0;
  return m_header.Parse(m_data, &offset);
}

UUID ObjectFileELF::GetUUID() {
  // Need to parse the section list to get the UUIDs, so make sure that's been
  // done.
  if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
    return UUID();

  if (!m_uuid) {
    using u32le = llvm::support::ulittle32_t;
    if (GetType() == ObjectFile::eTypeCoreFile) {
      uint32_t core_notes_crc = 0;

      if (!ParseProgramHeaders())
        return UUID();

      core_notes_crc =
          CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);

      if (core_notes_crc) {
        // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
        // look different form .gnu_debuglink crc - followed by 4 bytes of note
        // segments crc.
        u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
        m_uuid = UUID::fromData(data, sizeof(data));
      }
    } else {
      if (!m_gnu_debuglink_crc)
        m_gnu_debuglink_crc = calc_crc32(0, m_data);
      if (m_gnu_debuglink_crc) {
        // Use 4 bytes of crc from the .gnu_debuglink section.
        u32le data(m_gnu_debuglink_crc);
        m_uuid = UUID::fromData(&data, sizeof(data));
      }
    }
  }

  return m_uuid;
}

llvm::Optional<FileSpec> ObjectFileELF::GetDebugLink() {
  if (m_gnu_debuglink_file.empty())
    return llvm::None;
  return FileSpec(m_gnu_debuglink_file);
}

uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
  size_t num_modules = ParseDependentModules();
  uint32_t num_specs = 0;

  for (unsigned i = 0; i < num_modules; ++i) {
    if (files.AppendIfUnique(m_filespec_up->GetFileSpecAtIndex(i)))
      num_specs++;
  }

  return num_specs;
}

Address ObjectFileELF::GetImageInfoAddress(Target *target) {
  if (!ParseDynamicSymbols())
    return Address();

  SectionList *section_list = GetSectionList();
  if (!section_list)
    return Address();

  // Find the SHT_DYNAMIC (.dynamic) section.
  SectionSP dynsym_section_sp(
      section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true));
  if (!dynsym_section_sp)
    return Address();
  assert(dynsym_section_sp->GetObjectFile() == this);

  user_id_t dynsym_id = dynsym_section_sp->GetID();
  const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
  if (!dynsym_hdr)
    return Address();

  for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
    ELFDynamic &symbol = m_dynamic_symbols[i];

    if (symbol.d_tag == DT_DEBUG) {
      // Compute the offset as the number of previous entries plus the size of
      // d_tag.
      addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
      return Address(dynsym_section_sp, offset);
    }
    // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
    // exists in non-PIE.
    else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
              symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
             target) {
      addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
      addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
      if (dyn_base == LLDB_INVALID_ADDRESS)
        return Address();

      Status error;
      if (symbol.d_tag == DT_MIPS_RLD_MAP) {
        // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
        Address addr;
        if (target->ReadPointerFromMemory(dyn_base + offset, false, error,
                                          addr))
          return addr;
      }
      if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
        // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
        // relative to the address of the tag.
        uint64_t rel_offset;
        rel_offset = target->ReadUnsignedIntegerFromMemory(
            dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
        if (error.Success() && rel_offset != UINT64_MAX) {
          Address addr;
          addr_t debug_ptr_address =
              dyn_base + (offset - GetAddressByteSize()) + rel_offset;
          addr.SetOffset(debug_ptr_address);
          return addr;
        }
      }
    }
  }

  return Address();
}

lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
  if (m_entry_point_address.IsValid())
    return m_entry_point_address;

  if (!ParseHeader() || !IsExecutable())
    return m_entry_point_address;

  SectionList *section_list = GetSectionList();
  addr_t offset = m_header.e_entry;

  if (!section_list)
    m_entry_point_address.SetOffset(offset);
  else
    m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
  return m_entry_point_address;
}

Address ObjectFileELF::GetBaseAddress() {
  for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
    const ELFProgramHeader &H = EnumPHdr.value();
    if (H.p_type != PT_LOAD)
      continue;

    return Address(
        GetSectionList()->FindSectionByID(SegmentID(EnumPHdr.index())), 0);
  }
  return LLDB_INVALID_ADDRESS;
}

// ParseDependentModules
size_t ObjectFileELF::ParseDependentModules() {
  if (m_filespec_up)
    return m_filespec_up->GetSize();

  m_filespec_up = std::make_unique<FileSpecList>();

  if (!ParseSectionHeaders())
    return 0;

  SectionList *section_list = GetSectionList();
  if (!section_list)
    return 0;

  // Find the SHT_DYNAMIC section.
  Section *dynsym =
      section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
          .get();
  if (!dynsym)
    return 0;
  assert(dynsym->GetObjectFile() == this);

  const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID());
  if (!header)
    return 0;
  // sh_link: section header index of string table used by entries in the
  // section.
  Section *dynstr = section_list->FindSectionByID(header->sh_link).get();
  if (!dynstr)
    return 0;

  DataExtractor dynsym_data;
  DataExtractor dynstr_data;
  if (ReadSectionData(dynsym, dynsym_data) &&
      ReadSectionData(dynstr, dynstr_data)) {
    ELFDynamic symbol;
    const lldb::offset_t section_size = dynsym_data.GetByteSize();
    lldb::offset_t offset = 0;

    // The only type of entries we are concerned with are tagged DT_NEEDED,
    // yielding the name of a required library.
    while (offset < section_size) {
      if (!symbol.Parse(dynsym_data, &offset))
        break;

      if (symbol.d_tag != DT_NEEDED)
        continue;

      uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
      const char *lib_name = dynstr_data.PeekCStr(str_index);
      FileSpec file_spec(lib_name);
      FileSystem::Instance().Resolve(file_spec);
      m_filespec_up->Append(file_spec);
    }
  }

  return m_filespec_up->GetSize();
}

// GetProgramHeaderInfo
size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
                                           DataExtractor &object_data,
                                           const ELFHeader &header) {
  // We have already parsed the program headers
  if (!program_headers.empty())
    return program_headers.size();

  // If there are no program headers to read we are done.
  if (header.e_phnum == 0)
    return 0;

  program_headers.resize(header.e_phnum);
  if (program_headers.size() != header.e_phnum)
    return 0;

  const size_t ph_size = header.e_phnum * header.e_phentsize;
  const elf_off ph_offset = header.e_phoff;
  DataExtractor data;
  if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
    return 0;

  uint32_t idx;
  lldb::offset_t offset;
  for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
    if (!program_headers[idx].Parse(data, &offset))
      break;
  }

  if (idx < program_headers.size())
    program_headers.resize(idx);

  return program_headers.size();
}

// ParseProgramHeaders
bool ObjectFileELF::ParseProgramHeaders() {
  return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0;
}

lldb_private::Status
ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
                                           lldb_private::ArchSpec &arch_spec,
                                           lldb_private::UUID &uuid) {
  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
  Status error;

  lldb::offset_t offset = 0;

  while (true) {
    // Parse the note header.  If this fails, bail out.
    const lldb::offset_t note_offset = offset;
    ELFNote note = ELFNote();
    if (!note.Parse(data, &offset)) {
      // We're done.
      return error;
    }

    LLDB_LOGF(log, "ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
              __FUNCTION__, note.n_name.c_str(), note.n_type);

    // Process FreeBSD ELF notes.
    if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
        (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
        (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
      // Pull out the min version info.
      uint32_t version_info;
      if (data.GetU32(&offset, &version_info, 1) == nullptr) {
        error.SetErrorString("failed to read FreeBSD ABI note payload");
        return error;
      }

      // Convert the version info into a major/minor number.
      const uint32_t version_major = version_info / 100000;
      const uint32_t version_minor = (version_info / 1000) % 100;

      char os_name[32];
      snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
               version_major, version_minor);

      // Set the elf OS version to FreeBSD.  Also clear the vendor.
      arch_spec.GetTriple().setOSName(os_name);
      arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);

      LLDB_LOGF(log,
                "ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
                ".%" PRIu32,
                __FUNCTION__, version_major, version_minor,
                static_cast<uint32_t>(version_info % 1000));
    }
    // Process GNU ELF notes.
    else if (note.n_name == LLDB_NT_OWNER_GNU) {
      switch (note.n_type) {
      case LLDB_NT_GNU_ABI_TAG:
        if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
          // Pull out the min OS version supporting the ABI.
          uint32_t version_info[4];
          if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
              nullptr) {
            error.SetErrorString("failed to read GNU ABI note payload");
            return error;
          }

          // Set the OS per the OS field.
          switch (version_info[0]) {
          case LLDB_NT_GNU_ABI_OS_LINUX:
            arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
            arch_spec.GetTriple().setVendor(
                llvm::Triple::VendorType::UnknownVendor);
            LLDB_LOGF(log,
                      "ObjectFileELF::%s detected Linux, min version %" PRIu32
                      ".%" PRIu32 ".%" PRIu32,
                      __FUNCTION__, version_info[1], version_info[2],
                      version_info[3]);
            // FIXME we have the minimal version number, we could be propagating
            // that.  version_info[1] = OS Major, version_info[2] = OS Minor,
            // version_info[3] = Revision.
            break;
          case LLDB_NT_GNU_ABI_OS_HURD:
            arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
            arch_spec.GetTriple().setVendor(
                llvm::Triple::VendorType::UnknownVendor);
            LLDB_LOGF(log,
                      "ObjectFileELF::%s detected Hurd (unsupported), min "
                      "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
                      __FUNCTION__, version_info[1], version_info[2],
                      version_info[3]);
            break;
          case LLDB_NT_GNU_ABI_OS_SOLARIS:
            arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
            arch_spec.GetTriple().setVendor(
                llvm::Triple::VendorType::UnknownVendor);
            LLDB_LOGF(log,
                      "ObjectFileELF::%s detected Solaris, min version %" PRIu32
                      ".%" PRIu32 ".%" PRIu32,
                      __FUNCTION__, version_info[1], version_info[2],
                      version_info[3]);
            break;
          default:
            LLDB_LOGF(log,
                      "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
                      ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
                      __FUNCTION__, version_info[0], version_info[1],
                      version_info[2], version_info[3]);
            break;
          }
        }
        break;

