Simplex.cpp 43.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Support/MathExtras.h"

namespace mlir {
using Direction = Simplex::Direction;

const int nullIndex = std::numeric_limits<int>::max();

/// Construct a Simplex object with `nVar` variables.
Simplex::Simplex(unsigned nVar)
    : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) {
  colUnknown.push_back(nullIndex);
  colUnknown.push_back(nullIndex);
  for (unsigned i = 0; i < nVar; ++i) {
    var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
    colUnknown.push_back(i);
    nCol++;
  }
}

Simplex::Simplex(const FlatAffineConstraints &constraints)
    : Simplex(constraints.getNumIds()) {
  for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
       i < numIneqs; ++i)
    addInequality(constraints.getInequality(i));
  for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
    addEquality(constraints.getEquality(i));
}

const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
  assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
  return index >= 0 ? var[index] : con[~index];
}

const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
  assert(col < nCol && "Invalid column");
  return unknownFromIndex(colUnknown[col]);
}

const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
  assert(row < nRow && "Invalid row");
  return unknownFromIndex(rowUnknown[row]);
}

Simplex::Unknown &Simplex::unknownFromIndex(int index) {
  assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
  return index >= 0 ? var[index] : con[~index];
}

Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
  assert(col < nCol && "Invalid column");
  return unknownFromIndex(colUnknown[col]);
}

Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
  assert(row < nRow && "Invalid row");
  return unknownFromIndex(rowUnknown[row]);
}

/// Add a new row to the tableau corresponding to the given constant term and
/// list of coefficients. The coefficients are specified as a vector of
/// (variable index, coefficient) pairs.
unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
  assert(coeffs.size() == 1 + var.size() &&
         "Incorrect number of coefficients!");

  ++nRow;
  // If the tableau is not big enough to accomodate the extra row, we extend it.
  if (nRow >= tableau.getNumRows())
    tableau.resizeVertically(nRow);
  rowUnknown.push_back(~con.size());
  con.emplace_back(Orientation::Row, false, nRow - 1);

  tableau(nRow - 1, 0) = 1;
  tableau(nRow - 1, 1) = coeffs.back();
  for (unsigned col = 2; col < nCol; ++col)
    tableau(nRow - 1, col) = 0;

  // Process each given variable coefficient.
  for (unsigned i = 0; i < var.size(); ++i) {
    unsigned pos = var[i].pos;
    if (coeffs[i] == 0)
      continue;

    if (var[i].orientation == Orientation::Column) {
      // If a variable is in column position at column col, then we just add the
      // coefficient for that variable (scaled by the common row denominator) to
      // the corresponding entry in the new row.
      tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
      continue;
    }

    // If the variable is in row position, we need to add that row to the new
    // row, scaled by the coefficient for the variable, accounting for the two
    // rows potentially having different denominators. The new denominator is
    // the lcm of the two.
    int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
    int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
    int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
    tableau(nRow - 1, 0) = lcm;
    for (unsigned col = 1; col < nCol; ++col)
      tableau(nRow - 1, col) =
          nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
  }

  normalizeRow(nRow - 1);
  // Push to undo log along with the index of the new constraint.
  undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
  return con.size() - 1;
}

/// Normalize the row by removing factors that are common between the
/// denominator and all the numerator coefficients.
void Simplex::normalizeRow(unsigned row) {
  int64_t gcd = 0;
  for (unsigned col = 0; col < nCol; ++col) {
    if (gcd == 1)
      break;
    gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
  }
  for (unsigned col = 0; col < nCol; ++col)
    tableau(row, col) /= gcd;
}

namespace {
bool signMatchesDirection(int64_t elem, Direction direction) {
  assert(elem != 0 && "elem should not be 0");
  return direction == Direction::Up ? elem > 0 : elem < 0;
}

Direction flippedDirection(Direction direction) {
  return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
}
} // anonymous namespace

/// Find a pivot to change the sample value of the row in the specified
/// direction. The returned pivot row will involve `row` if and only if the
/// unknown is unbounded in the specified direction.
///
/// To increase (resp. decrease) the value of a row, we need to find a live
/// column with a non-zero coefficient. If the coefficient is positive, we need
/// to increase (decrease) the value of the column, and if the coefficient is
/// negative, we need to decrease (increase) the value of the column. Also,
/// we cannot decrease the sample value of restricted columns.
///
/// If multiple columns are valid, we break ties by considering a lexicographic
/// ordering where we prefer unknowns with lower index.
Optional<Simplex::Pivot> Simplex::findPivot(int row,
                                            Direction direction) const {
  Optional<unsigned> col;
  for (unsigned j = 2; j < nCol; ++j) {
    int64_t elem = tableau(row, j);
    if (elem == 0)
      continue;

    if (unknownFromColumn(j).restricted &&
        !signMatchesDirection(elem, direction))
      continue;
    if (!col || colUnknown[j] < colUnknown[*col])
      col = j;
  }

  if (!col)
    return {};

