ABISysV_i386.cpp 25.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
//===-- ABISysV_i386.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===//

#include "ABISysV_i386.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"

using namespace lldb;
using namespace lldb_private;

LLDB_PLUGIN_DEFINE(ABISysV_i386)

//   This source file uses the following document as a reference:
//====================================================================
//             System V Application Binary Interface
//    Intel386 Architecture Processor Supplement, Version 1.0
//                         Edited by
//      H.J. Lu, David L Kreitzer, Milind Girkar, Zia Ansari
//
//                        (Based on
//           System V Application Binary Interface,
//          AMD64 Architecture Processor Supplement,
//                         Edited by
//     H.J. Lu, Michael Matz, Milind Girkar, Jan Hubicka,
//               Andreas Jaeger, Mark Mitchell)
//
//                     February 3, 2015
//====================================================================

// DWARF Register Number Mapping
// See Table 2.14 of the reference document (specified on top of this file)
// Comment: Table 2.14 is followed till 'mm' entries. After that, all entries
// are ignored here.

enum dwarf_regnums {
  dwarf_eax = 0,
  dwarf_ecx,
  dwarf_edx,
  dwarf_ebx,
  dwarf_esp,
  dwarf_ebp,
  dwarf_esi,
  dwarf_edi,
  dwarf_eip,
};

// Static Functions

ABISP
ABISysV_i386::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
  if (arch.GetTriple().getVendor() != llvm::Triple::Apple) {
    if (arch.GetTriple().getArch() == llvm::Triple::x86) {
      return ABISP(
          new ABISysV_i386(std::move(process_sp), MakeMCRegisterInfo(arch)));
    }
  }
  return ABISP();
}

bool ABISysV_i386::PrepareTrivialCall(Thread &thread, addr_t sp,
                                      addr_t func_addr, addr_t return_addr,
                                      llvm::ArrayRef<addr_t> args) const {
  RegisterContext *reg_ctx = thread.GetRegisterContext().get();

  if (!reg_ctx)
    return false;

  uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
      eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
  uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
      eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);

  // While using register info to write a register value to memory, the
  // register info just needs to have the correct size of a 32 bit register,
  // the actual register it pertains to is not important, just the size needs
  // to be correct. "eax" is used here for this purpose.
  const RegisterInfo *reg_info_32 = reg_ctx->GetRegisterInfoByName("eax");
  if (!reg_info_32)
    return false; // TODO this should actually never happen

  Status error;
  RegisterValue reg_value;

  // Make room for the argument(s) on the stack
  sp -= 4 * args.size();

  // SP Alignment
  sp &= ~(16ull - 1ull); // 16-byte alignment

  // Write arguments onto the stack
  addr_t arg_pos = sp;
  for (addr_t arg : args) {
    reg_value.SetUInt32(arg);
    error = reg_ctx->WriteRegisterValueToMemory(
        reg_info_32, arg_pos, reg_info_32->byte_size, reg_value);
    if (error.Fail())
      return false;
    arg_pos += 4;
  }

  // The return address is pushed onto the stack
  sp -= 4;
  reg_value.SetUInt32(return_addr);
  error = reg_ctx->WriteRegisterValueToMemory(
      reg_info_32, sp, reg_info_32->byte_size, reg_value);
  if (error.Fail())
    return false;

  // Setting %esp to the actual stack value.
  if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_num, sp))
    return false;

  // Setting %eip to the address of the called function.
  if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_num, func_addr))
    return false;

  return true;
}

static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
                                bool is_signed, Process *process,
                                addr_t &current_stack_argument) {
  uint32_t byte_size = (bit_width + (8 - 1)) / 8;
  Status error;

  if (!process)
    return false;

  if (process->ReadScalarIntegerFromMemory(current_stack_argument, byte_size,
                                           is_signed, scalar, error)) {
    current_stack_argument += byte_size;
    return true;
  }
  return false;
}

bool ABISysV_i386::GetArgumentValues(Thread &thread, ValueList &values) const {
  unsigned int num_values = values.GetSize();
  unsigned int value_index;

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();

  if (!reg_ctx)
    return false;

