log_base.h
9.56 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "math.h"
/*
Algorithm:
Based on:
Ping-Tak Peter Tang
"Table-driven implementation of the logarithm function in IEEE
floating-point arithmetic"
ACM Transactions on Mathematical Software (TOMS)
Volume 16, Issue 4 (December 1990)
x very close to 1.0 is handled differently, for x everywhere else
a brief explanation is given below
x = (2^m)*A
x = (2^m)*(G+g) with (1 <= G < 2) and (g <= 2^(-8))
x = (2^m)*2*(G/2+g/2)
x = (2^m)*2*(F+f) with (0.5 <= F < 1) and (f <= 2^(-9))
Y = (2^(-1))*(2^(-m))*(2^m)*A
Now, range of Y is: 0.5 <= Y < 1
F = 0x80 + (first 7 mantissa bits) + (8th mantissa bit)
Now, range of F is: 128 <= F <= 256
F = F / 256
Now, range of F is: 0.5 <= F <= 1
f = -(Y-F), with (f <= 2^(-9))
log(x) = m*log(2) + log(2) + log(F-f)
log(x) = m*log(2) + log(2) + log(F) + log(1-(f/F))
log(x) = m*log(2) + log(2*F) + log(1-r)
r = (f/F), with (r <= 2^(-8))
r = f*(1/F) with (1/F) precomputed to avoid division
log(x) = m*log(2) + log(G) - poly
log(G) is precomputed
poly = (r + (r^2)/2 + (r^3)/3 + (r^4)/4) + (r^5)/5))
log(2) and log(G) need to be maintained in extra precision
to avoid losing precision in the calculations
For x close to 1.0, we employ the following technique to
ensure faster convergence.
log(x) = log((1+s)/(1-s)) = 2*s + (2/3)*s^3 + (2/5)*s^5 + (2/7)*s^7
x = ((1+s)/(1-s))
x = 1 + r
s = r/(2+r)
*/
_CLC_OVERLOAD _CLC_DEF float
#if defined(COMPILING_LOG2)
log2(float x)
#elif defined(COMPILING_LOG10)
log10(float x)
#else
log(float x)
#endif
{
#if defined(COMPILING_LOG2)
const float LOG2E = 0x1.715476p+0f; // 1.4426950408889634
const float LOG2E_HEAD = 0x1.700000p+0f; // 1.4375
const float LOG2E_TAIL = 0x1.547652p-8f; // 0.00519504072
#elif defined(COMPILING_LOG10)
const float LOG10E = 0x1.bcb7b2p-2f; // 0.43429448190325182
const float LOG10E_HEAD = 0x1.bc0000p-2f; // 0.43359375
const float LOG10E_TAIL = 0x1.6f62a4p-11f; // 0.0007007319
const float LOG10_2_HEAD = 0x1.340000p-2f; // 0.30078125
const float LOG10_2_TAIL = 0x1.04d426p-12f; // 0.000248745637
#else
const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234
const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833
#endif
uint xi = as_uint(x);
uint ax = xi & EXSIGNBIT_SP32;
// Calculations for |x-1| < 2^-4
float r = x - 1.0f;
int near1 = fabs(r) < 0x1.0p-4f;
float u2 = MATH_DIVIDE(r, 2.0f + r);
float corr = u2 * r;
float u = u2 + u2;
float v = u * u;
float znear1, z1, z2;
// 2/(5 * 2^5), 2/(3 * 2^3)
z2 = mad(u, mad(v, 0x1.99999ap-7f, 0x1.555556p-4f)*v, -corr);
#if defined(COMPILING_LOG2)
z1 = as_float(as_int(r) & 0xffff0000);
z2 = z2 + (r - z1);
znear1 = mad(z1, LOG2E_HEAD, mad(z2, LOG2E_HEAD, mad(z1, LOG2E_TAIL, z2*LOG2E_TAIL)));
#elif defined(COMPILING_LOG10)
z1 = as_float(as_int(r) & 0xffff0000);
z2 = z2 + (r - z1);
znear1 = mad(z1, LOG10E_HEAD, mad(z2, LOG10E_HEAD, mad(z1, LOG10E_TAIL, z2*LOG10E_TAIL)));
#else
znear1 = z2 + r;
#endif
// Calculations for x not near 1
int m = (int)(xi >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
// Normalize subnormal
uint xis = as_uint(as_float(xi | 0x3f800000) - 1.0f);
int ms = (int)(xis >> EXPSHIFTBITS_SP32) - 253;
int c = m == -127;
m = c ? ms : m;
uint xin = c ? xis : xi;
float mf = (float)m;
uint indx = (xin & 0x007f0000) + ((xin & 0x00008000) << 1);
// F - Y
float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (xin & MANTBITS_SP32));
indx = indx >> 16;
r = f * USE_TABLE(log_inv_tbl, indx);
// 1/3, 1/2
float poly = mad(mad(r, 0x1.555556p-2f, 0.5f), r*r, r);
#if defined(COMPILING_LOG2)
float2 tv = USE_TABLE(log2_tbl, indx);
z1 = tv.s0 + mf;
z2 = mad(poly, -LOG2E, tv.s1);
#elif defined(COMPILING_LOG10)
float2 tv = USE_TABLE(log10_tbl, indx);
z1 = mad(mf, LOG10_2_HEAD, tv.s0);
z2 = mad(poly, -LOG10E, mf*LOG10_2_TAIL) + tv.s1;
#else
float2 tv = USE_TABLE(log_tbl, indx);
z1 = mad(mf, LOG2_HEAD, tv.s0);
z2 = mad(mf, LOG2_TAIL, -poly) + tv.s1;
#endif
float z = z1 + z2;
z = near1 ? znear1 : z;
// Corner cases
z = ax >= PINFBITPATT_SP32 ? x : z;
