ABISysV_i386.cpp
25.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
//===-- ABISysV_i386.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===//
#include "ABISysV_i386.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(ABISysV_i386)
// This source file uses the following document as a reference:
//====================================================================
// System V Application Binary Interface
// Intel386 Architecture Processor Supplement, Version 1.0
// Edited by
// H.J. Lu, David L Kreitzer, Milind Girkar, Zia Ansari
//
// (Based on
// System V Application Binary Interface,
// AMD64 Architecture Processor Supplement,
// Edited by
// H.J. Lu, Michael Matz, Milind Girkar, Jan Hubicka,
// Andreas Jaeger, Mark Mitchell)
//
// February 3, 2015
//====================================================================
// DWARF Register Number Mapping
// See Table 2.14 of the reference document (specified on top of this file)
// Comment: Table 2.14 is followed till 'mm' entries. After that, all entries
// are ignored here.
enum dwarf_regnums {
dwarf_eax = 0,
dwarf_ecx,
dwarf_edx,
dwarf_ebx,
dwarf_esp,
dwarf_ebp,
dwarf_esi,
dwarf_edi,
dwarf_eip,
};
// Static Functions
ABISP
ABISysV_i386::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
if (arch.GetTriple().getVendor() != llvm::Triple::Apple) {
if (arch.GetTriple().getArch() == llvm::Triple::x86) {
return ABISP(
new ABISysV_i386(std::move(process_sp), MakeMCRegisterInfo(arch)));
}
}
return ABISP();
}
bool ABISysV_i386::PrepareTrivialCall(Thread &thread, addr_t sp,
addr_t func_addr, addr_t return_addr,
llvm::ArrayRef<addr_t> args) const {
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
// While using register info to write a register value to memory, the
// register info just needs to have the correct size of a 32 bit register,
// the actual register it pertains to is not important, just the size needs
// to be correct. "eax" is used here for this purpose.
const RegisterInfo *reg_info_32 = reg_ctx->GetRegisterInfoByName("eax");
if (!reg_info_32)
return false; // TODO this should actually never happen
Status error;
RegisterValue reg_value;
// Make room for the argument(s) on the stack
sp -= 4 * args.size();
// SP Alignment
sp &= ~(16ull - 1ull); // 16-byte alignment
// Write arguments onto the stack
addr_t arg_pos = sp;
for (addr_t arg : args) {
reg_value.SetUInt32(arg);
error = reg_ctx->WriteRegisterValueToMemory(
reg_info_32, arg_pos, reg_info_32->byte_size, reg_value);
if (error.Fail())
return false;
arg_pos += 4;
}
// The return address is pushed onto the stack
sp -= 4;
reg_value.SetUInt32(return_addr);
error = reg_ctx->WriteRegisterValueToMemory(
reg_info_32, sp, reg_info_32->byte_size, reg_value);
if (error.Fail())
return false;
// Setting %esp to the actual stack value.
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_num, sp))
return false;
// Setting %eip to the address of the called function.
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_num, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
bool is_signed, Process *process,
addr_t ¤t_stack_argument) {
uint32_t byte_size = (bit_width + (8 - 1)) / 8;
Status error;
if (!process)
return false;
if (process->ReadScalarIntegerFromMemory(current_stack_argument, byte_size,
is_signed, scalar, error)) {
current_stack_argument += byte_size;
return true;
}
return false;
}
bool ABISysV_i386::GetArgumentValues(Thread &thread, ValueList &values) const {
unsigned int num_values = values.GetSize();
unsigned int value_index;
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get pointer to the first stack argument
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 4; // jump over return address
for (value_index = 0; value_index < num_values; ++value_index) {
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
// Currently: Support for extracting values with Clang QualTypes only.