  // Get pointer to the first stack argument
  addr_t sp = reg_ctx->GetSP(0);
  if (!sp)
    return false;

  addr_t current_stack_argument = sp + 4; // jump over return address

  for (value_index = 0; value_index < num_values; ++value_index) {
    Value *value = values.GetValueAtIndex(value_index);

    if (!value)
      return false;

    // Currently: Support for extracting values with Clang QualTypes only.
    CompilerType compiler_type(value->GetCompilerType());
    llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
    if (bit_size) {
      bool is_signed;
      if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
        ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed,
                            thread.GetProcess().get(), current_stack_argument);
      } else if (compiler_type.IsPointerType()) {
        ReadIntegerArgument(value->GetScalar(), *bit_size, false,
                            thread.GetProcess().get(), current_stack_argument);
      }
    }
  }
  return true;
}

Status ABISysV_i386::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
                                          lldb::ValueObjectSP &new_value_sp) {
  Status error;
  if (!new_value_sp) {
    error.SetErrorString("Empty value object for return value.");
    return error;
  }

  CompilerType compiler_type = new_value_sp->GetCompilerType();
  if (!compiler_type) {
    error.SetErrorString("Null clang type for return value.");
    return error;
  }

  const uint32_t type_flags = compiler_type.GetTypeInfo();
  Thread *thread = frame_sp->GetThread().get();
  RegisterContext *reg_ctx = thread->GetRegisterContext().get();
  DataExtractor data;
  Status data_error;
  size_t num_bytes = new_value_sp->GetData(data, data_error);
  bool register_write_successful = true;

  if (data_error.Fail()) {
    error.SetErrorStringWithFormat(
        "Couldn't convert return value to raw data: %s",
        data_error.AsCString());
    return error;
  }

  // Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
  // The terminology 'Fundamental Data Types' used here is adopted from Table
  // 2.1 of the reference document (specified on top of this file)

  if (type_flags & eTypeIsPointer) // 'Pointer'
  {
    if (num_bytes != sizeof(uint32_t)) {
      error.SetErrorString("Pointer to be returned is not 4 bytes wide");
      return error;
    }
    lldb::offset_t offset = 0;
    const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
    uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
    register_write_successful =
        reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
  } else if ((type_flags & eTypeIsScalar) ||
             (type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
  {
    lldb::offset_t offset = 0;
    const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);

    if (type_flags & eTypeIsInteger) // 'Integral' except enum
    {
      switch (num_bytes) {
      default:
        break;
      case 16:
        // For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
        // handle it
        break;
      case 8: {
        uint32_t raw_value_low = data.GetMaxU32(&offset, 4);
        const RegisterInfo *edx_info = reg_ctx->GetRegisterInfoByName("edx", 0);
        uint32_t raw_value_high = data.GetMaxU32(&offset, num_bytes - offset);
        register_write_successful =
            (reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value_low) &&
             reg_ctx->WriteRegisterFromUnsigned(edx_info, raw_value_high));
        break;
      }
      case 4:
      case 2:
      case 1: {
        uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
        register_write_successful =
            reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
        break;
      }
      }
    } else if (type_flags & eTypeIsEnumeration) // handles enum
    {
      uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
      register_write_successful =
          reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
    } else if (type_flags & eTypeIsFloat) // 'Floating Point'
    {
      RegisterValue st0_value, fstat_value, ftag_value;
      const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
      const RegisterInfo *fstat_info =
          reg_ctx->GetRegisterInfoByName("fstat", 0);
      const RegisterInfo *ftag_info = reg_ctx->GetRegisterInfoByName("ftag", 0);

      /* According to Page 3-12 of document
      System V Application Binary Interface, Intel386 Architecture Processor
      Supplement, Fourth Edition
      To return Floating Point values, all st% registers except st0 should be
      empty after exiting from
      a function. This requires setting fstat and ftag registers to specific
      values.
      fstat: The TOP field of fstat should be set to a value [0,7]. ABI doesn't
      specify the specific
      value of TOP in case of function return. Hence, we set the TOP field to 7
      by our choice. */
      uint32_t value_fstat_u32 = 0x00003800;