  Direction newDirection =
      tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
  Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
  return Pivot{maybePivotRow.getValueOr(row), *col};
}

/// Swap the associated unknowns for the row and the column.
///
/// First we swap the index associated with the row and column. Then we update
/// the unknowns to reflect their new position and orientation.
void Simplex::swapRowWithCol(unsigned row, unsigned col) {
  std::swap(rowUnknown[row], colUnknown[col]);
  Unknown &uCol = unknownFromColumn(col);
  Unknown &uRow = unknownFromRow(row);
  uCol.orientation = Orientation::Column;
  uRow.orientation = Orientation::Row;
  uCol.pos = col;
  uRow.pos = row;
}

void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }

/// Pivot pivotRow and pivotCol.
///
/// Let R be the pivot row unknown and let C be the pivot col unknown.
/// Since initially R = a*C + sum b_i * X_i
/// (where the sum is over the other column's unknowns, x_i)
/// C = (R - (sum b_i * X_i))/a
///
/// Let u be some other row unknown.
/// u = c*C + sum d_i * X_i
/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
///
/// This results in the following transform:
///            pivot col    other col                   pivot col    other col
/// pivot row     a             b       ->   pivot row     1/a         -b/a
/// other row     c             d            other row     c/a        d - bc/a
///
/// Taking into account the common denominators p and q:
///
///            pivot col    other col                    pivot col   other col
/// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
/// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
///
/// The pivot row transform is accomplished be swapping a with the pivot row's
/// common denominator and negating the pivot row except for the pivot column
/// element.
void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
  assert(pivotCol >= 2 && "Refusing to pivot invalid column");

  swapRowWithCol(pivotRow, pivotCol);
  std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
  // We need to negate the whole pivot row except for the pivot column.
  if (tableau(pivotRow, 0) < 0) {
    // If the denominator is negative, we negate the row by simply negating the
    // denominator.
    tableau(pivotRow, 0) = -tableau(pivotRow, 0);
    tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
  } else {
    for (unsigned col = 1; col < nCol; ++col) {
      if (col == pivotCol)
        continue;
      tableau(pivotRow, col) = -tableau(pivotRow, col);
    }
  }
  normalizeRow(pivotRow);

  for (unsigned row = nRedundant; row < nRow; ++row) {
    if (row == pivotRow)
      continue;
    if (tableau(row, pivotCol) == 0) // Nothing to do.
      continue;
    tableau(row, 0) *= tableau(pivotRow, 0);
    for (unsigned j = 1; j < nCol; ++j) {
      if (j == pivotCol)
        continue;
      // Add rather than subtract because the pivot row has been negated.
      tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
                        tableau(row, pivotCol) * tableau(pivotRow, j);
    }
    tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
    normalizeRow(row);
  }
}

/// Perform pivots until the unknown has a non-negative sample value or until
/// no more upward pivots can be performed. Return the sign of the final sample
/// value.
LogicalResult Simplex::restoreRow(Unknown &u) {
  assert(u.orientation == Orientation::Row &&
         "unknown should be in row position");

  while (tableau(u.pos, 1) < 0) {
    Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
    if (!maybePivot)
      break;

    pivot(*maybePivot);
    if (u.orientation == Orientation::Column)
      return LogicalResult::Success; // the unknown is unbounded above.
  }
  return success(tableau(u.pos, 1) >= 0);
}

/// Find a row that can be used to pivot the column in the specified direction.
/// This returns an empty optional if and only if the column is unbounded in the
/// specified direction (ignoring skipRow, if skipRow is set).
///
/// If skipRow is set, this row is not considered, and (if it is restricted) its
/// restriction may be violated by the returned pivot. Usually, skipRow is set
/// because we don't want to move it to column position unless it is unbounded,
/// and we are either trying to increase the value of skipRow or explicitly
/// trying to make skipRow negative, so we are not concerned about this.
///
/// If the direction is up (resp. down) and a restricted row has a negative
/// (positive) coefficient for the column, then this row imposes a bound on how
/// much the sample value of the column can change. Such a row with constant
/// term c and coefficient f for the column imposes a bound of c/|f| on the
/// change in sample value (in the specified direction). (note that c is
/// non-negative here since the row is restricted and the tableau is consistent)
///
/// We iterate through the rows and pick the row which imposes the most
/// stringent bound, since pivoting with a row changes the row's sample value to
/// 0 and hence saturates the bound it imposes. We break ties between rows that
/// impose the same bound by considering a lexicographic ordering where we
/// prefer unknowns with lower index value.
Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
                                         Direction direction,
                                         unsigned col) const {
  Optional<unsigned> retRow;
  int64_t retElem, retConst;
  for (unsigned row = nRedundant; row < nRow; ++row) {
    if (skipRow && row == *skipRow)
      continue;
    int64_t elem = tableau(row, col);
    if (elem == 0)
      continue;
    if (!unknownFromRow(row).restricted)
      continue;
    if (signMatchesDirection(elem, direction))
      continue;
    int64_t constTerm = tableau(row, 1);