      case LLDB_NT_GNU_BUILD_ID_TAG:
        // Only bother processing this if we don't already have the uuid set.
        if (!uuid.IsValid()) {
          // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
          // build-id of a different length. Accept it as long as it's at least
          // 4 bytes as it will be better than our own crc32.
          if (note.n_descsz >= 4) {
            if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) {
              // Save the build id as the UUID for the module.
              uuid = UUID::fromData(buf, note.n_descsz);
            } else {
              error.SetErrorString("failed to read GNU_BUILD_ID note payload");
              return error;
            }
          }
        }
        break;
      }
      if (arch_spec.IsMIPS() &&
          arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
        // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
        arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
    }
    // Process NetBSD ELF executables and shared libraries
    else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
             (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) &&
             (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) &&
             (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) {
      // Pull out the version info.
      uint32_t version_info;
      if (data.GetU32(&offset, &version_info, 1) == nullptr) {
        error.SetErrorString("failed to read NetBSD ABI note payload");
        return error;
      }
      // Convert the version info into a major/minor/patch number.
      //     #define __NetBSD_Version__ MMmmrrpp00
      //
      //     M = major version
      //     m = minor version; a minor number of 99 indicates current.
      //     r = 0 (since NetBSD 3.0 not used)
      //     p = patchlevel
      const uint32_t version_major = version_info / 100000000;
      const uint32_t version_minor = (version_info % 100000000) / 1000000;
      const uint32_t version_patch = (version_info % 10000) / 100;
      // Set the elf OS version to NetBSD.  Also clear the vendor.
      arch_spec.GetTriple().setOSName(
          llvm::formatv("netbsd{0}.{1}.{2}", version_major, version_minor,
                        version_patch).str());
      arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
    }
    // Process NetBSD ELF core(5) notes
    else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) &&
             (note.n_type == LLDB_NT_NETBSD_PROCINFO)) {
      // Set the elf OS version to NetBSD.  Also clear the vendor.
      arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
      arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
    }
    // Process OpenBSD ELF notes.
    else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
      // Set the elf OS version to OpenBSD.  Also clear the vendor.
      arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
      arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
    } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
      arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
      arch_spec.GetTriple().setEnvironment(
          llvm::Triple::EnvironmentType::Android);
    } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
      // This is sometimes found in core files and usually contains extended
      // register info
      arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
    } else if (note.n_name == LLDB_NT_OWNER_CORE) {
      // Parse the NT_FILE to look for stuff in paths to shared libraries As
      // the contents look like this in a 64 bit ELF core file: count     =
      // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index
      // start              end                file_ofs           path =====
      // 0x0000000000401000 0x0000000000000000 /tmp/a.out [  1]
      // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [
      // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
      // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000
      // /lib/x86_64-linux-gnu/libc-2.19.so [  4] 0x00007fa79cba8000
      // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-
      // gnu/libc-2.19.so [  5] 0x00007fa79cda7000 0x00007fa79cdab000
      // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [  6]
      // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64
      // -linux-gnu/libc-2.19.so [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000
      // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [  8]
      // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64
      // -linux-gnu/ld-2.19.so [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000
      // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs
      // the count, page_size, start, end, file_ofs are uint32_t For reference:
      // see readelf source code (in binutils).
      if (note.n_type == NT_FILE) {
        uint64_t count = data.GetAddress(&offset);
        const char *cstr;
        data.GetAddress(&offset); // Skip page size
        offset += count * 3 *
                  data.GetAddressByteSize(); // Skip all start/end/file_ofs
        for (size_t i = 0; i < count; ++i) {
          cstr = data.GetCStr(&offset);
          if (cstr == nullptr) {
            error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
                                           "at an offset after the end "
                                           "(GetCStr returned nullptr)",
                                           __FUNCTION__);
            return error;
          }
          llvm::StringRef path(cstr);
          if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
            arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
            break;
          }
        }
        if (arch_spec.IsMIPS() &&
            arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
          // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
          // cases (e.g. compile with -nostdlib) Hence set OS to Linux
          arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
      }
    }

    // Calculate the offset of the next note just in case "offset" has been
    // used to poke at the contents of the note data
    offset = note_offset + note.GetByteSize();
  }

  return error;
}

void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
                                       ArchSpec &arch_spec) {
  lldb::offset_t Offset = 0;

  uint8_t FormatVersion = data.GetU8(&Offset);
  if (FormatVersion != llvm::ELFAttrs::Format_Version)
    return;

  Offset = Offset + sizeof(uint32_t); // Section Length
  llvm::StringRef VendorName = data.GetCStr(&Offset);

  if (VendorName != "aeabi")
    return;

  if (arch_spec.GetTriple().getEnvironment() ==
      llvm::Triple::UnknownEnvironment)
    arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);

  while (Offset < length) {
    uint8_t Tag = data.GetU8(&Offset);
    uint32_t Size = data.GetU32(&Offset);

    if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
      continue;

    while (Offset < length) {
      uint64_t Tag = data.GetULEB128(&Offset);
      switch (Tag) {
      default:
        if (Tag < 32)
          data.GetULEB128(&Offset);
        else if (Tag % 2 == 0)
          data.GetULEB128(&Offset);
        else
          data.GetCStr(&Offset);

        break;

      case llvm::ARMBuildAttrs::CPU_raw_name:
      case llvm::ARMBuildAttrs::CPU_name:
        data.GetCStr(&Offset);

        break;

      case llvm::ARMBuildAttrs::ABI_VFP_args: {
        uint64_t VFPArgs = data.GetULEB128(&Offset);

        if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
          if (arch_spec.GetTriple().getEnvironment() ==
                  llvm::Triple::UnknownEnvironment ||
              arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
            arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);

          arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
        } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
          if (arch_spec.GetTriple().getEnvironment() ==
                  llvm::Triple::UnknownEnvironment ||
              arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
            arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);

          arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
        }

        break;
      }
      }
    }
  }
}

// GetSectionHeaderInfo
size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
                                           DataExtractor &object_data,
                                           const elf::ELFHeader &header,
                                           lldb_private::UUID &uuid,
                                           std::string &gnu_debuglink_file,
                                           uint32_t &gnu_debuglink_crc,
                                           ArchSpec &arch_spec) {
  // Don't reparse the section headers if we already did that.
  if (!section_headers.empty())
    return section_headers.size();

  // Only initialize the arch_spec to okay defaults if they're not already set.
  // We'll refine this with note data as we parse the notes.
  if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
    llvm::Triple::OSType ostype;
    llvm::Triple::OSType spec_ostype;
    const uint32_t sub_type = subTypeFromElfHeader(header);
    arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
                              header.e_ident[EI_OSABI]);

    // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
    // determined based on EI_OSABI flag and the info extracted from ELF notes
    // (see RefineModuleDetailsFromNote). However in some cases that still
    // might be not enough: for example a shared library might not have any
    // notes at all and have EI_OSABI flag set to System V, as result the OS
    // will be set to UnknownOS.
    GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
    spec_ostype = arch_spec.GetTriple().getOS();
    assert(spec_ostype == ostype);
    UNUSED_IF_ASSERT_DISABLED(spec_ostype);
  }

  if (arch_spec.GetMachine() == llvm::Triple::mips ||
      arch_spec.GetMachine() == llvm::Triple::mipsel ||
      arch_spec.GetMachine() == llvm::Triple::mips64 ||
      arch_spec.GetMachine() == llvm::Triple::mips64el) {
    switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
    case llvm::ELF::EF_MIPS_MICROMIPS:
      arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
      break;
    case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
      arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
      break;
    case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
      arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
      break;
    default:
      break;
    }
  }

  if (arch_spec.GetMachine() == llvm::Triple::arm ||
      arch_spec.GetMachine() == llvm::Triple::thumb) {
    if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
      arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
    else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
      arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
  }

  // If there are no section headers we are done.
  if (header.e_shnum == 0)
    return 0;

  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));

  section_headers.resize(header.e_shnum);
  if (section_headers.size() != header.e_shnum)
    return 0;

  const size_t sh_size = header.e_shnum * header.e_shentsize;
  const elf_off sh_offset = header.e_shoff;
  DataExtractor sh_data;
  if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
    return 0;

  uint32_t idx;
  lldb::offset_t offset;
  for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
    if (!section_headers[idx].Parse(sh_data, &offset))
      break;
  }
  if (idx < section_headers.size())
    section_headers.resize(idx);

  const unsigned strtab_idx = header.e_shstrndx;
  if (strtab_idx && strtab_idx < section_headers.size()) {
    const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
    const size_t byte_size = sheader.sh_size;
    const Elf64_Off offset = sheader.sh_offset;
    lldb_private::DataExtractor shstr_data;

    if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
      for (SectionHeaderCollIter I = section_headers.begin();
           I != section_headers.end(); ++I) {
        static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
        const ELFSectionHeaderInfo &sheader = *I;
        const uint64_t section_size =
            sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
        ConstString name(shstr_data.PeekCStr(I->sh_name));

        I->section_name = name;

        if (arch_spec.IsMIPS()) {
          uint32_t arch_flags = arch_spec.GetFlags();
          DataExtractor data;
          if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {

            if (section_size && (data.SetData(object_data, sheader.sh_offset,
                                              section_size) == section_size)) {
              // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
              lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
              arch_flags |= data.GetU32(&offset);

              // The floating point ABI is at offset 7
              offset = 7;
              switch (data.GetU8(&offset)) {
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
                break;
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
                break;
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
                break;
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
                break;
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
                break;
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
                break;
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
                break;
              case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
                arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
                break;
              }
            }
          }
          // Settings appropriate ArchSpec ABI Flags
          switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
          case llvm::ELF::EF_MIPS_ABI_O32:
            arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
            break;
          case EF_MIPS_ABI_O64:
            arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
            break;
          case EF_MIPS_ABI_EABI32:
            arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
            break;
          case EF_MIPS_ABI_EABI64:
            arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
            break;
          default:
            // ABI Mask doesn't cover N32 and N64 ABI.
            if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
              arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
            else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
              arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
            break;
          }
          arch_spec.SetFlags(arch_flags);
        }

        if (arch_spec.GetMachine() == llvm::Triple::arm ||
            arch_spec.GetMachine() == llvm::Triple::thumb) {
          DataExtractor data;

          if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
              data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
            ParseARMAttributes(data, section_size, arch_spec);
        }

        if (name == g_sect_name_gnu_debuglink) {
          DataExtractor data;
          if (section_size && (data.SetData(object_data, sheader.sh_offset,
                                            section_size) == section_size)) {
            lldb::offset_t gnu_debuglink_offset = 0;
            gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
            gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
            data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
          }
        }