      /* ftag: Implication of setting TOP to 7 and indicating all st% registers
      empty except st0 is to set
      7th bit of 4th byte of FXSAVE area to 1 and all other bits of this byte to
      0. This is in accordance
      with the document Intel 64 and IA-32 Architectures Software Developer's
      Manual, January 2015 */
      uint32_t value_ftag_u32 = 0x00000080;

      if (num_bytes <= 12) // handles float, double, long double, __float80
      {
        long double value_long_dbl = 0.0;
        if (num_bytes == 4)
          value_long_dbl = data.GetFloat(&offset);
        else if (num_bytes == 8)
          value_long_dbl = data.GetDouble(&offset);
        else if (num_bytes == 12)
          value_long_dbl = data.GetLongDouble(&offset);
        else {
          error.SetErrorString("Invalid number of bytes for this return type");
          return error;
        }
        st0_value.SetLongDouble(value_long_dbl);
        fstat_value.SetUInt32(value_fstat_u32);
        ftag_value.SetUInt32(value_ftag_u32);
        register_write_successful =
            reg_ctx->WriteRegister(st0_info, st0_value) &&
            reg_ctx->WriteRegister(fstat_info, fstat_value) &&
            reg_ctx->WriteRegister(ftag_info, ftag_value);
      } else if (num_bytes == 16) // handles __float128
      {
        error.SetErrorString("Implementation is missing for this clang type.");
      }
    } else {
      // Neither 'Integral' nor 'Floating Point'. If flow reaches here then
      // check type_flags. This type_flags is not a valid type.
      error.SetErrorString("Invalid clang type");
    }
  } else {
    /* 'Complex Floating Point', 'Packed', 'Decimal Floating Point' and
    'Aggregate' data types
    are yet to be implemented */
    error.SetErrorString("Currently only Integral and Floating Point clang "
                         "types are supported.");
  }
  if (!register_write_successful)
    error.SetErrorString("Register writing failed");
  return error;
}

ValueObjectSP ABISysV_i386::GetReturnValueObjectSimple(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;
  Value value;

  if (!return_compiler_type)
    return return_valobj_sp;

  value.SetCompilerType(return_compiler_type);

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();
  if (!reg_ctx)
    return return_valobj_sp;

  const uint32_t type_flags = return_compiler_type.GetTypeInfo();

  unsigned eax_id =
      reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
  unsigned edx_id =
      reg_ctx->GetRegisterInfoByName("edx", 0)->kinds[eRegisterKindLLDB];

  // Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
  // The terminology 'Fundamental Data Types' used here is adopted from Table
  // 2.1 of the reference document (specified on top of this file)

  if (type_flags & eTypeIsPointer) // 'Pointer'
  {
    uint32_t ptr =
        thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
        0xffffffff;
    value.SetValueType(Value::eValueTypeScalar);
    value.GetScalar() = ptr;
    return_valobj_sp = ValueObjectConstResult::Create(
        thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
  } else if ((type_flags & eTypeIsScalar) ||
             (type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
  {
    value.SetValueType(Value::eValueTypeScalar);
    llvm::Optional<uint64_t> byte_size =
        return_compiler_type.GetByteSize(&thread);
    if (!byte_size)
      return return_valobj_sp;
    bool success = false;

    if (type_flags & eTypeIsInteger) // 'Integral' except enum
    {
      const bool is_signed = ((type_flags & eTypeIsSigned) != 0);
      uint64_t raw_value =
          thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
          0xffffffff;
      raw_value |=
          (thread.GetRegisterContext()->ReadRegisterAsUnsigned(edx_id, 0) &
           0xffffffff)
          << 32;

      switch (*byte_size) {
      default:
        break;

      case 16:
        // For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
        // handle it
        break;

      case 8:
        if (is_signed)
          value.GetScalar() = (int64_t)(raw_value);
        else
          value.GetScalar() = (uint64_t)(raw_value);
        success = true;
        break;

      case 4:
        if (is_signed)
          value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
        else
          value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
        success = true;
        break;

      case 2:
        if (is_signed)
          value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
        else
          value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
        success = true;
        break;

      case 1:
        if (is_signed)
          value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
        else
          value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
        success = true;
        break;
      }