CompilerType compiler_type(value->GetCompilerType());
llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
if (bit_size) {
bool is_signed;
if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed,
thread.GetProcess().get(), current_stack_argument);
} else if (compiler_type.IsPointerType()) {
ReadIntegerArgument(value->GetScalar(), *bit_size, false,
thread.GetProcess().get(), current_stack_argument);
}
}
}
return true;
}
Status ABISysV_i386::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
const uint32_t type_flags = compiler_type.GetTypeInfo();
Thread *thread = frame_sp->GetThread().get();
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
bool register_write_successful = true;
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
// Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
// The terminology 'Fundamental Data Types' used here is adopted from Table
// 2.1 of the reference document (specified on top of this file)
if (type_flags & eTypeIsPointer) // 'Pointer'
{
if (num_bytes != sizeof(uint32_t)) {
error.SetErrorString("Pointer to be returned is not 4 bytes wide");
return error;
}
lldb::offset_t offset = 0;
const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
register_write_successful =
reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
} else if ((type_flags & eTypeIsScalar) ||
(type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
{
lldb::offset_t offset = 0;
const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
if (type_flags & eTypeIsInteger) // 'Integral' except enum
{
switch (num_bytes) {
default:
break;
case 16:
// For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
// handle it
break;
case 8: {
uint32_t raw_value_low = data.GetMaxU32(&offset, 4);
const RegisterInfo *edx_info = reg_ctx->GetRegisterInfoByName("edx", 0);
uint32_t raw_value_high = data.GetMaxU32(&offset, num_bytes - offset);
register_write_successful =
(reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value_low) &&
reg_ctx->WriteRegisterFromUnsigned(edx_info, raw_value_high));
break;
}
case 4:
case 2:
case 1: {
uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
register_write_successful =
reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
break;
}
}
} else if (type_flags & eTypeIsEnumeration) // handles enum
{
uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
register_write_successful =
reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
} else if (type_flags & eTypeIsFloat) // 'Floating Point'
{
RegisterValue st0_value, fstat_value, ftag_value;
const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
const RegisterInfo *fstat_info =
reg_ctx->GetRegisterInfoByName("fstat", 0);
const RegisterInfo *ftag_info = reg_ctx->GetRegisterInfoByName("ftag", 0);
/* According to Page 3-12 of document
System V Application Binary Interface, Intel386 Architecture Processor
Supplement, Fourth Edition
To return Floating Point values, all st% registers except st0 should be
empty after exiting from
a function. This requires setting fstat and ftag registers to specific
values.
fstat: The TOP field of fstat should be set to a value [0,7]. ABI doesn't
specify the specific
value of TOP in case of function return. Hence, we set the TOP field to 7
by our choice. */
uint32_t value_fstat_u32 = 0x00003800;
/* ftag: Implication of setting TOP to 7 and indicating all st% registers
empty except st0 is to set
7th bit of 4th byte of FXSAVE area to 1 and all other bits of this byte to
0. This is in accordance
with the document Intel 64 and IA-32 Architectures Software Developer's
Manual, January 2015 */
uint32_t value_ftag_u32 = 0x00000080;
if (num_bytes <= 12) // handles float, double, long double, __float80
{
long double value_long_dbl = 0.0;
if (num_bytes == 4)
value_long_dbl = data.GetFloat(&offset);
else if (num_bytes == 8)
value_long_dbl = data.GetDouble(&offset);
else if (num_bytes == 12)
value_long_dbl = data.GetLongDouble(&offset);
else {
error.SetErrorString("Invalid number of bytes for this return type");
return error;
}
st0_value.SetLongDouble(value_long_dbl);
fstat_value.SetUInt32(value_fstat_u32);
ftag_value.SetUInt32(value_ftag_u32);
register_write_successful =
reg_ctx->WriteRegister(st0_info, st0_value) &&
reg_ctx->WriteRegister(fstat_info, fstat_value) &&
reg_ctx->WriteRegister(ftag_info, ftag_value);
} else if (num_bytes == 16) // handles __float128
{
error.SetErrorString("Implementation is missing for this clang type.");
}
} else {
// Neither 'Integral' nor 'Floating Point'. If flow reaches here then
// check type_flags. This type_flags is not a valid type.