        // Process ELF note section entries.
        bool is_note_header = (sheader.sh_type == SHT_NOTE);

        // The section header ".note.android.ident" is stored as a
        // PROGBITS type header but it is actually a note header.
        static ConstString g_sect_name_android_ident(".note.android.ident");
        if (!is_note_header && name == g_sect_name_android_ident)
          is_note_header = true;

        if (is_note_header) {
          // Allow notes to refine module info.
          DataExtractor data;
          if (section_size && (data.SetData(object_data, sheader.sh_offset,
                                            section_size) == section_size)) {
            Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
            if (error.Fail()) {
              LLDB_LOGF(log, "ObjectFileELF::%s ELF note processing failed: %s",
                        __FUNCTION__, error.AsCString());
            }
          }
        }
      }

      // Make any unknown triple components to be unspecified unknowns.
      if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
        arch_spec.GetTriple().setVendorName(llvm::StringRef());
      if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
        arch_spec.GetTriple().setOSName(llvm::StringRef());

      return section_headers.size();
    }
  }

  section_headers.clear();
  return 0;
}

llvm::StringRef
ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
  size_t pos = symbol_name.find('@');
  return symbol_name.substr(0, pos);
}

// ParseSectionHeaders
size_t ObjectFileELF::ParseSectionHeaders() {
  return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid,
                              m_gnu_debuglink_file, m_gnu_debuglink_crc,
                              m_arch_spec);
}

const ObjectFileELF::ELFSectionHeaderInfo *
ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
  if (!ParseSectionHeaders())
    return nullptr;

  if (id < m_section_headers.size())
    return &m_section_headers[id];

  return nullptr;
}

lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
  if (!name || !name[0] || !ParseSectionHeaders())
    return 0;
  for (size_t i = 1; i < m_section_headers.size(); ++i)
    if (m_section_headers[i].section_name == ConstString(name))
      return i;
  return 0;
}

static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
  if (Name.consume_front(".debug_") || Name.consume_front(".zdebug_")) {
    return llvm::StringSwitch<SectionType>(Name)
        .Case("abbrev", eSectionTypeDWARFDebugAbbrev)
        .Case("abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo)
        .Case("addr", eSectionTypeDWARFDebugAddr)
        .Case("aranges", eSectionTypeDWARFDebugAranges)
        .Case("cu_index", eSectionTypeDWARFDebugCuIndex)
        .Case("frame", eSectionTypeDWARFDebugFrame)
        .Case("info", eSectionTypeDWARFDebugInfo)
        .Case("info.dwo", eSectionTypeDWARFDebugInfoDwo)
        .Cases("line", "line.dwo", eSectionTypeDWARFDebugLine)
        .Cases("line_str", "line_str.dwo", eSectionTypeDWARFDebugLineStr)
        .Case("loc", eSectionTypeDWARFDebugLoc)
        .Case("loc.dwo", eSectionTypeDWARFDebugLocDwo)
        .Case("loclists", eSectionTypeDWARFDebugLocLists)
        .Case("loclists.dwo", eSectionTypeDWARFDebugLocListsDwo)
        .Case("macinfo", eSectionTypeDWARFDebugMacInfo)
        .Cases("macro", "macro.dwo", eSectionTypeDWARFDebugMacro)
        .Case("names", eSectionTypeDWARFDebugNames)
        .Case("pubnames", eSectionTypeDWARFDebugPubNames)
        .Case("pubtypes", eSectionTypeDWARFDebugPubTypes)
        .Case("ranges", eSectionTypeDWARFDebugRanges)
        .Case("rnglists", eSectionTypeDWARFDebugRngLists)
        .Case("rnglists.dwo", eSectionTypeDWARFDebugRngListsDwo)
        .Case("str", eSectionTypeDWARFDebugStr)
        .Case("str.dwo", eSectionTypeDWARFDebugStrDwo)
        .Case("str_offsets", eSectionTypeDWARFDebugStrOffsets)
        .Case("str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo)
        .Case("tu_index", eSectionTypeDWARFDebugTuIndex)
        .Case("types", eSectionTypeDWARFDebugTypes)
        .Case("types.dwo", eSectionTypeDWARFDebugTypesDwo)
        .Default(eSectionTypeOther);
  }
  return llvm::StringSwitch<SectionType>(Name)
      .Case(".ARM.exidx", eSectionTypeARMexidx)
      .Case(".ARM.extab", eSectionTypeARMextab)
      .Cases(".bss", ".tbss", eSectionTypeZeroFill)
      .Cases(".data", ".tdata", eSectionTypeData)
      .Case(".eh_frame", eSectionTypeEHFrame)
      .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
      .Case(".gosymtab", eSectionTypeGoSymtab)
      .Case(".text", eSectionTypeCode)
      .Default(eSectionTypeOther);
}

SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const {
  switch (H.sh_type) {
  case SHT_PROGBITS:
    if (H.sh_flags & SHF_EXECINSTR)
      return eSectionTypeCode;
    break;
  case SHT_SYMTAB:
    return eSectionTypeELFSymbolTable;
  case SHT_DYNSYM:
    return eSectionTypeELFDynamicSymbols;
  case SHT_RELA:
  case SHT_REL:
    return eSectionTypeELFRelocationEntries;
  case SHT_DYNAMIC:
    return eSectionTypeELFDynamicLinkInfo;
  }
  return GetSectionTypeFromName(H.section_name.GetStringRef());
}

static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
  switch (Type) {
  case eSectionTypeData:
  case eSectionTypeZeroFill:
    return arch.GetDataByteSize();
  case eSectionTypeCode:
    return arch.GetCodeByteSize();
  default:
    return 1;
  }
}

static Permissions GetPermissions(const ELFSectionHeader &H) {
  Permissions Perm = Permissions(0);
  if (H.sh_flags & SHF_ALLOC)
    Perm |= ePermissionsReadable;
  if (H.sh_flags & SHF_WRITE)
    Perm |= ePermissionsWritable;
  if (H.sh_flags & SHF_EXECINSTR)
    Perm |= ePermissionsExecutable;
  return Perm;
}

static Permissions GetPermissions(const ELFProgramHeader &H) {
  Permissions Perm = Permissions(0);
  if (H.p_flags & PF_R)
    Perm |= ePermissionsReadable;
  if (H.p_flags & PF_W)
    Perm |= ePermissionsWritable;
  if (H.p_flags & PF_X)
    Perm |= ePermissionsExecutable;
  return Perm;
}

namespace {

using VMRange = lldb_private::Range<addr_t, addr_t>;

struct SectionAddressInfo {
  SectionSP Segment;
  VMRange Range;
};

// (Unlinked) ELF object files usually have 0 for every section address, meaning
// we need to compute synthetic addresses in order for "file addresses" from
// different sections to not overlap. This class handles that logic.
class VMAddressProvider {
  using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4,
                                       llvm::IntervalMapHalfOpenInfo<addr_t>>;

  ObjectFile::Type ObjectType;
  addr_t NextVMAddress = 0;
  VMMap::Allocator Alloc;
  VMMap Segments = VMMap(Alloc);
  VMMap Sections = VMMap(Alloc);
  lldb_private::Log *Log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
  size_t SegmentCount = 0;
  std::string SegmentName;

  VMRange GetVMRange(const ELFSectionHeader &H) {
    addr_t Address = H.sh_addr;
    addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
    if (ObjectType == ObjectFile::Type::eTypeObjectFile && Segments.empty() && (H.sh_flags & SHF_ALLOC)) {
      NextVMAddress =
          llvm::alignTo(NextVMAddress, std::max<addr_t>(H.sh_addralign, 1));
      Address = NextVMAddress;
      NextVMAddress += Size;
    }
    return VMRange(Address, Size);
  }

public:
  VMAddressProvider(ObjectFile::Type Type, llvm::StringRef SegmentName)
      : ObjectType(Type), SegmentName(std::string(SegmentName)) {}

  std::string GetNextSegmentName() const {
    return llvm::formatv("{0}[{1}]", SegmentName, SegmentCount).str();
  }

  llvm::Optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) {
    if (H.p_memsz == 0) {
      LLDB_LOG(Log, "Ignoring zero-sized {0} segment. Corrupt object file?",
               SegmentName);
      return llvm::None;
    }

    if (Segments.overlaps(H.p_vaddr, H.p_vaddr + H.p_memsz)) {
      LLDB_LOG(Log, "Ignoring overlapping {0} segment. Corrupt object file?",
               SegmentName);
      return llvm::None;
    }
    return VMRange(H.p_vaddr, H.p_memsz);
  }

  llvm::Optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) {
    VMRange Range = GetVMRange(H);
    SectionSP Segment;
    auto It = Segments.find(Range.GetRangeBase());
    if ((H.sh_flags & SHF_ALLOC) && It.valid()) {
      addr_t MaxSize;
      if (It.start() <= Range.GetRangeBase()) {
        MaxSize = It.stop() - Range.GetRangeBase();
        Segment = *It;
      } else
        MaxSize = It.start() - Range.GetRangeBase();
      if (Range.GetByteSize() > MaxSize) {
        LLDB_LOG(Log, "Shortening section crossing segment boundaries. "
                      "Corrupt object file?");
        Range.SetByteSize(MaxSize);
      }
    }
    if (Range.GetByteSize() > 0 &&
        Sections.overlaps(Range.GetRangeBase(), Range.GetRangeEnd())) {
      LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?");
      return llvm::None;
    }
    if (Segment)
      Range.Slide(-Segment->GetFileAddress());
    return SectionAddressInfo{Segment, Range};
  }

  void AddSegment(const VMRange &Range, SectionSP Seg) {
    Segments.insert(Range.GetRangeBase(), Range.GetRangeEnd(), std::move(Seg));
    ++SegmentCount;
  }

  void AddSection(SectionAddressInfo Info, SectionSP Sect) {
    if (Info.Range.GetByteSize() == 0)
      return;
    if (Info.Segment)
      Info.Range.Slide(Info.Segment->GetFileAddress());
    Sections.insert(Info.Range.GetRangeBase(), Info.Range.GetRangeEnd(),
                    std::move(Sect));
  }
};
}

void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
  if (m_sections_up)
    return;

  m_sections_up = std::make_unique<SectionList>();
  VMAddressProvider regular_provider(GetType(), "PT_LOAD");
  VMAddressProvider tls_provider(GetType(), "PT_TLS");

  for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
    const ELFProgramHeader &PHdr = EnumPHdr.value();
    if (PHdr.p_type != PT_LOAD && PHdr.p_type != PT_TLS)
      continue;