      if (success)
        return_valobj_sp = ValueObjectConstResult::Create(
            thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
    } else if (type_flags & eTypeIsEnumeration) // handles enum
    {
      uint32_t enm =
          thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
          0xffffffff;
      value.SetValueType(Value::eValueTypeScalar);
      value.GetScalar() = enm;
      return_valobj_sp = ValueObjectConstResult::Create(
          thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
    } else if (type_flags & eTypeIsFloat) // 'Floating Point'
    {
      if (*byte_size <= 12) // handles float, double, long double, __float80
      {
        const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
        RegisterValue st0_value;

        if (reg_ctx->ReadRegister(st0_info, st0_value)) {
          DataExtractor data;
          if (st0_value.GetData(data)) {
            lldb::offset_t offset = 0;
            long double value_long_double = data.GetLongDouble(&offset);

            // float is 4 bytes.
            if (*byte_size == 4) {
              float value_float = (float)value_long_double;
              value.GetScalar() = value_float;
              success = true;
            } else if (*byte_size == 8) {
              // double is 8 bytes
              // On Android Platform: long double is also 8 bytes It will be
              // handled here only.
              double value_double = (double)value_long_double;
              value.GetScalar() = value_double;
              success = true;
            } else if (*byte_size == 12) {
              // long double and __float80 are 12 bytes on i386.
              value.GetScalar() = value_long_double;
              success = true;
            }
          }
        }

        if (success)
          return_valobj_sp = ValueObjectConstResult::Create(
              thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
      } else if (*byte_size == 16) // handles __float128
      {
        lldb::addr_t storage_addr = (uint32_t)(
            thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
            0xffffffff);
        return_valobj_sp = ValueObjectMemory::Create(
            &thread, "", Address(storage_addr, nullptr), return_compiler_type);
      }
    } else // Neither 'Integral' nor 'Floating Point'
    {
      // If flow reaches here then check type_flags This type_flags is
      // unhandled
    }
  } else if (type_flags & eTypeIsComplex) // 'Complex Floating Point'
  {
    // ToDo: Yet to be implemented
  } else if (type_flags & eTypeIsVector) // 'Packed'
  {
    llvm::Optional<uint64_t> byte_size =
        return_compiler_type.GetByteSize(&thread);
    if (byte_size && *byte_size > 0) {
      const RegisterInfo *vec_reg = reg_ctx->GetRegisterInfoByName("xmm0", 0);
      if (vec_reg == nullptr)
        vec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);

      if (vec_reg) {
        if (*byte_size <= vec_reg->byte_size) {
          ProcessSP process_sp(thread.GetProcess());
          if (process_sp) {
            std::unique_ptr<DataBufferHeap> heap_data_up(
                new DataBufferHeap(*byte_size, 0));
            const ByteOrder byte_order = process_sp->GetByteOrder();
            RegisterValue reg_value;
            if (reg_ctx->ReadRegister(vec_reg, reg_value)) {
              Status error;
              if (reg_value.GetAsMemoryData(vec_reg, heap_data_up->GetBytes(),
                                            heap_data_up->GetByteSize(),
                                            byte_order, error)) {
                DataExtractor data(DataBufferSP(heap_data_up.release()),
                                   byte_order,
                                   process_sp->GetTarget()
                                       .GetArchitecture()
                                       .GetAddressByteSize());
                return_valobj_sp = ValueObjectConstResult::Create(
                    &thread, return_compiler_type, ConstString(""), data);
              }
            }
          }
        } else if (*byte_size <= vec_reg->byte_size * 2) {
          const RegisterInfo *vec_reg2 =
              reg_ctx->GetRegisterInfoByName("xmm1", 0);
          if (vec_reg2) {
            ProcessSP process_sp(thread.GetProcess());
            if (process_sp) {
              std::unique_ptr<DataBufferHeap> heap_data_up(
                  new DataBufferHeap(*byte_size, 0));
              const ByteOrder byte_order = process_sp->GetByteOrder();
              RegisterValue reg_value;
              RegisterValue reg_value2;
              if (reg_ctx->ReadRegister(vec_reg, reg_value) &&
                  reg_ctx->ReadRegister(vec_reg2, reg_value2)) {

