x86_long_double_test.cpp
2.82 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
//===-- Unittests for x86 long double -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "include/math.h"
#include "utils/FPUtil/FPBits.h"
#include "utils/UnitTest/Test.h"
using FPBits = __llvm_libc::fputil::FPBits<long double>;
TEST(X86LongDoubleTest, isNaN) {
// In the nan checks below, we use the macro isnan from math.h to ensure that
// a number is actually a NaN. The isnan macro resolves to the compiler
// builtin function. Hence, matching LLVM-libc's notion of NaN with the
// isnan result ensures that LLVM-libc's behavior matches the compiler's
// behavior.
FPBits bits(0.0l);
bits.exponent = FPBits::maxExponent;
for (unsigned int i = 0; i < 1000000; ++i) {
// If exponent has the max value and the implicit bit is 0,
// then the number is a NaN for all values of mantissa.
bits.mantissa = i;
long double nan = bits;
ASSERT_NE(isnan(nan), 0);
ASSERT_TRUE(bits.isNaN());
}
bits.implicitBit = 1;
for (unsigned int i = 1; i < 1000000; ++i) {
// If exponent has the max value and the implicit bit is 1,
// then the number is a NaN for all non-zero values of mantissa.
// Note the initial value of |i| of 1 to avoid a zero mantissa.
bits.mantissa = i;
long double nan = bits;
ASSERT_NE(isnan(nan), 0);
ASSERT_TRUE(bits.isNaN());
}
bits.exponent = 1;
bits.implicitBit = 0;
for (unsigned int i = 0; i < 1000000; ++i) {
// If exponent is non-zero and also not max, and the implicit bit is 0,
// then the number is a NaN for all values of mantissa.
bits.mantissa = i;
long double nan = bits;
ASSERT_NE(isnan(nan), 0);
ASSERT_TRUE(bits.isNaN());
}
bits.exponent = 1;
bits.implicitBit = 1;
for (unsigned int i = 0; i < 1000000; ++i) {
// If exponent is non-zero and also not max, and the implicit bit is 1,
// then the number is normal value for all values of mantissa.
bits.mantissa = i;
long double valid = bits;
ASSERT_EQ(isnan(valid), 0);
ASSERT_FALSE(bits.isNaN());
}
bits.exponent = 0;
bits.implicitBit = 1;
for (unsigned int i = 0; i < 1000000; ++i) {
// If exponent is zero, then the number is a valid but denormal value.
bits.mantissa = i;
long double valid = bits;
ASSERT_EQ(isnan(valid), 0);
ASSERT_FALSE(bits.isNaN());
}
bits.exponent = 0;
bits.implicitBit = 0;
for (unsigned int i = 0; i < 1000000; ++i) {
// If exponent is zero, then the number is a valid but denormal value.
bits.mantissa = i;
long double valid = bits;
ASSERT_EQ(isnan(valid), 0);
ASSERT_FALSE(bits.isNaN());
}
}