    VMAddressProvider &provider =
        PHdr.p_type == PT_TLS ? tls_provider : regular_provider;
    auto InfoOr = provider.GetAddressInfo(PHdr);
    if (!InfoOr)
      continue;

    uint32_t Log2Align = llvm::Log2_64(std::max<elf_xword>(PHdr.p_align, 1));
    SectionSP Segment = std::make_shared<Section>(
        GetModule(), this, SegmentID(EnumPHdr.index()),
        ConstString(provider.GetNextSegmentName()), eSectionTypeContainer,
        InfoOr->GetRangeBase(), InfoOr->GetByteSize(), PHdr.p_offset,
        PHdr.p_filesz, Log2Align, /*flags*/ 0);
    Segment->SetPermissions(GetPermissions(PHdr));
    Segment->SetIsThreadSpecific(PHdr.p_type == PT_TLS);
    m_sections_up->AddSection(Segment);

    provider.AddSegment(*InfoOr, std::move(Segment));
  }

  ParseSectionHeaders();
  if (m_section_headers.empty())
    return;

  for (SectionHeaderCollIter I = std::next(m_section_headers.begin());
       I != m_section_headers.end(); ++I) {
    const ELFSectionHeaderInfo &header = *I;

    ConstString &name = I->section_name;
    const uint64_t file_size =
        header.sh_type == SHT_NOBITS ? 0 : header.sh_size;

    VMAddressProvider &provider =
        header.sh_flags & SHF_TLS ? tls_provider : regular_provider;
    auto InfoOr = provider.GetAddressInfo(header);
    if (!InfoOr)
      continue;

    SectionType sect_type = GetSectionType(header);

    const uint32_t target_bytes_size =
        GetTargetByteSize(sect_type, m_arch_spec);

    elf::elf_xword log2align =
        (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);

    SectionSP section_sp(new Section(
        InfoOr->Segment, GetModule(), // Module to which this section belongs.
        this,            // ObjectFile to which this section belongs and should
                         // read section data from.
        SectionIndex(I), // Section ID.
        name,            // Section name.
        sect_type,       // Section type.
        InfoOr->Range.GetRangeBase(), // VM address.
        InfoOr->Range.GetByteSize(),  // VM size in bytes of this section.
        header.sh_offset,             // Offset of this section in the file.
        file_size,           // Size of the section as found in the file.
        log2align,           // Alignment of the section
        header.sh_flags,     // Flags for this section.
        target_bytes_size)); // Number of host bytes per target byte

    section_sp->SetPermissions(GetPermissions(header));
    section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
    (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up)
        .AddSection(section_sp);
    provider.AddSection(std::move(*InfoOr), std::move(section_sp));
  }

  // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
  // unified section list.
  if (GetType() != eTypeDebugInfo)
    unified_section_list = *m_sections_up;
  
  // If there's a .gnu_debugdata section, we'll try to read the .symtab that's
  // embedded in there and replace the one in the original object file (if any).
  // If there's none in the orignal object file, we add it to it.
  if (auto gdd_obj_file = GetGnuDebugDataObjectFile()) {
    if (auto gdd_objfile_section_list = gdd_obj_file->GetSectionList()) {
      if (SectionSP symtab_section_sp =
              gdd_objfile_section_list->FindSectionByType(
                  eSectionTypeELFSymbolTable, true)) {
        SectionSP module_section_sp = unified_section_list.FindSectionByType(
            eSectionTypeELFSymbolTable, true);
        if (module_section_sp)
          unified_section_list.ReplaceSection(module_section_sp->GetID(),
                                              symtab_section_sp);
        else
          unified_section_list.AddSection(symtab_section_sp);
      }
    }
  }  
}

std::shared_ptr<ObjectFileELF> ObjectFileELF::GetGnuDebugDataObjectFile() {
  if (m_gnu_debug_data_object_file != nullptr)
    return m_gnu_debug_data_object_file;

  SectionSP section =
      GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"));
  if (!section)
    return nullptr;

  if (!lldb_private::lzma::isAvailable()) {
    GetModule()->ReportWarning(
        "No LZMA support found for reading .gnu_debugdata section");
    return nullptr;
  }

  // Uncompress the data
  DataExtractor data;
  section->GetSectionData(data);
  llvm::SmallVector<uint8_t, 0> uncompressedData;
  auto err = lldb_private::lzma::uncompress(data.GetData(), uncompressedData);
  if (err) {
    GetModule()->ReportWarning(
        "An error occurred while decompression the section %s: %s",
        section->GetName().AsCString(), llvm::toString(std::move(err)).c_str());
    return nullptr;
  }

  // Construct ObjectFileELF object from decompressed buffer
  DataBufferSP gdd_data_buf(
      new DataBufferHeap(uncompressedData.data(), uncompressedData.size()));
  auto fspec = GetFileSpec().CopyByAppendingPathComponent(
      llvm::StringRef("gnu_debugdata"));
  m_gnu_debug_data_object_file.reset(new ObjectFileELF(
      GetModule(), gdd_data_buf, 0, &fspec, 0, gdd_data_buf->GetByteSize()));

  // This line is essential; otherwise a breakpoint can be set but not hit.
  m_gnu_debug_data_object_file->SetType(ObjectFile::eTypeDebugInfo);

  ArchSpec spec = m_gnu_debug_data_object_file->GetArchitecture();
  if (spec && m_gnu_debug_data_object_file->SetModulesArchitecture(spec))
    return m_gnu_debug_data_object_file;
  
  return nullptr;
}

// Find the arm/aarch64 mapping symbol character in the given symbol name.
// Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
// recognize cases when the mapping symbol prefixed by an arbitrary string
// because if a symbol prefix added to each symbol in the object file with
// objcopy then the mapping symbols are also prefixed.
static char FindArmAarch64MappingSymbol(const char *symbol_name) {
  if (!symbol_name)
    return '\0';

  const char *dollar_pos = ::strchr(symbol_name, '$');
  if (!dollar_pos || dollar_pos[1] == '\0')
    return '\0';

  if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
    return dollar_pos[1];
  return '\0';
}

#define STO_MIPS_ISA (3 << 6)
#define STO_MICROMIPS (2 << 6)
#define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)

// private
unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
                                     SectionList *section_list,
                                     const size_t num_symbols,
                                     const DataExtractor &symtab_data,
                                     const DataExtractor &strtab_data) {
  ELFSymbol symbol;
  lldb::offset_t offset = 0;

  static ConstString text_section_name(".text");
  static ConstString init_section_name(".init");
  static ConstString fini_section_name(".fini");
  static ConstString ctors_section_name(".ctors");
  static ConstString dtors_section_name(".dtors");

  static ConstString data_section_name(".data");
  static ConstString rodata_section_name(".rodata");
  static ConstString rodata1_section_name(".rodata1");
  static ConstString data2_section_name(".data1");
  static ConstString bss_section_name(".bss");
  static ConstString opd_section_name(".opd"); // For ppc64

  // On Android the oatdata and the oatexec symbols in the oat and odex files
  // covers the full .text section what causes issues with displaying unusable
  // symbol name to the user and very slow unwinding speed because the
  // instruction emulation based unwind plans try to emulate all instructions
  // in these symbols. Don't add these symbols to the symbol list as they have
  // no use for the debugger and they are causing a lot of trouble. Filtering
  // can't be restricted to Android because this special object file don't
  // contain the note section specifying the environment to Android but the
  // custom extension and file name makes it highly unlikely that this will
  // collide with anything else.
  ConstString file_extension = m_file.GetFileNameExtension();
  bool skip_oatdata_oatexec =
      file_extension == ".oat" || file_extension == ".odex";

  ArchSpec arch = GetArchitecture();
  ModuleSP module_sp(GetModule());
  SectionList *module_section_list =
      module_sp ? module_sp->GetSectionList() : nullptr;

  // Local cache to avoid doing a FindSectionByName for each symbol. The "const
  // char*" key must came from a ConstString object so they can be compared by
  // pointer
  std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;

  unsigned i;
  for (i = 0; i < num_symbols; ++i) {
    if (!symbol.Parse(symtab_data, &offset))
      break;

    const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
    if (!symbol_name)
      symbol_name = "";

    // No need to add non-section symbols that have no names
    if (symbol.getType() != STT_SECTION &&
        (symbol_name == nullptr || symbol_name[0] == '\0'))
      continue;

    // Skipping oatdata and oatexec sections if it is requested. See details
    // above the definition of skip_oatdata_oatexec for the reasons.
    if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
                                 ::strcmp(symbol_name, "oatexec") == 0))
      continue;

    SectionSP symbol_section_sp;
    SymbolType symbol_type = eSymbolTypeInvalid;
    Elf64_Half shndx = symbol.st_shndx;

    switch (shndx) {
    case SHN_ABS:
      symbol_type = eSymbolTypeAbsolute;
      break;
    case SHN_UNDEF:
      symbol_type = eSymbolTypeUndefined;
      break;
    default:
      symbol_section_sp = section_list->FindSectionByID(shndx);
      break;
    }