error.SetErrorString("Invalid clang type");
}
} else {
/* 'Complex Floating Point', 'Packed', 'Decimal Floating Point' and
'Aggregate' data types
are yet to be implemented */
error.SetErrorString("Currently only Integral and Floating Point clang "
"types are supported.");
}
if (!register_write_successful)
error.SetErrorString("Register writing failed");
return error;
}
ValueObjectSP ABISysV_i386::GetReturnValueObjectSimple(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
Value value;
if (!return_compiler_type)
return return_valobj_sp;
value.SetCompilerType(return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
const uint32_t type_flags = return_compiler_type.GetTypeInfo();
unsigned eax_id =
reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
unsigned edx_id =
reg_ctx->GetRegisterInfoByName("edx", 0)->kinds[eRegisterKindLLDB];
// Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
// The terminology 'Fundamental Data Types' used here is adopted from Table
// 2.1 of the reference document (specified on top of this file)
if (type_flags & eTypeIsPointer) // 'Pointer'
{
uint32_t ptr =
thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
0xffffffff;
value.SetValueType(Value::eValueTypeScalar);
value.GetScalar() = ptr;
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if ((type_flags & eTypeIsScalar) ||
(type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
{
value.SetValueType(Value::eValueTypeScalar);
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (!byte_size)
return return_valobj_sp;
bool success = false;
if (type_flags & eTypeIsInteger) // 'Integral' except enum
{
const bool is_signed = ((type_flags & eTypeIsSigned) != 0);
uint64_t raw_value =
thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
0xffffffff;
raw_value |=
(thread.GetRegisterContext()->ReadRegisterAsUnsigned(edx_id, 0) &
0xffffffff)
<< 32;
switch (*byte_size) {
default:
break;
case 16:
// For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
// handle it
break;
case 8:
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case 4:
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case 2:
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case 1:
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsEnumeration) // handles enum
{
uint32_t enm =
thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
0xffffffff;
value.SetValueType(Value::eValueTypeScalar);
value.GetScalar() = enm;
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsFloat) // 'Floating Point'
{
if (*byte_size <= 12) // handles float, double, long double, __float80
{
const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
RegisterValue st0_value;
if (reg_ctx->ReadRegister(st0_info, st0_value)) {
DataExtractor data;
if (st0_value.GetData(data)) {
lldb::offset_t offset = 0;
long double value_long_double = data.GetLongDouble(&offset);
// float is 4 bytes.
if (*byte_size == 4) {
float value_float = (float)value_long_double;
value.GetScalar() = value_float;
success = true;
} else if (*byte_size == 8) {
// double is 8 bytes
// On Android Platform: long double is also 8 bytes It will be
// handled here only.
double value_double = (double)value_long_double;
value.GetScalar() = value_double;
success = true;
} else if (*byte_size == 12) {
// long double and __float80 are 12 bytes on i386.
