erf.cl 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <clc/clc.h>

#include "math.h"
#include "../clcmacro.h"

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
*/

#define erx   8.4506291151e-01f        /* 0x3f58560b */

// Coefficients for approximation to  erf on [00.84375]

#define efx   1.2837916613e-01f        /* 0x3e0375d4 */
#define efx8  1.0270333290e+00f        /* 0x3f8375d4 */

#define pp0   1.2837916613e-01f        /* 0x3e0375d4 */
#define pp1  -3.2504209876e-01f        /* 0xbea66beb */
#define pp2  -2.8481749818e-02f        /* 0xbce9528f */
#define pp3  -5.7702702470e-03f        /* 0xbbbd1489 */
#define pp4  -2.3763017452e-05f        /* 0xb7c756b1 */
#define qq1   3.9791721106e-01f        /* 0x3ecbbbce */
#define qq2   6.5022252500e-02f        /* 0x3d852a63 */
#define qq3   5.0813062117e-03f        /* 0x3ba68116 */
#define qq4   1.3249473704e-04f        /* 0x390aee49 */
#define qq5  -3.9602282413e-06f        /* 0xb684e21a */

// Coefficients for approximation to  erf  in [0.843751.25]

#define pa0  -2.3621185683e-03f        /* 0xbb1acdc6 */
#define pa1   4.1485610604e-01f        /* 0x3ed46805 */
#define pa2  -3.7220788002e-01f        /* 0xbebe9208 */
#define pa3   3.1834661961e-01f        /* 0x3ea2fe54 */
#define pa4  -1.1089469492e-01f        /* 0xbde31cc2 */
#define pa5   3.5478305072e-02f        /* 0x3d1151b3 */
#define pa6  -2.1663755178e-03f        /* 0xbb0df9c0 */
#define qa1   1.0642088205e-01f        /* 0x3dd9f331 */
#define qa2   5.4039794207e-01f        /* 0x3f0a5785 */
#define qa3   7.1828655899e-02f        /* 0x3d931ae7 */
#define qa4   1.2617121637e-01f        /* 0x3e013307 */
#define qa5   1.3637083583e-02f        /* 0x3c5f6e13 */
#define qa6   1.1984500103e-02f        /* 0x3c445aa3 */

// Coefficients for approximation to  erfc in [1.251/0.35]

#define ra0  -9.8649440333e-03f        /* 0xbc21a093 */
#define ra1  -6.9385856390e-01f        /* 0xbf31a0b7 */
#define ra2  -1.0558626175e+01f        /* 0xc128f022 */
#define ra3  -6.2375331879e+01f        /* 0xc2798057 */
#define ra4  -1.6239666748e+02f        /* 0xc322658c */
#define ra5  -1.8460508728e+02f        /* 0xc3389ae7 */
#define ra6  -8.1287437439e+01f        /* 0xc2a2932b */
#define ra7  -9.8143291473e+00f        /* 0xc11d077e */
#define sa1   1.9651271820e+01f        /* 0x419d35ce */
#define sa2   1.3765776062e+02f        /* 0x4309a863 */
#define sa3   4.3456588745e+02f        /* 0x43d9486f */
#define sa4   6.4538726807e+02f        /* 0x442158c9 */
#define sa5   4.2900814819e+02f        /* 0x43d6810b */
#define sa6   1.0863500214e+02f        /* 0x42d9451f */
#define sa7   6.5702495575e+00f        /* 0x40d23f7c */
#define sa8  -6.0424413532e-02f        /* 0xbd777f97 */

// Coefficients for approximation to  erfc in [1/.3528]

#define rb0  -9.8649431020e-03f        /* 0xbc21a092 */
#define rb1  -7.9928326607e-01f        /* 0xbf4c9dd4 */
#define rb2  -1.7757955551e+01f        /* 0xc18e104b */
#define rb3  -1.6063638306e+02f        /* 0xc320a2ea */
#define rb4  -6.3756646729e+02f        /* 0xc41f6441 */
#define rb5  -1.0250950928e+03f        /* 0xc480230b */
#define rb6  -4.8351919556e+02f        /* 0xc3f1c275 */
#define sb1   3.0338060379e+01f        /* 0x41f2b459 */
#define sb2   3.2579251099e+02f        /* 0x43a2e571 */
#define sb3   1.5367296143e+03f        /* 0x44c01759 */
#define sb4   3.1998581543e+03f        /* 0x4547fdbb */
#define sb5   2.5530502930e+03f        /* 0x451f90ce */
#define sb6   4.7452853394e+02f        /* 0x43ed43a7 */
#define sb7  -2.2440952301e+01f        /* 0xc1b38712 */

_CLC_OVERLOAD _CLC_DEF float erf(float x) {
    int hx = as_uint(x);
    int ix = hx & 0x7fffffff;
    float absx = as_float(ix);

    float x2 = absx * absx;
    float t = 1.0f / x2;
    float tt = absx - 1.0f;
    t = absx < 1.25f ? tt : t;
    t = absx < 0.84375f ? x2 : t;

    float u, v, tu, tv;