    if (!retRow) {
      retRow = row;
      retElem = elem;
      retConst = constTerm;
      continue;
    }

    int64_t diff = retConst * elem - constTerm * retElem;
    if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
        (diff != 0 && !signMatchesDirection(diff, direction))) {
      retRow = row;
      retElem = elem;
      retConst = constTerm;
    }
  }
  return retRow;
}

bool Simplex::isEmpty() const { return empty; }

void Simplex::swapRows(unsigned i, unsigned j) {
  if (i == j)
    return;
  tableau.swapRows(i, j);
  std::swap(rowUnknown[i], rowUnknown[j]);
  unknownFromRow(i).pos = i;
  unknownFromRow(j).pos = j;
}

/// Mark this tableau empty and push an entry to the undo stack.
void Simplex::markEmpty() {
  undoLog.push_back(UndoLogEntry::UnmarkEmpty);
  empty = true;
}

/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the curent number of variables, then the corresponding inequality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
///
/// We add the inequality and mark it as restricted. We then try to make its
/// sample value non-negative. If this is not possible, the tableau has become
/// empty and we mark it as such.
void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
  unsigned conIndex = addRow(coeffs);
  Unknown &u = con[conIndex];
  u.restricted = true;
  LogicalResult result = restoreRow(u);
  if (failed(result))
    markEmpty();
}

/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the curent number of variables, then the corresponding equality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
///
/// We simply add two opposing inequalities, which force the expression to
/// be zero.
void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
  addInequality(coeffs);
  SmallVector<int64_t, 8> negatedCoeffs;
  for (int64_t coeff : coeffs)
    negatedCoeffs.emplace_back(-coeff);
  addInequality(negatedCoeffs);
}

unsigned Simplex::numVariables() const { return var.size(); }
unsigned Simplex::numConstraints() const { return con.size(); }

/// Return a snapshot of the curent state. This is just the current size of the
/// undo log.
unsigned Simplex::getSnapshot() const { return undoLog.size(); }

void Simplex::undo(UndoLogEntry entry) {
  if (entry == UndoLogEntry::RemoveLastConstraint) {
    Unknown &constraint = con.back();
    if (constraint.orientation == Orientation::Column) {
      unsigned column = constraint.pos;
      Optional<unsigned> row;

      // Try to find any pivot row for this column that preserves tableau
      // consistency (except possibly the column itself, which is going to be
      // deallocated anyway).
      //
      // If no pivot row is found in either direction, then the unknown is
      // unbounded in both directions and we are free to
      // perform any pivot at all. To do this, we just need to find any row with
      // a non-zero coefficient for the column.
      if (Optional<unsigned> maybeRow =
              findPivotRow({}, Direction::Up, column)) {
        row = *maybeRow;
      } else if (Optional<unsigned> maybeRow =
                     findPivotRow({}, Direction::Down, column)) {
        row = *maybeRow;
      } else {
        // The loop doesn't find a pivot row only if the column has zero
        // coefficients for every row. But the unknown is a constraint,
        // so it was added initially as a row. Such a row could never have been
        // pivoted to a column. So a pivot row will always be found.
        for (unsigned i = nRedundant; i < nRow; ++i) {
          if (tableau(i, column) != 0) {
            row = i;
            break;
          }
        }
      }
      assert(row.hasValue() && "No pivot row found!");
      pivot(*row, column);
    }

    // Move this unknown to the last row and remove the last row from the
    // tableau.
    swapRows(constraint.pos, nRow - 1);
    // It is not strictly necessary to shrink the tableau, but for now we
    // maintain the invariant that the tableau has exactly nRow rows.
    tableau.resizeVertically(nRow - 1);
    nRow--;
    rowUnknown.pop_back();
    con.pop_back();
  } else if (entry == UndoLogEntry::UnmarkEmpty) {
    empty = false;
  } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
    nRedundant--;
  }
}

/// Rollback to the specified snapshot.
///
/// We undo all the log entries until the log size when the snapshot was taken
/// is reached.
void Simplex::rollback(unsigned snapshot) {
  while (undoLog.size() > snapshot) {
    undo(undoLog.back());
    undoLog.pop_back();
  }
}

Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
                                              unsigned row) {
  // Keep trying to find a pivot for the row in the specified direction.
  while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
    // If findPivot returns a pivot involving the row itself, then the optimum
    // is unbounded, so we return None.
    if (maybePivot->row == row)
      return {};
    pivot(*maybePivot);
  }

  // The row has reached its optimal sample value, which we return.
  // The sample value is the entry in the constant column divided by the common
  // denominator for this row.
  return Fraction(tableau(row, 1), tableau(row, 0));
}

/// Compute the optimum of the specified expression in the specified direction,
/// or None if it is unbounded.
Optional<Fraction> Simplex::computeOptimum(Direction direction,
                                           ArrayRef<int64_t> coeffs) {
  assert(!empty && "Tableau should not be empty");

  unsigned snapshot = getSnapshot();
  unsigned conIndex = addRow(coeffs);
  unsigned row = con[conIndex].pos;
  Optional<Fraction> optimum = computeRowOptimum(direction, row);
  rollback(snapshot);
  return optimum;
}

/// Redundant constraints are those that are in row orientation and lie in
/// rows 0 to nRedundant - 1.
bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
  const Unknown &u = con[constraintIndex];
  return u.orientation == Orientation::Row && u.pos < nRedundant;
}

/// Mark the specified row redundant.
///
/// This is done by moving the unknown to the end of the block of redundant
/// rows (namely, to row nRedundant) and incrementing nRedundant to
/// accomodate the new redundant row.
void Simplex::markRowRedundant(Unknown &u) {
  assert(u.orientation == Orientation::Row &&
         "Unknown should be in row position!");
  swapRows(u.pos, nRedundant);
  ++nRedundant;
  undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
}

/// Find a subset of constraints that is redundant and mark them redundant.
void Simplex::detectRedundant() {
  // It is not meaningful to talk about redundancy for empty sets.
  if (empty)
    return;

  // Iterate through the constraints and check for each one if it can attain
  // negative sample values. If it can, it's not redundant. Otherwise, it is.
  // We mark redundant constraints redundant.
  //
  // Constraints that get marked redundant in one iteration are not respected
  // when checking constraints in later iterations. This prevents, for example,
  // two identical constraints both being marked redundant since each is
  // redundant given the other one. In this example, only the first of the
  // constraints that is processed will get marked redundant, as it should be.
  for (Unknown &u : con) {
    if (u.orientation == Orientation::Column) {
      unsigned column = u.pos;
      Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
      // If no downward pivot is returned, the constraint is unbounded below
      // and hence not redundant.
      if (!pivotRow)
        continue;
      pivot(*pivotRow, column);
    }

    unsigned row = u.pos;
    Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row);
    if (!minimum || *minimum < Fraction(0, 1)) {
      // Constraint is unbounded below or can attain negative sample values and
      // hence is not redundant.
      restoreRow(u);
      continue;
    }

    markRowRedundant(u);
  }
}

bool Simplex::isUnbounded() {
  if (empty)
    return false;

  SmallVector<int64_t, 8> dir(var.size() + 1);
  for (unsigned i = 0; i < var.size(); ++i) {
    dir[i] = 1;

    Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
    if (!maybeMax)
      return true;

    Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
    if (!maybeMin)
      return true;

    dir[i] = 0;
  }
  return false;
}

/// Make a tableau to represent a pair of points in the original tableau.
///
/// The product constraints and variables are stored as: first A's, then B's.
///
/// The product tableau has row layout:
///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
///
/// It has column layout:
///   denominator, constant, A's columns, B's columns.
Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
  unsigned numVar = a.numVariables() + b.numVariables();
  unsigned numCon = a.numConstraints() + b.numConstraints();
  Simplex result(numVar);

  result.tableau.resizeVertically(numCon);
  result.empty = a.empty || b.empty;

  auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
    SmallVector<Unknown, 8> result;
    result.reserve(v.size() + w.size());
    result.insert(result.end(), v.begin(), v.end());
    result.insert(result.end(), w.begin(), w.end());
    return result;
  };
  result.con = concat(a.con, b.con);
  result.var = concat(a.var, b.var);

  auto indexFromBIndex = [&](int index) {
    return index >= 0 ? a.numVariables() + index
                      : ~(a.numConstraints() + ~index);
  };

  result.colUnknown.assign(2, nullIndex);
  for (unsigned i = 2; i < a.nCol; ++i) {
    result.colUnknown.push_back(a.colUnknown[i]);
    result.unknownFromIndex(result.colUnknown.back()).pos =
        result.colUnknown.size() - 1;
  }
  for (unsigned i = 2; i < b.nCol; ++i) {
    result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
    result.unknownFromIndex(result.colUnknown.back()).pos =
        result.colUnknown.size() - 1;
  }

  auto appendRowFromA = [&](unsigned row) {
    for (unsigned col = 0; col < a.nCol; ++col)
      result.tableau(result.nRow, col) = a.tableau(row, col);
    result.rowUnknown.push_back(a.rowUnknown[row]);
    result.unknownFromIndex(result.rowUnknown.back()).pos =
        result.rowUnknown.size() - 1;
    result.nRow++;
  };