value.GetScalar() = value_long_double;
success = true;
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (*byte_size == 16) // handles __float128
{
lldb::addr_t storage_addr = (uint32_t)(
thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
0xffffffff);
return_valobj_sp = ValueObjectMemory::Create(
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
}
} else // Neither 'Integral' nor 'Floating Point'
{
// If flow reaches here then check type_flags This type_flags is
// unhandled
}
} else if (type_flags & eTypeIsComplex) // 'Complex Floating Point'
{
// ToDo: Yet to be implemented
} else if (type_flags & eTypeIsVector) // 'Packed'
{
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (byte_size && *byte_size > 0) {
const RegisterInfo *vec_reg = reg_ctx->GetRegisterInfoByName("xmm0", 0);
if (vec_reg == nullptr)
vec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
if (vec_reg) {
if (*byte_size <= vec_reg->byte_size) {
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = process_sp->GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(vec_reg, reg_value)) {
Status error;
if (reg_value.GetAsMemoryData(vec_reg, heap_data_up->GetBytes(),
heap_data_up->GetByteSize(),
byte_order, error)) {
DataExtractor data(DataBufferSP(heap_data_up.release()),
byte_order,
process_sp->GetTarget()
.GetArchitecture()
.GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
}
} else if (*byte_size <= vec_reg->byte_size * 2) {
const RegisterInfo *vec_reg2 =
reg_ctx->GetRegisterInfoByName("xmm1", 0);
if (vec_reg2) {
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = process_sp->GetByteOrder();
RegisterValue reg_value;
RegisterValue reg_value2;
if (reg_ctx->ReadRegister(vec_reg, reg_value) &&
reg_ctx->ReadRegister(vec_reg2, reg_value2)) {
Status error;
if (reg_value.GetAsMemoryData(vec_reg, heap_data_up->GetBytes(),
vec_reg->byte_size, byte_order,
error) &&
reg_value2.GetAsMemoryData(
vec_reg2, heap_data_up->GetBytes() + vec_reg->byte_size,
heap_data_up->GetByteSize() - vec_reg->byte_size,
byte_order, error)) {
DataExtractor data(DataBufferSP(heap_data_up.release()),
byte_order,
process_sp->GetTarget()
.GetArchitecture()
.GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
}
}
}
}
}
} else // 'Decimal Floating Point'
{
// ToDo: Yet to be implemented
}
return return_valobj_sp;
}
ValueObjectSP ABISysV_i386::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
if (!return_compiler_type)
return return_valobj_sp;
ExecutionContext exe_ctx(thread.shared_from_this());
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
if (return_valobj_sp)
return return_valobj_sp;
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp)
return return_valobj_sp;
if (return_compiler_type.IsAggregateType()) {
unsigned eax_id =
reg_ctx_sp->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
lldb::addr_t storage_addr = (uint32_t)(
thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
0xffffffff);
return_valobj_sp = ValueObjectMemory::Create(
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
}
return return_valobj_sp;
}
// This defines CFA as esp+4
// The saved pc is at CFA-4 (i.e. esp+0)
// The saved esp is CFA+0
bool ABISysV_i386::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t sp_reg_num = dwarf_esp;
uint32_t pc_reg_num = dwarf_eip;
UnwindPlan::RowSP row(new UnwindPlan::Row);
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 4);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -4, false);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("i386 at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
return true;
}
// This defines CFA as ebp+8
// The saved pc is at CFA-4 (i.e. ebp+4)
// The saved ebp is at CFA-8 (i.e. ebp+0)
// The saved esp is CFA+0
bool ABISysV_i386::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t fp_reg_num = dwarf_ebp;
uint32_t sp_reg_num = dwarf_esp;
uint32_t pc_reg_num = dwarf_eip;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 4;
row->GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
row->SetOffset(0);
row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("i386 default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
return true;
}
// According to "Register Usage" in reference document (specified on top of
// this source file) ebx, ebp, esi, edi and esp registers are preserved i.e.
// non-volatile i.e. callee-saved on i386
bool ABISysV_i386::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
if (!reg_info)
return false;
// Saved registers are ebx, ebp, esi, edi, esp, eip
const char *name = reg_info->name;
if (name[0] == 'e') {
switch (name[1]) {
case 'b':
if (name[2] == 'x' || name[2] == 'p')
return name[3] == '\0';
break;
case 'd':
if (name[2] == 'i')
return name[3] == '\0';
break;
case 'i':
if (name[2] == 'p')
return name[3] == '\0';
break;
case 's':
if (name[2] == 'i' || name[2] == 'p')
return name[3] == '\0';
break;
}
}
if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
return true;
if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
return true;
if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
return true;
return false;
}
void ABISysV_i386::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "System V ABI for i386 targets", CreateInstance);
}
void ABISysV_i386::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
// PluginInterface protocol
lldb_private::ConstString ABISysV_i386::GetPluginNameStatic() {
static ConstString g_name("sysv-i386");
return g_name;
}
lldb_private::ConstString ABISysV_i386::GetPluginName() {
return GetPluginNameStatic();
}