    // If a symbol is undefined do not process it further even if it has a STT
    // type
    if (symbol_type != eSymbolTypeUndefined) {
      switch (symbol.getType()) {
      default:
      case STT_NOTYPE:
        // The symbol's type is not specified.
        break;

      case STT_OBJECT:
        // The symbol is associated with a data object, such as a variable, an
        // array, etc.
        symbol_type = eSymbolTypeData;
        break;

      case STT_FUNC:
        // The symbol is associated with a function or other executable code.
        symbol_type = eSymbolTypeCode;
        break;

      case STT_SECTION:
        // The symbol is associated with a section. Symbol table entries of
        // this type exist primarily for relocation and normally have STB_LOCAL
        // binding.
        break;

      case STT_FILE:
        // Conventionally, the symbol's name gives the name of the source file
        // associated with the object file. A file symbol has STB_LOCAL
        // binding, its section index is SHN_ABS, and it precedes the other
        // STB_LOCAL symbols for the file, if it is present.
        symbol_type = eSymbolTypeSourceFile;
        break;

      case STT_GNU_IFUNC:
        // The symbol is associated with an indirect function. The actual
        // function will be resolved if it is referenced.
        symbol_type = eSymbolTypeResolver;
        break;
      }
    }

    if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
      if (symbol_section_sp) {
        ConstString sect_name = symbol_section_sp->GetName();
        if (sect_name == text_section_name || sect_name == init_section_name ||
            sect_name == fini_section_name || sect_name == ctors_section_name ||
            sect_name == dtors_section_name) {
          symbol_type = eSymbolTypeCode;
        } else if (sect_name == data_section_name ||
                   sect_name == data2_section_name ||
                   sect_name == rodata_section_name ||
                   sect_name == rodata1_section_name ||
                   sect_name == bss_section_name) {
          symbol_type = eSymbolTypeData;
        }
      }
    }

    int64_t symbol_value_offset = 0;
    uint32_t additional_flags = 0;

    if (arch.IsValid()) {
      if (arch.GetMachine() == llvm::Triple::arm) {
        if (symbol.getBinding() == STB_LOCAL) {
          char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
          if (symbol_type == eSymbolTypeCode) {
            switch (mapping_symbol) {
            case 'a':
              // $a[.<any>]* - marks an ARM instruction sequence
              m_address_class_map[symbol.st_value] = AddressClass::eCode;
              break;
            case 'b':
            case 't':
              // $b[.<any>]* - marks a THUMB BL instruction sequence
              // $t[.<any>]* - marks a THUMB instruction sequence
              m_address_class_map[symbol.st_value] =
                  AddressClass::eCodeAlternateISA;
              break;
            case 'd':
              // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
              m_address_class_map[symbol.st_value] = AddressClass::eData;
              break;
            }
          }
          if (mapping_symbol)
            continue;
        }
      } else if (arch.GetMachine() == llvm::Triple::aarch64) {
        if (symbol.getBinding() == STB_LOCAL) {
          char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
          if (symbol_type == eSymbolTypeCode) {
            switch (mapping_symbol) {
            case 'x':
              // $x[.<any>]* - marks an A64 instruction sequence
              m_address_class_map[symbol.st_value] = AddressClass::eCode;
              break;
            case 'd':
              // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
              m_address_class_map[symbol.st_value] = AddressClass::eData;
              break;
            }
          }
          if (mapping_symbol)
            continue;
        }
      }

      if (arch.GetMachine() == llvm::Triple::arm) {
        if (symbol_type == eSymbolTypeCode) {
          if (symbol.st_value & 1) {
            // Subtracting 1 from the address effectively unsets the low order
            // bit, which results in the address actually pointing to the
            // beginning of the symbol. This delta will be used below in
            // conjunction with symbol.st_value to produce the final
            // symbol_value that we store in the symtab.
            symbol_value_offset = -1;
            m_address_class_map[symbol.st_value ^ 1] =
                AddressClass::eCodeAlternateISA;
          } else {
            // This address is ARM
            m_address_class_map[symbol.st_value] = AddressClass::eCode;
          }
        }
      }

      /*
       * MIPS:
       * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
       * MIPS).
       * This allows processor to switch between microMIPS and MIPS without any
       * need
       * for special mode-control register. However, apart from .debug_line,
       * none of
       * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
       * st_other
       * flag to check whether the symbol is microMIPS and then set the address
       * class
       * accordingly.
      */
      if (arch.IsMIPS()) {
        if (IS_MICROMIPS(symbol.st_other))
          m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
        else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
          symbol.st_value = symbol.st_value & (~1ull);
          m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
        } else {
          if (symbol_type == eSymbolTypeCode)
            m_address_class_map[symbol.st_value] = AddressClass::eCode;
          else if (symbol_type == eSymbolTypeData)
            m_address_class_map[symbol.st_value] = AddressClass::eData;
          else
            m_address_class_map[symbol.st_value] = AddressClass::eUnknown;
        }
      }
    }

    // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
    // symbols. See above for more details.
    uint64_t symbol_value = symbol.st_value + symbol_value_offset;

    if (symbol_section_sp == nullptr && shndx == SHN_ABS &&
        symbol.st_size != 0) {
      // We don't have a section for a symbol with non-zero size. Create a new
      // section for it so the address range covered by the symbol is also
      // covered by the module (represented through the section list). It is
      // needed so module lookup for the addresses covered by this symbol will
      // be successfull. This case happens for absolute symbols.
      ConstString fake_section_name(std::string(".absolute.") + symbol_name);
      symbol_section_sp =
          std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name,
                                    eSectionTypeAbsoluteAddress, symbol_value,
                                    symbol.st_size, 0, 0, 0, SHF_ALLOC);

      module_section_list->AddSection(symbol_section_sp);
      section_list->AddSection(symbol_section_sp);
    }

    if (symbol_section_sp &&
        CalculateType() != ObjectFile::Type::eTypeObjectFile)
      symbol_value -= symbol_section_sp->GetFileAddress();

    if (symbol_section_sp && module_section_list &&
        module_section_list != section_list) {
      ConstString sect_name = symbol_section_sp->GetName();
      auto section_it = section_name_to_section.find(sect_name.GetCString());
      if (section_it == section_name_to_section.end())
        section_it =
            section_name_to_section
                .emplace(sect_name.GetCString(),
                         module_section_list->FindSectionByName(sect_name))
                .first;
      if (section_it->second)
        symbol_section_sp = section_it->second;
    }

    bool is_global = symbol.getBinding() == STB_GLOBAL;
    uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
    llvm::StringRef symbol_ref(symbol_name);

    // Symbol names may contain @VERSION suffixes. Find those and strip them
    // temporarily.
    size_t version_pos = symbol_ref.find('@');
    bool has_suffix = version_pos != llvm::StringRef::npos;
    llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
    Mangled mangled(symbol_bare);

    // Now append the suffix back to mangled and unmangled names. Only do it if
    // the demangling was successful (string is not empty).
    if (has_suffix) {
      llvm::StringRef suffix = symbol_ref.substr(version_pos);

      llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
      if (!mangled_name.empty())
        mangled.SetMangledName(ConstString((mangled_name + suffix).str()));

      ConstString demangled = mangled.GetDemangledName();
      llvm::StringRef demangled_name = demangled.GetStringRef();
      if (!demangled_name.empty())
        mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
    }

    // In ELF all symbol should have a valid size but it is not true for some
    // function symbols coming from hand written assembly. As none of the
    // function symbol should have 0 size we try to calculate the size for
    // these symbols in the symtab with saying that their original size is not
    // valid.
    bool symbol_size_valid =
        symbol.st_size != 0 || symbol.getType() != STT_FUNC;

    Symbol dc_symbol(
        i + start_id, // ID is the original symbol table index.
        mangled,
        symbol_type,                    // Type of this symbol
        is_global,                      // Is this globally visible?
        false,                          // Is this symbol debug info?
        false,                          // Is this symbol a trampoline?
        false,                          // Is this symbol artificial?
        AddressRange(symbol_section_sp, // Section in which this symbol is
                                        // defined or null.
                     symbol_value,      // Offset in section or symbol value.
                     symbol.st_size),   // Size in bytes of this symbol.
        symbol_size_valid,              // Symbol size is valid
        has_suffix,                     // Contains linker annotations?
        flags);                         // Symbol flags.
    if (symbol.getBinding() == STB_WEAK)
      dc_symbol.SetIsWeak(true);
    symtab->AddSymbol(dc_symbol);
  }
  return i;
}

unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
                                         user_id_t start_id,
                                         lldb_private::Section *symtab) {
  if (symtab->GetObjectFile() != this) {
    // If the symbol table section is owned by a different object file, have it
    // do the parsing.
    ObjectFileELF *obj_file_elf =
        static_cast<ObjectFileELF *>(symtab->GetObjectFile());
    return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
  }

  // Get section list for this object file.
  SectionList *section_list = m_sections_up.get();
  if (!section_list)
    return 0;

  user_id_t symtab_id = symtab->GetID();
  const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
  assert(symtab_hdr->sh_type == SHT_SYMTAB ||
         symtab_hdr->sh_type == SHT_DYNSYM);

  // sh_link: section header index of associated string table.
  user_id_t strtab_id = symtab_hdr->sh_link;
  Section *strtab = section_list->FindSectionByID(strtab_id).get();

  if (symtab && strtab) {
    assert(symtab->GetObjectFile() == this);
    assert(strtab->GetObjectFile() == this);

    DataExtractor symtab_data;
    DataExtractor strtab_data;
    if (ReadSectionData(symtab, symtab_data) &&
        ReadSectionData(strtab, strtab_data)) {
      size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;

      return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
                          symtab_data, strtab_data);
    }
  }

  return 0;
}

size_t ObjectFileELF::ParseDynamicSymbols() {
  if (m_dynamic_symbols.size())
    return m_dynamic_symbols.size();

  SectionList *section_list = GetSectionList();
  if (!section_list)
    return 0;

  // Find the SHT_DYNAMIC section.
  Section *dynsym =
      section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
          .get();
  if (!dynsym)
    return 0;
  assert(dynsym->GetObjectFile() == this);

  ELFDynamic symbol;
  DataExtractor dynsym_data;
  if (ReadSectionData(dynsym, dynsym_data)) {
    const lldb::offset_t section_size = dynsym_data.GetByteSize();
    lldb::offset_t cursor = 0;

    while (cursor < section_size) {
      if (!symbol.Parse(dynsym_data, &cursor))
        break;

      m_dynamic_symbols.push_back(symbol);
    }
  }

  return m_dynamic_symbols.size();
}

const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
  if (!ParseDynamicSymbols())
    return nullptr;