  // Also fixes the corresponding entry in rowUnknown and var/con (as the case
  // may be).
  auto appendRowFromB = [&](unsigned row) {
    result.tableau(result.nRow, 0) = b.tableau(row, 0);
    result.tableau(result.nRow, 1) = b.tableau(row, 1);

    unsigned offset = a.nCol - 2;
    for (unsigned col = 2; col < b.nCol; ++col)
      result.tableau(result.nRow, offset + col) = b.tableau(row, col);
    result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
    result.unknownFromIndex(result.rowUnknown.back()).pos =
        result.rowUnknown.size() - 1;
    result.nRow++;
  };

  result.nRedundant = a.nRedundant + b.nRedundant;
  for (unsigned row = 0; row < a.nRedundant; ++row)
    appendRowFromA(row);
  for (unsigned row = 0; row < b.nRedundant; ++row)
    appendRowFromB(row);
  for (unsigned row = a.nRedundant; row < a.nRow; ++row)
    appendRowFromA(row);
  for (unsigned row = b.nRedundant; row < b.nRow; ++row)
    appendRowFromB(row);

  return result;
}

Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
  // The tableau is empty, so no sample point exists.
  if (empty)
    return {};

  SmallVector<int64_t, 8> sample;
  // Push the sample value for each variable into the vector.
  for (const Unknown &u : var) {
    if (u.orientation == Orientation::Column) {
      // If the variable is in column position, its sample value is zero.
      sample.push_back(0);
    } else {
      // If the variable is in row position, its sample value is the entry in
      // the constant column divided by the entry in the common denominator
      // column. If this is not an integer, then the sample point is not
      // integral so we return None.
      if (tableau(u.pos, 1) % tableau(u.pos, 0) != 0)
        return {};
      sample.push_back(tableau(u.pos, 1) / tableau(u.pos, 0));
    }
  }
  return sample;
}

/// Given a simplex for a polytope, construct a new simplex whose variables are
/// identified with a pair of points (x, y) in the original polytope. Supports
/// some operations needed for generalized basis reduction. In what follows,
/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
/// dimension of the original polytope.
///
/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
/// also supports rolling back this addition, by maintaining a snapshot stack
/// that contains a snapshot of the Simplex's state for each equality, just
/// before that equality was added.
class GBRSimplex {
  using Orientation = Simplex::Orientation;

public:
  GBRSimplex(const Simplex &originalSimplex)
      : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
        simplexConstraintOffset(simplex.numConstraints()) {}

  /// Add an equality dotProduct(dir, x - y) == 0.
  /// First pushes a snapshot for the current simplex state to the stack so
  /// that this can be rolled back later.
  void addEqualityForDirection(ArrayRef<int64_t> dir) {
    assert(
        std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
        "Direction passed is the zero vector!");
    snapshotStack.push_back(simplex.getSnapshot());
    simplex.addEquality(getCoeffsForDirection(dir));
  }