                Status error;
                if (reg_value.GetAsMemoryData(vec_reg, heap_data_up->GetBytes(),
                                              vec_reg->byte_size, byte_order,
                                              error) &&
                    reg_value2.GetAsMemoryData(
                        vec_reg2, heap_data_up->GetBytes() + vec_reg->byte_size,
                        heap_data_up->GetByteSize() - vec_reg->byte_size,
                        byte_order, error)) {
                  DataExtractor data(DataBufferSP(heap_data_up.release()),
                                     byte_order,
                                     process_sp->GetTarget()
                                         .GetArchitecture()
                                         .GetAddressByteSize());
                  return_valobj_sp = ValueObjectConstResult::Create(
                      &thread, return_compiler_type, ConstString(""), data);
                }
              }
            }
          }
        }
      }
    }
  } else // 'Decimal Floating Point'
  {
    // ToDo: Yet to be implemented
  }
  return return_valobj_sp;
}

ValueObjectSP ABISysV_i386::GetReturnValueObjectImpl(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;

  if (!return_compiler_type)
    return return_valobj_sp;

  ExecutionContext exe_ctx(thread.shared_from_this());
  return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
  if (return_valobj_sp)
    return return_valobj_sp;

  RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
  if (!reg_ctx_sp)
    return return_valobj_sp;

  if (return_compiler_type.IsAggregateType()) {
    unsigned eax_id =
        reg_ctx_sp->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
    lldb::addr_t storage_addr = (uint32_t)(
        thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
        0xffffffff);
    return_valobj_sp = ValueObjectMemory::Create(
        &thread, "", Address(storage_addr, nullptr), return_compiler_type);
  }

  return return_valobj_sp;
}

// This defines CFA as esp+4
// The saved pc is at CFA-4 (i.e. esp+0)
// The saved esp is CFA+0

bool ABISysV_i386::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  uint32_t sp_reg_num = dwarf_esp;
  uint32_t pc_reg_num = dwarf_eip;

  UnwindPlan::RowSP row(new UnwindPlan::Row);
  row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 4);
  row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -4, false);
  row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("i386 at-func-entry default");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  return true;
}

// This defines CFA as ebp+8
// The saved pc is at CFA-4 (i.e. ebp+4)
// The saved ebp is at CFA-8 (i.e. ebp+0)
// The saved esp is CFA+0

bool ABISysV_i386::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  uint32_t fp_reg_num = dwarf_ebp;
  uint32_t sp_reg_num = dwarf_esp;
  uint32_t pc_reg_num = dwarf_eip;

  UnwindPlan::RowSP row(new UnwindPlan::Row);
  const int32_t ptr_size = 4;

  row->GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
  row->SetOffset(0);

  row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
  row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
  row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);

  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("i386 default unwind plan");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
  unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
  return true;
}

// According to "Register Usage" in reference document (specified on top of
// this source file) ebx, ebp, esi, edi and esp registers are preserved i.e.
// non-volatile i.e. callee-saved on i386
bool ABISysV_i386::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
  if (!reg_info)
    return false;

  // Saved registers are ebx, ebp, esi, edi, esp, eip
  const char *name = reg_info->name;
  if (name[0] == 'e') {
    switch (name[1]) {
    case 'b':
      if (name[2] == 'x' || name[2] == 'p')
        return name[3] == '\0';
      break;
    case 'd':
      if (name[2] == 'i')
        return name[3] == '\0';
      break;
    case 'i':
      if (name[2] == 'p')
        return name[3] == '\0';
      break;
    case 's':
      if (name[2] == 'i' || name[2] == 'p')
        return name[3] == '\0';
      break;
    }
  }

  if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
    return true;
  if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
    return true;
  if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
    return true;

  return false;
}

void ABISysV_i386::Initialize() {
  PluginManager::RegisterPlugin(
      GetPluginNameStatic(), "System V ABI for i386 targets", CreateInstance);
}

void ABISysV_i386::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

// PluginInterface protocol

lldb_private::ConstString ABISysV_i386::GetPluginNameStatic() {
  static ConstString g_name("sysv-i386");
  return g_name;
}

lldb_private::ConstString ABISysV_i386::GetPluginName() {
  return GetPluginNameStatic();
}