  DynamicSymbolCollIter I = m_dynamic_symbols.begin();
  DynamicSymbolCollIter E = m_dynamic_symbols.end();
  for (; I != E; ++I) {
    ELFDynamic *symbol = &*I;

    if (symbol->d_tag == tag)
      return symbol;
  }

  return nullptr;
}

unsigned ObjectFileELF::PLTRelocationType() {
  // DT_PLTREL
  //  This member specifies the type of relocation entry to which the
  //  procedure linkage table refers. The d_val member holds DT_REL or
  //  DT_RELA, as appropriate. All relocations in a procedure linkage table
  //  must use the same relocation.
  const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);

  if (symbol)
    return symbol->d_val;

  return 0;
}

// Returns the size of the normal plt entries and the offset of the first
// normal plt entry. The 0th entry in the plt table is usually a resolution
// entry which have different size in some architectures then the rest of the
// plt entries.
static std::pair<uint64_t, uint64_t>
GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
                         const ELFSectionHeader *plt_hdr) {
  const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;

  // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
  // 16 bytes. So round the entsize up by the alignment if addralign is set.
  elf_xword plt_entsize =
      plt_hdr->sh_addralign
          ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
          : plt_hdr->sh_entsize;

  // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
  // PLT entries relocation code in general requires multiple instruction and
  // should be greater than 4 bytes in most cases. Try to guess correct size
  // just in case.
  if (plt_entsize <= 4) {
    // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
    // size of the plt entries based on the number of entries and the size of
    // the plt section with the assumption that the size of the 0th entry is at
    // least as big as the size of the normal entries and it isn't much bigger
    // then that.
    if (plt_hdr->sh_addralign)
      plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
                    (num_relocations + 1) * plt_hdr->sh_addralign;
    else
      plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
  }

  elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;

  return std::make_pair(plt_entsize, plt_offset);
}

static unsigned ParsePLTRelocations(
    Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
    const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
    const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
    const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
    DataExtractor &symtab_data, DataExtractor &strtab_data) {
  ELFRelocation rel(rel_type);
  ELFSymbol symbol;
  lldb::offset_t offset = 0;

  uint64_t plt_offset, plt_entsize;
  std::tie(plt_entsize, plt_offset) =
      GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
  const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;

  typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
  reloc_info_fn reloc_type;
  reloc_info_fn reloc_symbol;

  if (hdr->Is32Bit()) {
    reloc_type = ELFRelocation::RelocType32;
    reloc_symbol = ELFRelocation::RelocSymbol32;
  } else {
    reloc_type = ELFRelocation::RelocType64;
    reloc_symbol = ELFRelocation::RelocSymbol64;
  }

  unsigned slot_type = hdr->GetRelocationJumpSlotType();
  unsigned i;
  for (i = 0; i < num_relocations; ++i) {
    if (!rel.Parse(rel_data, &offset))
      break;

    if (reloc_type(rel) != slot_type)
      continue;

    lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
    if (!symbol.Parse(symtab_data, &symbol_offset))
      break;

    const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
    uint64_t plt_index = plt_offset + i * plt_entsize;

    Symbol jump_symbol(
        i + start_id,          // Symbol table index
        symbol_name,           // symbol name.
        eSymbolTypeTrampoline, // Type of this symbol
        false,                 // Is this globally visible?
        false,                 // Is this symbol debug info?
        true,                  // Is this symbol a trampoline?
        true,                  // Is this symbol artificial?
        plt_section_sp, // Section in which this symbol is defined or null.
        plt_index,      // Offset in section or symbol value.
        plt_entsize,    // Size in bytes of this symbol.
        true,           // Size is valid
        false,          // Contains linker annotations?
        0);             // Symbol flags.

    symbol_table->AddSymbol(jump_symbol);
  }

  return i;
}

unsigned
ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
                                      const ELFSectionHeaderInfo *rel_hdr,
                                      user_id_t rel_id) {
  assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);

  // The link field points to the associated symbol table.
  user_id_t symtab_id = rel_hdr->sh_link;

  // If the link field doesn't point to the appropriate symbol name table then
  // try to find it by name as some compiler don't fill in the link fields.
  if (!symtab_id)
    symtab_id = GetSectionIndexByName(".dynsym");

  // Get PLT section.  We cannot use rel_hdr->sh_info, since current linkers
  // point that to the .got.plt or .got section instead of .plt.
  user_id_t plt_id = GetSectionIndexByName(".plt");

  if (!symtab_id || !plt_id)
    return 0;

  const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
  if (!plt_hdr)
    return 0;

  const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
  if (!sym_hdr)
    return 0;

  SectionList *section_list = m_sections_up.get();
  if (!section_list)
    return 0;

  Section *rel_section = section_list->FindSectionByID(rel_id).get();
  if (!rel_section)
    return 0;

  SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
  if (!plt_section_sp)
    return 0;

  Section *symtab = section_list->FindSectionByID(symtab_id).get();
  if (!symtab)
    return 0;

  // sh_link points to associated string table.
  Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get();
  if (!strtab)
    return 0;

  DataExtractor rel_data;
  if (!ReadSectionData(rel_section, rel_data))
    return 0;

  DataExtractor symtab_data;
  if (!ReadSectionData(symtab, symtab_data))
    return 0;

  DataExtractor strtab_data;
  if (!ReadSectionData(strtab, strtab_data))
    return 0;

  unsigned rel_type = PLTRelocationType();
  if (!rel_type)
    return 0;

  return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
                             rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
                             rel_data, symtab_data, strtab_data);
}

unsigned ObjectFileELF::ApplyRelocations(
    Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
    const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
    DataExtractor &rel_data, DataExtractor &symtab_data,
    DataExtractor &debug_data, Section *rel_section) {
  ELFRelocation rel(rel_hdr->sh_type);
  lldb::addr_t offset = 0;
  const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
  typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
  reloc_info_fn reloc_type;
  reloc_info_fn reloc_symbol;

  if (hdr->Is32Bit()) {
    reloc_type = ELFRelocation::RelocType32;
    reloc_symbol = ELFRelocation::RelocSymbol32;
  } else {
    reloc_type = ELFRelocation::RelocType64;
    reloc_symbol = ELFRelocation::RelocSymbol64;
  }

  for (unsigned i = 0; i < num_relocations; ++i) {
    if (!rel.Parse(rel_data, &offset))
      break;

    Symbol *symbol = nullptr;

    if (hdr->Is32Bit()) {
      switch (reloc_type(rel)) {
      case R_386_32:
      case R_386_PC32:
      default:
        // FIXME: This asserts with this input:
        //
        // foo.cpp
        // int main(int argc, char **argv) { return 0; }
        //
        // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o
        //
        // and running this on the foo.o module.
        assert(false && "unexpected relocation type");
      }
    } else {
      switch (reloc_type(rel)) {
      case R_AARCH64_ABS64:
      case R_X86_64_64: {
        symbol = symtab->FindSymbolByID(reloc_symbol(rel));
        if (symbol) {
          addr_t value = symbol->GetAddressRef().GetFileAddress();
          DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
          uint64_t *dst = reinterpret_cast<uint64_t *>(
              data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
              ELFRelocation::RelocOffset64(rel));
          uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
          memcpy(dst, &val_offset, sizeof(uint64_t));
        }
        break;
      }
      case R_X86_64_32:
      case R_X86_64_32S:
      case R_AARCH64_ABS32: {
        symbol = symtab->FindSymbolByID(reloc_symbol(rel));
        if (symbol) {
          addr_t value = symbol->GetAddressRef().GetFileAddress();
          value += ELFRelocation::RelocAddend32(rel);
          if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) ||
              (reloc_type(rel) == R_X86_64_32S &&
               ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) ||
              (reloc_type(rel) == R_AARCH64_ABS32 &&
               ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) {
            Log *log =
                lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
            LLDB_LOGF(log, "Failed to apply debug info relocations");
            break;
          }
          uint32_t truncated_addr = (value & 0xFFFFFFFF);
          DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
          uint32_t *dst = reinterpret_cast<uint32_t *>(
              data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
              ELFRelocation::RelocOffset32(rel));
          memcpy(dst, &truncated_addr, sizeof(uint32_t));
        }
        break;
      }
      case R_X86_64_PC32:
      default:
        assert(false && "unexpected relocation type");
      }
    }
  }

  return 0;
}

unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
                                              user_id_t rel_id,
                                              lldb_private::Symtab *thetab) {
  assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);

  // Parse in the section list if needed.
  SectionList *section_list = GetSectionList();
  if (!section_list)
    return 0;

  user_id_t symtab_id = rel_hdr->sh_link;
  user_id_t debug_id = rel_hdr->sh_info;

  const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
  if (!symtab_hdr)
    return 0;

  const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
  if (!debug_hdr)
    return 0;

  Section *rel = section_list->FindSectionByID(rel_id).get();
  if (!rel)
    return 0;

  Section *symtab = section_list->FindSectionByID(symtab_id).get();
  if (!symtab)
    return 0;

  Section *debug = section_list->FindSectionByID(debug_id).get();
  if (!debug)
    return 0;

  DataExtractor rel_data;
  DataExtractor symtab_data;
  DataExtractor debug_data;

  if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
      GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
      GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
    ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
                     rel_data, symtab_data, debug_data, debug);
  }

  return 0;
}

Symtab *ObjectFileELF::GetSymtab() {
  ModuleSP module_sp(GetModule());
  if (!module_sp)
    return nullptr;

  // We always want to use the main object file so we (hopefully) only have one
  // cached copy of our symtab, dynamic sections, etc.
  ObjectFile *module_obj_file = module_sp->GetObjectFile();
  if (module_obj_file && module_obj_file != this)
    return module_obj_file->GetSymtab();

  if (m_symtab_up == nullptr) {
    SectionList *section_list = module_sp->GetSectionList();
    if (!section_list)
      return nullptr;

    uint64_t symbol_id = 0;
    std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());

    // Sharable objects and dynamic executables usually have 2 distinct symbol
    // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
    // smaller version of the symtab that only contains global symbols. The
    // information found in the dynsym is therefore also found in the symtab,
    // while the reverse is not necessarily true.
    Section *symtab =
        section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
    if (symtab) {
      m_symtab_up = std::make_unique<Symtab>(symtab->GetObjectFile());
      symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, symtab);
    }