    // |x| < 6
    u = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, rb6, rb5), rb4), rb3), rb2), rb1), rb0);
    v = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sb7, sb6), sb5), sb4), sb3), sb2), sb1);

    tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, ra7, ra6), ra5), ra4), ra3), ra2), ra1), ra0);
    tv = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sa8, sa7), sa6), sa5), sa4), sa3), sa2), sa1);
    u = absx < 0x1.6db6dcp+1f ? tu : u;
    v = absx < 0x1.6db6dcp+1f ? tv : v;

    tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, pa6, pa5), pa4), pa3), pa2), pa1), pa0);
    tv = mad(t, mad(t, mad(t, mad(t, mad(t, qa6, qa5), qa4), qa3), qa2), qa1);
    u = absx < 1.25f ? tu : u;
    v = absx < 1.25f ? tv : v;

    tu = mad(t, mad(t, mad(t, mad(t, pp4, pp3), pp2), pp1), pp0);
    tv = mad(t, mad(t, mad(t, mad(t, qq5, qq4), qq3), qq2), qq1);
    u = absx < 0.84375f ? tu : u;
    v = absx < 0.84375f ? tv : v;

    v = mad(t, v, 1.0f);
    float q = MATH_DIVIDE(u, v);

    float ret = 1.0f;

    // |x| < 6
    float z = as_float(ix & 0xfffff000);
    float r = exp(mad(-z, z, -0.5625f)) * exp(mad(z-absx, z+absx, q));
    r = 1.0f - MATH_DIVIDE(r,  absx);
    ret = absx < 6.0f ? r : ret;

    r = erx + q;
    ret = absx < 1.25f ? r : ret;

    ret = as_float((hx & 0x80000000) | as_int(ret));

    r = mad(x, q, x);
    ret = absx < 0.84375f ? r : ret;

    // Prevent underflow
    r = 0.125f * mad(8.0f, x, efx8 * x);
    ret = absx < 0x1.0p-28f ? r : ret;

    ret = isnan(x) ? x : ret;

    return ret;
}

_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, erf, float);

#ifdef cl_khr_fp64

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/* double erf(double x)
 * double erfc(double x)
 *                             x
 *                      2      |\
 *     erf(x)  =  ---------  | exp(-t*t)dt
 *                    sqrt(pi) \|
 *                             0
 *
 *     erfc(x) =  1-erf(x)
 *  Note that
 *                erf(-x) = -erf(x)
 *                erfc(-x) = 2 - erfc(x)
 *
 * Method:
 *        1. For |x| in [0, 0.84375]
 *            erf(x)  = x + x*R(x^2)
 *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
 *           where R = P/Q where P is an odd poly of degree 8 and
 *           Q is an odd poly of degree 10.
 *                                                 -57.90
 *                        | R - (erf(x)-x)/x | <= 2
 *
 *
 *           Remark. The formula is derived by noting
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
 *           and that
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
 *           is close to one. The interval is chosen because the fix
 *           point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
 *           near 0.6174), and by some experiment, 0.84375 is chosen to
 *            guarantee the error is less than one ulp for erf.
 *
 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
 *         c = 0.84506291151 rounded to single (24 bits)
 *                 erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
 *                 erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
 *                          1+(c+P1(s)/Q1(s))    if x < 0
 *                 |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
 *           Remark: here we use the taylor series expansion at x=1.
 *                erf(1+s) = erf(1) + s*Poly(s)
 *                         = 0.845.. + P1(s)/Q1(s)
 *           That is, we use rational approximation to approximate
 *                        erf(1+s) - (c = (single)0.84506291151)
 *           Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
 *           where
 *                P1(s) = degree 6 poly in s
 *                Q1(s) = degree 6 poly in s
 *
 *      3. For x in [1.25,1/0.35(~2.857143)],
 *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
 *                 erf(x)  = 1 - erfc(x)
 *           where
 *                R1(z) = degree 7 poly in z, (z=1/x^2)
 *                S1(z) = degree 8 poly in z
 *
 *      4. For x in [1/0.35,28]
 *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
 *                        = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
 *                        = 2.0 - tiny                (if x <= -6)
 *                 erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
 *                 erf(x)  = sign(x)*(1.0 - tiny)
 *           where
 *                R2(z) = degree 6 poly in z, (z=1/x^2)
 *                S2(z) = degree 7 poly in z
 *
 *      Note1:
 *           To compute exp(-x*x-0.5625+R/S), let s be a single
 *           precision number and s := x; then
 *                -x*x = -s*s + (s-x)*(s+x)
 *                exp(-x*x-0.5626+R/S) =
 *                        exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
 *      Note2:
 *           Here 4 and 5 make use of the asymptotic series
 *                          exp(-x*x)
 *                erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
 *                          x*sqrt(pi)
 *           We use rational approximation to approximate
 *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
 *           Here is the error bound for R1/S1 and R2/S2
 *              |R1/S1 - f(x)|  < 2**(-62.57)
 *              |R2/S2 - f(x)|  < 2**(-61.52)
 *
 *      5. For inf > x >= 28
 *                 erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
 *                 erfc(x) = tiny*tiny (raise underflow) if x > 0
 *                        = 2 - tiny if x<0
 *
 *      7. Special case:
 *                 erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
 *                 erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
 *                   erfc/erf(NaN) is NaN
 */