  /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
  /// the direction equalities to `dual`.
  Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
                                SmallVectorImpl<int64_t> &dual,
                                int64_t &dualDenom) {
    unsigned snap = simplex.getSnapshot();
    unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
    unsigned row = simplex.con[conIndex].pos;
    Optional<Fraction> maybeWidth =
        simplex.computeRowOptimum(Simplex::Direction::Up, row);
    assert(maybeWidth.hasValue() && "Width should not be unbounded!");
    dualDenom = simplex.tableau(row, 0);
    dual.clear();
    // The increment is i += 2 because equalities are added as two inequalities,
    // one positive and one negative. Each iteration processes one equality.
    for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
      // The dual variable is the negative of the coefficient of the new row
      // in the column of the constraint, if the constraint is in a column.
      // Note that the second inequality for the equality is negated.
      //
      // We want the dual for the original equality. If the positive inequality
      // is in column position, the negative of its row coefficient is the
      // desired dual. If the negative inequality is in column position, its row
      // coefficient is the desired dual. (its coefficients are already the
      // negated coefficients of the original equality, so we don't need to
      // negate it now.)
      //
      // If neither are in column position, we move the negated inequality to
      // column position. Since the inequality must have sample value zero
      // (since it corresponds to an equality), we are free to pivot with
      // any column. Since both the unknowns have sample value before and after
      // pivoting, no other sample values will change and the tableau will
      // remain consistent. To pivot, we just need to find a column that has a
      // non-zero coefficient in this row. There must be one since otherwise the
      // equality would be 0 == 0, which should never be passed to
      // addEqualityForDirection.
      //
      // After finding a column, we pivot with the column, after which we can
      // get the dual from the inequality in column position as explained above.
      if (simplex.con[i].orientation == Orientation::Column) {
        dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
      } else {
        if (simplex.con[i + 1].orientation == Orientation::Row) {
          unsigned ineqRow = simplex.con[i + 1].pos;
          // Since it is an equality, the sample value must be zero.
          assert(simplex.tableau(ineqRow, 1) == 0 &&
                 "Equality's sample value must be zero.");
          for (unsigned col = 2; col < simplex.nCol; ++col) {
            if (simplex.tableau(ineqRow, col) != 0) {
              simplex.pivot(ineqRow, col);
              break;
            }
          }
          assert(simplex.con[i + 1].orientation == Orientation::Column &&
                 "No pivot found. Equality has all-zeros row in tableau!");
        }
        dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
      }
    }
    simplex.rollback(snap);
    return *maybeWidth;
  }

  /// Remove the last equality that was added through addEqualityForDirection.
  ///
  /// We do this by rolling back to the snapshot at the top of the stack, which
  /// should be a snapshot taken just before the last equality was added.
  void removeLastEquality() {
    assert(!snapshotStack.empty() && "Snapshot stack is empty!");
    simplex.rollback(snapshotStack.back());
    snapshotStack.pop_back();
  }

private:
  /// Returns coefficients of the expression 'dot_product(dir, x - y)',
  /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
  ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
  /// where n is the dimension of the original polytope.
  SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
    assert(2 * dir.size() == simplex.numVariables() &&
           "Direction vector has wrong dimensionality");
    SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
    coeffs.reserve(2 * dir.size());
    for (int64_t coeff : dir)
      coeffs.push_back(-coeff);
    coeffs.push_back(0); // constant term
    return coeffs;
  }

  Simplex simplex;
  /// The first index of the equality constraints, the index immediately after
  /// the last constraint in the initial product simplex.
  unsigned simplexConstraintOffset;
  /// A stack of snapshots, used for rolling back.
  SmallVector<unsigned, 8> snapshotStack;
};

/// Reduce the basis to try and find a direction in which the polytope is
/// "thin". This only works for bounded polytopes.
///
/// This is an implementation of the algorithm described in the paper
/// "An Implementation of Generalized Basis Reduction for Integer Programming"
/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
///
/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
/// Let width_i(v) = max <v, x - y> where x and y are points in the original
/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
///
/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
/// minimizing value of u, if it were allowed to be fractional. Due to
/// convexity, the minimizing integer value is either floor(dual_i) or
/// ceil(dual_i), so we just need to check which of these gives a lower
/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
///
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
/// same i). Otherwise, we increment i.
///
/// We keep f values and duals cached and invalidate them when necessary.
/// Whenever possible, we use them instead of recomputing them. We implement the
/// algorithm as follows.
///
/// In an iteration at i we need to compute:
///   a) width_i(b_{i + 1})
///   b) width_i(b_i)
///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
///
/// If width_i(b_i) is not already cached, we compute it.
///
/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
/// store the duals from this computation.
///
/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
/// of u as explained before, caches the duals from this computation, sets
/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
///
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
/// decrement i, resulting in the basis
/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
/// with corresponding f values
/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
/// The values up to i - 1 remain unchanged. We have just gotten the middle
/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
/// the cache. The iteration after decrementing needs exactly the duals from the
/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
///
/// When incrementing i, no cached f values get invalidated. However, the cached
/// duals do get invalidated as the duals for the higher levels are different.
void Simplex::reduceBasis(Matrix &basis, unsigned level) {
  const Fraction epsilon(3, 4);

  if (level == basis.getNumRows() - 1)
    return;

  GBRSimplex gbrSimplex(*this);
  SmallVector<Fraction, 8> width;
  SmallVector<int64_t, 8> dual;
  int64_t dualDenom;

  // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
  // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
  // the new value of width_i(b_{i+1}).
  //
  // If dual_i is not an integer, the minimizing value must be either
  // floor(dual_i) or ceil(dual_i). We compute the expression for both and
  // choose the minimizing value.
  //
  // If dual_i is an integer, we don't need to perform these computations. We
  // know that in this case,
  //   a) u = dual_i.
  //   b) one can show that dual_j for j < i are the same duals we would have
  //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
  //      are the ones already in the cache.
  //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
  //   which
  //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
  //      be in the cache, so we get it from there and return it.
  auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
    assert(i < level + dual.size() && "dual_i is not known!");

    int64_t u = floorDiv(dual[i - level], dualDenom);
    basis.addToRow(i, i + 1, u);
    if (dual[i - level] % dualDenom != 0) {
      SmallVector<int64_t, 8> candidateDual[2];
      int64_t candidateDualDenom[2];
      Fraction widthI[2];

      // Initially u is floor(dual) and basis reflects this.
      widthI[0] = gbrSimplex.computeWidthAndDuals(
          basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);

      // Now try ceil(dual), i.e. floor(dual) + 1.
      ++u;
      basis.addToRow(i, i + 1, 1);
      widthI[1] = gbrSimplex.computeWidthAndDuals(
          basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);

      unsigned j = widthI[0] < widthI[1] ? 0 : 1;
      if (j == 0)
        // Subtract 1 to go from u = ceil(dual) back to floor(dual).
        basis.addToRow(i, i + 1, -1);
      dual = std::move(candidateDual[j]);
      dualDenom = candidateDualDenom[j];
      return widthI[j];
    }
    assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
    // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
    // width_{i+1}(b_{i+1}).
    return width[i + 1 - level];
  };

  // In the ith iteration of the loop, gbrSimplex has constraints for directions
  // from `level` to i - 1.
  unsigned i = level;
  while (i < basis.getNumRows() - 1) {
    if (i >= level + width.size()) {
      // We don't even know the value of f_i(b_i), so let's find that first.
      // We have to do this first since later we assume that width already
      // contains values up to and including i.

      assert((i == 0 || i - 1 < level + width.size()) &&
             "We are at level i but we don't know the value of width_{i-1}");

      // We don't actually use these duals at all, but it doesn't matter
      // because this case should only occur when i is level, and there are no
      // duals in that case anyway.
      assert(i == level && "This case should only occur when i == level");
      width.push_back(
          gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
    }

    if (i >= level + dual.size()) {
      assert(i + 1 >= level + width.size() &&
             "We don't know dual_i but we know width_{i+1}");
      // We don't know dual for our level, so let's find it.
      gbrSimplex.addEqualityForDirection(basis.getRow(i));
      width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
                                                      dualDenom));
      gbrSimplex.removeLastEquality();
    }

    // This variable stores width_i(b_{i+1} + u*b_i).
    Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
    if (widthICandidate < epsilon * width[i - level]) {
      basis.swapRows(i, i + 1);
      width[i - level] = widthICandidate;
      // The values of width_{i+1}(b_{i+1}) and higher may change after the
      // swap, so we remove the cached values here.
      width.resize(i - level + 1);
      if (i == level) {
        dual.clear();
        continue;
      }

      gbrSimplex.removeLastEquality();
      i--;
      continue;
    }

    // Invalidate duals since the higher level needs to recompute its own duals.
    dual.clear();
    gbrSimplex.addEqualityForDirection(basis.getRow(i));
    i++;
  }
}

/// Search for an integer sample point using a branch and bound algorithm.
///
/// Each row in the basis matrix is a vector, and the set of basis vectors
/// should span the space. Initially this is the identity matrix,
/// i.e., the basis vectors are just the variables.
///
/// In every level, a value is assigned to the level-th basis vector, as
/// follows. Compute the minimum and maximum rational values of this direction.
/// If only one integer point lies in this range, constrain the variable to
/// have this value and recurse to the next variable.
///
/// If the range has multiple values, perform generalized basis reduction via
/// reduceBasis and then compute the bounds again. Now we try constraining
/// this direction in the first value in this range and "recurse" to the next
/// level. If we fail to find a sample, we try assigning the direction the next
/// value in this range, and so on.
///
/// If no integer sample is found from any of the assignments, or if the range
/// contains no integer value, then of course the polytope is empty for the
/// current assignment of the values in previous levels, so we return to
/// the previous level.
///
/// If we reach the last level where all the variables have been assigned values
/// already, then we simply return the current sample point if it is integral,
/// and go back to the previous level otherwise.
///
/// To avoid potentially arbitrarily large recursion depths leading to stack
/// overflows, this algorithm is implemented iteratively.
Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
  if (empty)
    return {};

  unsigned nDims = var.size();
  Matrix basis = Matrix::identity(nDims);

  unsigned level = 0;
  // The snapshot just before constraining a direction to a value at each level.
  SmallVector<unsigned, 8> snapshotStack;
  // The maximum value in the range of the direction for each level.
  SmallVector<int64_t, 8> upperBoundStack;
  // The next value to try constraining the basis vector to at each level.
  SmallVector<int64_t, 8> nextValueStack;