    // The symtab section is non-allocable and can be stripped, while the
    // .dynsym section which should always be always be there. To support the
    // minidebuginfo case we parse .dynsym when there's a .gnu_debuginfo
    // section, nomatter if .symtab was already parsed or not. This is because
    // minidebuginfo normally removes the .symtab symbols which have their
    // matching .dynsym counterparts.
    if (!symtab ||
        GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"))) {
      Section *dynsym =
          section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true)
              .get();
      if (dynsym) {
        if (!m_symtab_up)
          m_symtab_up = std::make_unique<Symtab>(dynsym->GetObjectFile());
        symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, dynsym);
      }
    }

    // DT_JMPREL
    //      If present, this entry's d_ptr member holds the address of
    //      relocation
    //      entries associated solely with the procedure linkage table.
    //      Separating
    //      these relocation entries lets the dynamic linker ignore them during
    //      process initialization, if lazy binding is enabled. If this entry is
    //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
    //      also be present.
    const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
    if (symbol) {
      // Synthesize trampoline symbols to help navigate the PLT.
      addr_t addr = symbol->d_ptr;
      Section *reloc_section =
          section_list->FindSectionContainingFileAddress(addr).get();
      if (reloc_section) {
        user_id_t reloc_id = reloc_section->GetID();
        const ELFSectionHeaderInfo *reloc_header =
            GetSectionHeaderByIndex(reloc_id);
        assert(reloc_header);

        if (m_symtab_up == nullptr)
          m_symtab_up =
              std::make_unique<Symtab>(reloc_section->GetObjectFile());

        ParseTrampolineSymbols(m_symtab_up.get(), symbol_id, reloc_header,
                               reloc_id);
      }
    }

    if (DWARFCallFrameInfo *eh_frame =
            GetModule()->GetUnwindTable().GetEHFrameInfo()) {
      if (m_symtab_up == nullptr)
        m_symtab_up = std::make_unique<Symtab>(this);
      ParseUnwindSymbols(m_symtab_up.get(), eh_frame);
    }

    // If we still don't have any symtab then create an empty instance to avoid
    // do the section lookup next time.
    if (m_symtab_up == nullptr)
      m_symtab_up = std::make_unique<Symtab>(this);

    // In the event that there's no symbol entry for the entry point we'll
    // artificially create one. We delegate to the symtab object the figuring
    // out of the proper size, this will usually make it span til the next
    // symbol it finds in the section. This means that if there are missing
    // symbols the entry point might span beyond its function definition.
    // We're fine with this as it doesn't make it worse than not having a
    // symbol entry at all.
    if (CalculateType() == eTypeExecutable) {
      ArchSpec arch = GetArchitecture();
      auto entry_point_addr = GetEntryPointAddress();
      bool is_valid_entry_point =
          entry_point_addr.IsValid() && entry_point_addr.IsSectionOffset();
      addr_t entry_point_file_addr = entry_point_addr.GetFileAddress();
      if (is_valid_entry_point && !m_symtab_up->FindSymbolContainingFileAddress(
                                      entry_point_file_addr)) {
        uint64_t symbol_id = m_symtab_up->GetNumSymbols();
        Symbol symbol(symbol_id,
                      GetNextSyntheticSymbolName().GetCString(), // Symbol name.
                      eSymbolTypeCode, // Type of this symbol.
                      true,            // Is this globally visible?
                      false,           // Is this symbol debug info?
                      false,           // Is this symbol a trampoline?
                      true,            // Is this symbol artificial?
                      entry_point_addr.GetSection(), // Section where this
                                                     // symbol is defined.
                      0,     // Offset in section or symbol value.
                      0,     // Size.
                      false, // Size is valid.
                      false, // Contains linker annotations?
                      0);    // Symbol flags.
        m_symtab_up->AddSymbol(symbol);
        // When the entry point is arm thumb we need to explicitly set its
        // class address to reflect that. This is important because expression
        // evaluation relies on correctly setting a breakpoint at this
        // address.
        if (arch.GetMachine() == llvm::Triple::arm &&
            (entry_point_file_addr & 1))
          m_address_class_map[entry_point_file_addr ^ 1] =
              AddressClass::eCodeAlternateISA;
        else
          m_address_class_map[entry_point_file_addr] = AddressClass::eCode;
      }
    }

    m_symtab_up->CalculateSymbolSizes();
  }

  return m_symtab_up.get();
}

void ObjectFileELF::RelocateSection(lldb_private::Section *section)
{
  static const char *debug_prefix = ".debug";

  // Set relocated bit so we stop getting called, regardless of whether we
  // actually relocate.
  section->SetIsRelocated(true);

  // We only relocate in ELF relocatable files
  if (CalculateType() != eTypeObjectFile)
    return;

  const char *section_name = section->GetName().GetCString();
  // Can't relocate that which can't be named
  if (section_name == nullptr)
    return;

  // We don't relocate non-debug sections at the moment
  if (strncmp(section_name, debug_prefix, strlen(debug_prefix)))
    return;

  // Relocation section names to look for
  std::string needle = std::string(".rel") + section_name;
  std::string needlea = std::string(".rela") + section_name;

  for (SectionHeaderCollIter I = m_section_headers.begin();
       I != m_section_headers.end(); ++I) {
    if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
      const char *hay_name = I->section_name.GetCString();
      if (hay_name == nullptr)
        continue;
      if (needle == hay_name || needlea == hay_name) {
        const ELFSectionHeader &reloc_header = *I;
        user_id_t reloc_id = SectionIndex(I);
        RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
        break;
      }
    }
  }
}

void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
                                       DWARFCallFrameInfo *eh_frame) {
  SectionList *section_list = GetSectionList();
  if (!section_list)
    return;

  // First we save the new symbols into a separate list and add them to the
  // symbol table after we collected all symbols we want to add. This is
  // neccessary because adding a new symbol invalidates the internal index of
  // the symtab what causing the next lookup to be slow because it have to
  // recalculate the index first.
  std::vector<Symbol> new_symbols;

  eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols](
      lldb::addr_t file_addr, uint32_t size, dw_offset_t) {
    Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
    if (symbol) {
      if (!symbol->GetByteSizeIsValid()) {
        symbol->SetByteSize(size);
        symbol->SetSizeIsSynthesized(true);
      }
    } else {
      SectionSP section_sp =
          section_list->FindSectionContainingFileAddress(file_addr);
      if (section_sp) {
        addr_t offset = file_addr - section_sp->GetFileAddress();
        const char *symbol_name = GetNextSyntheticSymbolName().GetCString();
        uint64_t symbol_id = symbol_table->GetNumSymbols();
        Symbol eh_symbol(
            symbol_id,       // Symbol table index.
            symbol_name,     // Symbol name.
            eSymbolTypeCode, // Type of this symbol.
            true,            // Is this globally visible?
            false,           // Is this symbol debug info?
            false,           // Is this symbol a trampoline?
            true,            // Is this symbol artificial?
            section_sp,      // Section in which this symbol is defined or null.
            offset,          // Offset in section or symbol value.
            0,     // Size:          Don't specify the size as an FDE can
            false, // Size is valid: cover multiple symbols.
            false, // Contains linker annotations?
            0);    // Symbol flags.
        new_symbols.push_back(eh_symbol);
      }
    }
    return true;
  });

  for (const Symbol &s : new_symbols)
    symbol_table->AddSymbol(s);
}

bool ObjectFileELF::IsStripped() {
  // TODO: determine this for ELF
  return false;
}

//===----------------------------------------------------------------------===//
// Dump
//
// Dump the specifics of the runtime file container (such as any headers
// segments, sections, etc).
void ObjectFileELF::Dump(Stream *s) {
  ModuleSP module_sp(GetModule());
  if (!module_sp) {
    return;
  }

  std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
  s->Printf("%p: ", static_cast<void *>(this));
  s->Indent();
  s->PutCString("ObjectFileELF");

  ArchSpec header_arch = GetArchitecture();

  *s << ", file = '" << m_file
     << "', arch = " << header_arch.GetArchitectureName() << "\n";

  DumpELFHeader(s, m_header);
  s->EOL();
  DumpELFProgramHeaders(s);
  s->EOL();
  DumpELFSectionHeaders(s);
  s->EOL();
  SectionList *section_list = GetSectionList();
  if (section_list)
    section_list->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
                       UINT32_MAX);
  Symtab *symtab = GetSymtab();
  if (symtab)
    symtab->Dump(s, nullptr, eSortOrderNone);
  s->EOL();
  DumpDependentModules(s);
  s->EOL();
}

// DumpELFHeader
//
// Dump the ELF header to the specified output stream
void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
  s->PutCString("ELF Header\n");
  s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
  s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
            header.e_ident[EI_MAG1]);
  s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
            header.e_ident[EI_MAG2]);
  s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
            header.e_ident[EI_MAG3]);

  s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
  s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
  DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
  s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
  s->Printf("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);

  s->Printf("e_type      = 0x%4.4x ", header.e_type);
  DumpELFHeader_e_type(s, header.e_type);
  s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
  s->Printf("e_version   = 0x%8.8x\n", header.e_version);
  s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
  s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
  s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
  s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
  s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
  s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
  s->Printf("e_phnum     = 0x%8.8x\n", header.e_phnum);
  s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
  s->Printf("e_shnum     = 0x%8.8x\n", header.e_shnum);
  s->Printf("e_shstrndx  = 0x%8.8x\n", header.e_shstrndx);
}

// DumpELFHeader_e_type
//
// Dump an token value for the ELF header member e_type
void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
  switch (e_type) {
  case ET_NONE:
    *s << "ET_NONE";
    break;
  case ET_REL:
    *s << "ET_REL";
    break;
  case ET_EXEC:
    *s << "ET_EXEC";
    break;
  case ET_DYN:
    *s << "ET_DYN";
    break;
  case ET_CORE:
    *s << "ET_CORE";
    break;
  default:
    break;
  }
}