#define AU0 -9.86494292470009928597e-03
#define AU1 -7.99283237680523006574e-01
#define AU2 -1.77579549177547519889e+01
#define AU3 -1.60636384855821916062e+02
#define AU4 -6.37566443368389627722e+02
#define AU5 -1.02509513161107724954e+03
#define AU6 -4.83519191608651397019e+02

#define AV1  3.03380607434824582924e+01
#define AV2  3.25792512996573918826e+02
#define AV3  1.53672958608443695994e+03
#define AV4  3.19985821950859553908e+03
#define AV5  2.55305040643316442583e+03
#define AV6  4.74528541206955367215e+02
#define AV7 -2.24409524465858183362e+01

#define BU0 -9.86494403484714822705e-03
#define BU1 -6.93858572707181764372e-01
#define BU2 -1.05586262253232909814e+01
#define BU3 -6.23753324503260060396e+01
#define BU4 -1.62396669462573470355e+02
#define BU5 -1.84605092906711035994e+02
#define BU6 -8.12874355063065934246e+01
#define BU7 -9.81432934416914548592e+00

#define BV1  1.96512716674392571292e+01
#define BV2  1.37657754143519042600e+02
#define BV3  4.34565877475229228821e+02
#define BV4  6.45387271733267880336e+02
#define BV5  4.29008140027567833386e+02
#define BV6  1.08635005541779435134e+02
#define BV7  6.57024977031928170135e+00
#define BV8 -6.04244152148580987438e-02

#define CU0 -2.36211856075265944077e-03
#define CU1  4.14856118683748331666e-01
#define CU2 -3.72207876035701323847e-01
#define CU3  3.18346619901161753674e-01
#define CU4 -1.10894694282396677476e-01
#define CU5  3.54783043256182359371e-02
#define CU6 -2.16637559486879084300e-03

#define CV1  1.06420880400844228286e-01
#define CV2  5.40397917702171048937e-01
#define CV3  7.18286544141962662868e-02
#define CV4  1.26171219808761642112e-01
#define CV5  1.36370839120290507362e-02
#define CV6  1.19844998467991074170e-02

#define DU0  1.28379167095512558561e-01
#define DU1 -3.25042107247001499370e-01
#define DU2 -2.84817495755985104766e-02
#define DU3 -5.77027029648944159157e-03
#define DU4 -2.37630166566501626084e-05

#define DV1  3.97917223959155352819e-01
#define DV2  6.50222499887672944485e-02
#define DV3  5.08130628187576562776e-03
#define DV4  1.32494738004321644526e-04
#define DV5 -3.96022827877536812320e-06

_CLC_OVERLOAD _CLC_DEF double erf(double y) {
    double x = fabs(y);
    double x2 = x * x;
    double xm1 = x - 1.0;

    // Poly variable
    double t = 1.0 / x2;
    t = x < 1.25 ? xm1 : t;
    t = x < 0.84375 ? x2 : t;

    double u, ut, v, vt;

    // Evaluate rational poly
    // XXX We need to see of we can grab 16 coefficents from a table
    // faster than evaluating 3 of the poly pairs
    // if (x < 6.0)
    u = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AU6, AU5), AU4), AU3), AU2), AU1), AU0);
    v = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AV7, AV6), AV5), AV4), AV3), AV2), AV1);

    ut = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BU7, BU6), BU5), BU4), BU3), BU2), BU1), BU0);
    vt = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BV8, BV7), BV6), BV5), BV4), BV3), BV2), BV1);
    u = x < 0x1.6db6ep+1 ? ut : u;
    v = x < 0x1.6db6ep+1 ? vt : v;

    ut = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, CU6, CU5), CU4), CU3), CU2), CU1), CU0);
    vt = fma(t, fma(t, fma(t, fma(t, fma(t, CV6, CV5), CV4), CV3), CV2), CV1);
    u = x < 1.25 ? ut : u;
    v = x < 1.25 ? vt : v;

    ut = fma(t, fma(t, fma(t, fma(t, DU4, DU3), DU2), DU1), DU0);
    vt = fma(t, fma(t, fma(t, fma(t, DV5, DV4), DV3), DV2), DV1);
    u = x < 0.84375 ? ut : u;
    v = x < 0.84375 ? vt : v;

    v = fma(t, v, 1.0);

    // Compute rational approximation
    double q = u / v;

    // Compute results
    double z = as_double(as_long(x) & 0xffffffff00000000L);
    double r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + q);
    r = 1.0 - r / x;

    double ret = x < 6.0 ? r : 1.0;

    r = 8.45062911510467529297e-01 + q;
    ret = x < 1.25 ? r : ret;

    q = x < 0x1.0p-28 ? 1.28379167095512586316e-01 : q;

    r = fma(x, q, x);
    ret = x < 0.84375 ? r : ret;

    ret = isnan(x) ? x : ret;

    return y < 0.0 ? -ret : ret;
}

_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, erf, double);

#endif