sincosD_piby4.h
5.28 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_INLINE double2
__libclc__sincos_piby4(double x, double xx)
{
// Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
// = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
// = x * f(w)
// where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
// We use a minimax approximation of (f(w) - 1) / w
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we add a correction
// term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
// is an approximation to cos(x)*sin(xx) valid because
// xx is tiny relative to x.
// Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
// = f(w)
// where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
// We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we subtract a correction
// term g(x,xx) = x*xx to the result, where g(x,xx)
// is an approximation to sin(x)*sin(xx) valid because
// xx is tiny relative to x.
const double sc1 = -0.166666666666666646259241729;
const double sc2 = 0.833333333333095043065222816e-2;
const double sc3 = -0.19841269836761125688538679e-3;
const double sc4 = 0.275573161037288022676895908448e-5;
const double sc5 = -0.25051132068021699772257377197e-7;
const double sc6 = 0.159181443044859136852668200e-9;
const double cc1 = 0.41666666666666665390037e-1;
const double cc2 = -0.13888888888887398280412e-2;
const double cc3 = 0.248015872987670414957399e-4;
const double cc4 = -0.275573172723441909470836e-6;
const double cc5 = 0.208761463822329611076335e-8;
const double cc6 = -0.113826398067944859590880e-10;
double x2 = x * x;
double x3 = x2 * x;
double r = 0.5 * x2;
double t = 1.0 - r;
double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2);
double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1),
x2*x2, fma(x, xx, (1.0 - t) - r));
double2 ret;
ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx));
ret.hi = cp;
return ret;
}
_CLC_INLINE double2
__clc_tan_piby4(double x, double xx)
{
const double piby4_lead = 7.85398163397448278999e-01; // 0x3fe921fb54442d18
const double piby4_tail = 3.06161699786838240164e-17; // 0x3c81a62633145c06
// In order to maintain relative precision transform using the identity:
// tan(pi/4-x) = (1-tan(x))/(1+tan(x)) for arguments close to pi/4.
// Similarly use tan(x-pi/4) = (tan(x)-1)/(tan(x)+1) close to -pi/4.
int ca = x > 0.68;
int cb = x < -0.68;
double transform = ca ? 1.0 : 0.0;
transform = cb ? -1.0 : transform;
double tx = fma(-transform, x, piby4_lead) + fma(-transform, xx, piby4_tail);
int c = ca | cb;
x = c ? tx : x;
xx = c ? 0.0 : xx;
// Core Remez [2,3] approximation to tan(x+xx) on the interval [0,0.68].
double t1 = x;
double r = fma(2.0, x*xx, x*x);
double a = fma(r,
fma(r, 0.224044448537022097264602535574e-3, -0.229345080057565662883358588111e-1),
0.372379159759792203640806338901e0);
double b = fma(r,
fma(r,
fma(r, -0.232371494088563558304549252913e-3, 0.260656620398645407524064091208e-1),
-0.515658515729031149329237816945e0),
0.111713747927937668539901657944e1);
double t2 = fma(MATH_DIVIDE(a, b), x*r, xx);
double tp = t1 + t2;
// Compute -1.0/(t1 + t2) accurately
double z1 = as_double(as_long(tp) & 0xffffffff00000000L);
double z2 = t2 - (z1 - t1);
double trec = -MATH_RECIP(tp);
double trec_top = as_double(as_long(trec) & 0xffffffff00000000L);
double tpr = fma(fma(trec_top, z2, fma(trec_top, z1, 1.0)), trec, trec_top);
double tpt = transform * (1.0 - MATH_DIVIDE(2.0*tp, 1.0 + tp));
double tptr = transform * (MATH_DIVIDE(2.0*tp, tp - 1.0) - 1.0);
double2 ret;
ret.lo = c ? tpt : tp;
ret.hi = c ? tptr : tpr;
return ret;
}