  snapshotStack.reserve(basis.getNumRows());
  upperBoundStack.reserve(basis.getNumRows());
  nextValueStack.reserve(basis.getNumRows());
  while (level != -1u) {
    if (level == basis.getNumRows()) {
      // We've assigned values to all variables. Return if we have a sample,
      // or go back up to the previous level otherwise.
      if (auto maybeSample = getSamplePointIfIntegral())
        return maybeSample;
      level--;
      continue;
    }

    if (level >= upperBoundStack.size()) {
      // We haven't populated the stack values for this level yet, so we have
      // just come down a level ("recursed"). Find the lower and upper bounds.
      // If there is more than one integer point in the range, perform
      // generalized basis reduction.
      SmallVector<int64_t, 8> basisCoeffs =
          llvm::to_vector<8>(basis.getRow(level));
      basisCoeffs.push_back(0);

      int64_t minRoundedUp, maxRoundedDown;
      std::tie(minRoundedUp, maxRoundedDown) =
          computeIntegerBounds(basisCoeffs);

      // Heuristic: if the sample point is integral at this point, just return
      // it.
      if (auto maybeSample = getSamplePointIfIntegral())
        return *maybeSample;

      if (minRoundedUp < maxRoundedDown) {
        reduceBasis(basis, level);
        basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
        basisCoeffs.push_back(0);
        std::tie(minRoundedUp, maxRoundedDown) =
            computeIntegerBounds(basisCoeffs);
      }

      snapshotStack.push_back(getSnapshot());
      // The smallest value in the range is the next value to try.
      nextValueStack.push_back(minRoundedUp);
      upperBoundStack.push_back(maxRoundedDown);
    }

    assert((snapshotStack.size() - 1 == level &&
            nextValueStack.size() - 1 == level &&
            upperBoundStack.size() - 1 == level) &&
           "Mismatched variable stack sizes!");

    // Whether we "recursed" or "returned" from a lower level, we rollback
    // to the snapshot of the starting state at this level. (in the "recursed"
    // case this has no effect)
    rollback(snapshotStack.back());
    int64_t nextValue = nextValueStack.back();
    nextValueStack.back()++;
    if (nextValue > upperBoundStack.back()) {
      // We have exhausted the range and found no solution. Pop the stack and
      // return up a level.
      snapshotStack.pop_back();
      nextValueStack.pop_back();
      upperBoundStack.pop_back();
      level--;
      continue;
    }

    // Try the next value in the range and "recurse" into the next level.
    SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
                                        basis.getRow(level).end());
    basisCoeffs.push_back(-nextValue);
    addEquality(basisCoeffs);
    level++;
  }

  return {};
}

/// Compute the minimum and maximum integer values the expression can take. We
/// compute each separately.
std::pair<int64_t, int64_t>
Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
  int64_t minRoundedUp;
  if (Optional<Fraction> maybeMin =
          computeOptimum(Simplex::Direction::Down, coeffs))
    minRoundedUp = ceil(*maybeMin);
  else
    llvm_unreachable("Tableau should not be unbounded");

  int64_t maxRoundedDown;
  if (Optional<Fraction> maybeMax =
          computeOptimum(Simplex::Direction::Up, coeffs))
    maxRoundedDown = floor(*maybeMax);
  else
    llvm_unreachable("Tableau should not be unbounded");

  return {minRoundedUp, maxRoundedDown};
}

void Simplex::print(raw_ostream &os) const {
  os << "rows = " << nRow << ", columns = " << nCol << "\n";
  if (empty)
    os << "Simplex marked empty!\n";
  os << "var: ";
  for (unsigned i = 0; i < var.size(); ++i) {
    if (i > 0)
      os << ", ";
    var[i].print(os);
  }
  os << "\ncon: ";
  for (unsigned i = 0; i < con.size(); ++i) {
    if (i > 0)
      os << ", ";
    con[i].print(os);
  }
  os << '\n';
  for (unsigned row = 0; row < nRow; ++row) {
    if (row > 0)
      os << ", ";
    os << "r" << row << ": " << rowUnknown[row];
  }
  os << '\n';
  os << "c0: denom, c1: const";
  for (unsigned col = 2; col < nCol; ++col)
    os << ", c" << col << ": " << colUnknown[col];
  os << '\n';
  for (unsigned row = 0; row < nRow; ++row) {
    for (unsigned col = 0; col < nCol; ++col)
      os << tableau(row, col) << '\t';
    os << '\n';
  }
  os << '\n';
}

void Simplex::dump() const { print(llvm::errs()); }

} // namespace mlir