z = xi != ax ? as_float(QNANBITPATT_SP32) : z;
z = ax == 0 ? as_float(NINFBITPATT_SP32) : z;
return z;
}
#ifdef cl_khr_fp64
_CLC_OVERLOAD _CLC_DEF double
#if defined(COMPILING_LOG2)
log2(double x)
#elif defined(COMPILING_LOG10)
log10(double x)
#else
log(double x)
#endif
{
#ifndef COMPILING_LOG2
// log2_lead and log2_tail sum to an extra-precise version of ln(2)
const double log2_lead = 6.93147122859954833984e-01; /* 0x3fe62e42e0000000 */
const double log2_tail = 5.76999904754328540596e-08; /* 0x3e6efa39ef35793c */
#endif
#if defined(COMPILING_LOG10)
// log10e_lead and log10e_tail sum to an extra-precision version of log10(e) (19 bits in lead)
const double log10e_lead = 4.34293746948242187500e-01; /* 0x3fdbcb7800000000 */
const double log10e_tail = 7.3495500964015109100644e-7; /* 0x3ea8a93728719535 */
#elif defined(COMPILING_LOG2)
// log2e_lead and log2e_tail sum to an extra-precision version of log2(e) (19 bits in lead)
const double log2e_lead = 1.44269180297851562500E+00; /* 0x3FF7154400000000 */
const double log2e_tail = 3.23791044778235969970E-06; /* 0x3ECB295C17F0BBBE */
#endif
// log_thresh1 = 9.39412117004394531250e-1 = 0x3fee0faa00000000
// log_thresh2 = 1.06449508666992187500 = 0x3ff1082c00000000
const double log_thresh1 = 0x1.e0faap-1;
const double log_thresh2 = 0x1.1082cp+0;
int is_near = x >= log_thresh1 & x <= log_thresh2;
// Near 1 code
double r = x - 1.0;
double u = r / (2.0 + r);
double correction = r * u;
u = u + u;
double v = u * u;
double r1 = r;
const double ca_1 = 8.33333333333317923934e-02; /* 0x3fb55555555554e6 */
const double ca_2 = 1.25000000037717509602e-02; /* 0x3f89999999bac6d4 */
const double ca_3 = 2.23213998791944806202e-03; /* 0x3f62492307f1519f */
const double ca_4 = 4.34887777707614552256e-04; /* 0x3f3c8034c85dfff0 */
double r2 = fma(u*v, fma(v, fma(v, fma(v, ca_4, ca_3), ca_2), ca_1), -correction);
#if defined(COMPILING_LOG10)
r = r1;
r1 = as_double(as_ulong(r1) & 0xffffffff00000000);
r2 = r2 + (r - r1);
double ret_near = fma(log10e_lead, r1, fma(log10e_lead, r2, fma(log10e_tail, r1, log10e_tail * r2)));
#elif defined(COMPILING_LOG2)
r = r1;
r1 = as_double(as_ulong(r1) & 0xffffffff00000000);
r2 = r2 + (r - r1);
double ret_near = fma(log2e_lead, r1, fma(log2e_lead, r2, fma(log2e_tail, r1, log2e_tail*r2)));
#else
double ret_near = r1 + r2;
#endif
// This is the far from 1 code
// Deal with subnormal
ulong ux = as_ulong(x);
ulong uxs = as_ulong(as_double(0x03d0000000000000UL | ux) - 0x1.0p-962);
int c = ux < IMPBIT_DP64;
ux = c ? uxs : ux;
int expadjust = c ? 60 : 0;
int xexp = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64 - expadjust;
double f = as_double(HALFEXPBITS_DP64 | (ux & MANTBITS_DP64));
int index = as_int2(ux).hi >> 13;
index = ((0x80 | (index & 0x7e)) >> 1) + (index & 0x1);
double2 tv = USE_TABLE(ln_tbl, index - 64);
double z1 = tv.s0;
double q = tv.s1;
double f1 = index * 0x1.0p-7;
double f2 = f - f1;
u = f2 / fma(f2, 0.5, f1);
v = u * u;
const double cb_1 = 8.33333333333333593622e-02; /* 0x3fb5555555555557 */
const double cb_2 = 1.24999999978138668903e-02; /* 0x3f89999999865ede */
const double cb_3 = 2.23219810758559851206e-03; /* 0x3f6249423bd94741 */
double poly = v * fma(v, fma(v, cb_3, cb_2), cb_1);
double z2 = q + fma(u, poly, u);
double dxexp = (double)xexp;
#if defined (COMPILING_LOG10)
// Add xexp * log(2) to z1,z2 to get log(x)
r1 = fma(dxexp, log2_lead, z1);
r2 = fma(dxexp, log2_tail, z2);
double ret_far = fma(log10e_lead, r1, fma(log10e_lead, r2, fma(log10e_tail, r1, log10e_tail*r2)));
#elif defined(COMPILING_LOG2)
r1 = fma(log2e_lead, z1, dxexp);
r2 = fma(log2e_lead, z2, fma(log2e_tail, z1, log2e_tail*z2));
double ret_far = r1 + r2;
#else
r1 = fma(dxexp, log2_lead, z1);
r2 = fma(dxexp, log2_tail, z2);
double ret_far = r1 + r2;
#endif
double ret = is_near ? ret_near : ret_far;
ret = isinf(x) ? as_double(PINFBITPATT_DP64) : ret;
ret = isnan(x) | (x < 0.0) ? as_double(QNANBITPATT_DP64) : ret;
ret = x == 0.0 ? as_double(NINFBITPATT_DP64) : ret;
return ret;
}
#endif // cl_khr_fp64