// DumpELFHeader_e_ident_EI_DATA
//
// Dump an token value for the ELF header member e_ident[EI_DATA]
void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
                                                  unsigned char ei_data) {
  switch (ei_data) {
  case ELFDATANONE:
    *s << "ELFDATANONE";
    break;
  case ELFDATA2LSB:
    *s << "ELFDATA2LSB - Little Endian";
    break;
  case ELFDATA2MSB:
    *s << "ELFDATA2MSB - Big Endian";
    break;
  default:
    break;
  }
}

// DumpELFProgramHeader
//
// Dump a single ELF program header to the specified output stream
void ObjectFileELF::DumpELFProgramHeader(Stream *s,
                                         const ELFProgramHeader &ph) {
  DumpELFProgramHeader_p_type(s, ph.p_type);
  s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
            ph.p_vaddr, ph.p_paddr);
  s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
            ph.p_flags);

  DumpELFProgramHeader_p_flags(s, ph.p_flags);
  s->Printf(") %8.8" PRIx64, ph.p_align);
}

// DumpELFProgramHeader_p_type
//
// Dump an token value for the ELF program header member p_type which describes
// the type of the program header
void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
  const int kStrWidth = 15;
  switch (p_type) {
    CASE_AND_STREAM(s, PT_NULL, kStrWidth);
    CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
    CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
    CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
    CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
    CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
    CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
    CASE_AND_STREAM(s, PT_TLS, kStrWidth);
    CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
  default:
    s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
    break;
  }
}

// DumpELFProgramHeader_p_flags
//
// Dump an token value for the ELF program header member p_flags
void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
  *s << ((p_flags & PF_X) ? "PF_X" : "    ")
     << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
     << ((p_flags & PF_W) ? "PF_W" : "    ")
     << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
     << ((p_flags & PF_R) ? "PF_R" : "    ");
}

// DumpELFProgramHeaders
//
// Dump all of the ELF program header to the specified output stream
void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
  if (!ParseProgramHeaders())
    return;

  s->PutCString("Program Headers\n");
  s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
                "p_filesz p_memsz  p_flags                   p_align\n");
  s->PutCString("==== --------------- -------- -------- -------- "
                "-------- -------- ------------------------- --------\n");

  for (const auto &H : llvm::enumerate(m_program_headers)) {
    s->Format("[{0,2}] ", H.index());
    ObjectFileELF::DumpELFProgramHeader(s, H.value());
    s->EOL();
  }
}

// DumpELFSectionHeader
//
// Dump a single ELF section header to the specified output stream
void ObjectFileELF::DumpELFSectionHeader(Stream *s,
                                         const ELFSectionHeaderInfo &sh) {
  s->Printf("%8.8x ", sh.sh_name);
  DumpELFSectionHeader_sh_type(s, sh.sh_type);
  s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
  DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
  s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
            sh.sh_offset, sh.sh_size);
  s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
  s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
}

// DumpELFSectionHeader_sh_type
//
// Dump an token value for the ELF section header member sh_type which
// describes the type of the section
void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
  const int kStrWidth = 12;
  switch (sh_type) {
    CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
    CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
    CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
    CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
    CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
    CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
    CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
    CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
    CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
    CASE_AND_STREAM(s, SHT_REL, kStrWidth);
    CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
    CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
    CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
    CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
    CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
    CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
  default:
    s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
    break;
  }
}

// DumpELFSectionHeader_sh_flags
//
// Dump an token value for the ELF section header member sh_flags
void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
                                                  elf_xword sh_flags) {
  *s << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
     << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
     << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
     << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
     << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
}

// DumpELFSectionHeaders
//
// Dump all of the ELF section header to the specified output stream
void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
  if (!ParseSectionHeaders())
    return;

  s->PutCString("Section Headers\n");
  s->PutCString("IDX  name     type         flags                            "
                "addr     offset   size     link     info     addralgn "
                "entsize  Name\n");
  s->PutCString("==== -------- ------------ -------------------------------- "
                "-------- -------- -------- -------- -------- -------- "
                "-------- ====================\n");

  uint32_t idx = 0;
  for (SectionHeaderCollConstIter I = m_section_headers.begin();
       I != m_section_headers.end(); ++I, ++idx) {
    s->Printf("[%2u] ", idx);
    ObjectFileELF::DumpELFSectionHeader(s, *I);
    const char *section_name = I->section_name.AsCString("");
    if (section_name)
      *s << ' ' << section_name << "\n";
  }
}

void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
  size_t num_modules = ParseDependentModules();

  if (num_modules > 0) {
    s->PutCString("Dependent Modules:\n");
    for (unsigned i = 0; i < num_modules; ++i) {
      const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(i);
      s->Printf("   %s\n", spec.GetFilename().GetCString());
    }
  }
}

ArchSpec ObjectFileELF::GetArchitecture() {
  if (!ParseHeader())
    return ArchSpec();

  if (m_section_headers.empty()) {
    // Allow elf notes to be parsed which may affect the detected architecture.
    ParseSectionHeaders();
  }

  if (CalculateType() == eTypeCoreFile &&
      !m_arch_spec.TripleOSWasSpecified()) {
    // Core files don't have section headers yet they have PT_NOTE program
    // headers that might shed more light on the architecture
    for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
      if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
        continue;
      DataExtractor data;
      if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) {
        UUID uuid;
        RefineModuleDetailsFromNote(data, m_arch_spec, uuid);
      }
    }
  }
  return m_arch_spec;
}

ObjectFile::Type ObjectFileELF::CalculateType() {
  switch (m_header.e_type) {
  case llvm::ELF::ET_NONE:
    // 0 - No file type
    return eTypeUnknown;

  case llvm::ELF::ET_REL:
    // 1 - Relocatable file
    return eTypeObjectFile;

  case llvm::ELF::ET_EXEC:
    // 2 - Executable file
    return eTypeExecutable;

  case llvm::ELF::ET_DYN:
    // 3 - Shared object file
    return eTypeSharedLibrary;

  case ET_CORE:
    // 4 - Core file
    return eTypeCoreFile;

  default:
    break;
  }
  return eTypeUnknown;
}

ObjectFile::Strata ObjectFileELF::CalculateStrata() {
  switch (m_header.e_type) {
  case llvm::ELF::ET_NONE:
    // 0 - No file type
    return eStrataUnknown;

  case llvm::ELF::ET_REL:
    // 1 - Relocatable file
    return eStrataUnknown;

  case llvm::ELF::ET_EXEC:
    // 2 - Executable file
    // TODO: is there any way to detect that an executable is a kernel
    // related executable by inspecting the program headers, section headers,
    // symbols, or any other flag bits???
    return eStrataUser;

  case llvm::ELF::ET_DYN:
    // 3 - Shared object file
    // TODO: is there any way to detect that an shared library is a kernel
    // related executable by inspecting the program headers, section headers,
    // symbols, or any other flag bits???
    return eStrataUnknown;

  case ET_CORE:
    // 4 - Core file
    // TODO: is there any way to detect that an core file is a kernel
    // related executable by inspecting the program headers, section headers,
    // symbols, or any other flag bits???
    return eStrataUnknown;

  default:
    break;
  }
  return eStrataUnknown;
}

size_t ObjectFileELF::ReadSectionData(Section *section,
                       lldb::offset_t section_offset, void *dst,
                       size_t dst_len) {
  // If some other objectfile owns this data, pass this to them.
  if (section->GetObjectFile() != this)
    return section->GetObjectFile()->ReadSectionData(section, section_offset,
                                                     dst, dst_len);

  if (!section->Test(SHF_COMPRESSED))
    return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);

  // For compressed sections we need to read to full data to be able to
  // decompress.
  DataExtractor data;
  ReadSectionData(section, data);
  return data.CopyData(section_offset, dst_len, dst);
}

size_t ObjectFileELF::ReadSectionData(Section *section,
                                      DataExtractor &section_data) {
  // If some other objectfile owns this data, pass this to them.
  if (section->GetObjectFile() != this)
    return section->GetObjectFile()->ReadSectionData(section, section_data);

  size_t result = ObjectFile::ReadSectionData(section, section_data);
  if (result == 0 || !llvm::object::Decompressor::isCompressedELFSection(
                         section->Get(), section->GetName().GetStringRef()))
    return result;

  auto Decompressor = llvm::object::Decompressor::create(
      section->GetName().GetStringRef(),
      {reinterpret_cast<const char *>(section_data.GetDataStart()),
       size_t(section_data.GetByteSize())},
      GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8);
  if (!Decompressor) {
    GetModule()->ReportWarning(
        "Unable to initialize decompressor for section '%s': %s",
        section->GetName().GetCString(),
        llvm::toString(Decompressor.takeError()).c_str());
    section_data.Clear();
    return 0;
  }

  auto buffer_sp =
      std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
  if (auto error = Decompressor->decompress(
          {reinterpret_cast<char *>(buffer_sp->GetBytes()),
           size_t(buffer_sp->GetByteSize())})) {
    GetModule()->ReportWarning(
        "Decompression of section '%s' failed: %s",
        section->GetName().GetCString(),
        llvm::toString(std::move(error)).c_str());
    section_data.Clear();
    return 0;
  }

  section_data.SetData(buffer_sp);
  return buffer_sp->GetByteSize();
}

llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
  ParseProgramHeaders();
  return m_program_headers;
}

DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
  return DataExtractor(m_data, H.p_offset, H.p_filesz);
}

bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
  for (const ELFProgramHeader &H : ProgramHeaders()) {
    if (H.p_paddr != 0)
      return true;
  }
  return false;
}

std::vector<ObjectFile::LoadableData>
ObjectFileELF::GetLoadableData(Target &target) {
  // Create a list of loadable data from loadable segments, using physical
  // addresses if they aren't all null
  std::vector<LoadableData> loadables;
  bool should_use_paddr = AnySegmentHasPhysicalAddress();
  for (const ELFProgramHeader &H : ProgramHeaders()) {
    LoadableData loadable;
    if (H.p_type != llvm::ELF::PT_LOAD)
      continue;
    loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
    if (loadable.Dest == LLDB_INVALID_ADDRESS)
      continue;
    if (H.p_filesz == 0)
      continue;
    auto segment_data = GetSegmentData(H);
    loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
                                                segment_data.GetByteSize());
    loadables.push_back(loadable);
  }
  return loadables;
}