Profile.cpp 13.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
//===- Profile.cpp - XRay Profile Abstraction -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the XRay Profile class representing the latency profile generated by
// XRay's profiling mode.
//
//===----------------------------------------------------------------------===//
#include "llvm/XRay/Profile.h"

#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/XRay/Trace.h"
#include <deque>
#include <memory>

namespace llvm {
namespace xray {

Profile::Profile(const Profile &O) {
  // We need to re-create all the tries from the original (O), into the current
  // Profile being initialized, through the Block instances we see.
  for (const auto &Block : O) {
    Blocks.push_back({Block.Thread, {}});
    auto &B = Blocks.back();
    for (const auto &PathData : Block.PathData)
      B.PathData.push_back({internPath(cantFail(O.expandPath(PathData.first))),
                            PathData.second});
  }
}

Profile &Profile::operator=(const Profile &O) {
  Profile P = O;
  *this = std::move(P);
  return *this;
}

namespace {

struct BlockHeader {
  uint32_t Size;
  uint32_t Number;
  uint64_t Thread;
};

static Expected<BlockHeader> readBlockHeader(DataExtractor &Extractor,
                                             uint64_t &Offset) {
  BlockHeader H;
  uint64_t CurrentOffset = Offset;
  H.Size = Extractor.getU32(&Offset);
  if (Offset == CurrentOffset)
    return make_error<StringError>(
        Twine("Error parsing block header size at offset '") +
            Twine(CurrentOffset) + "'",
        std::make_error_code(std::errc::invalid_argument));
  CurrentOffset = Offset;
  H.Number = Extractor.getU32(&Offset);
  if (Offset == CurrentOffset)
    return make_error<StringError>(
        Twine("Error parsing block header number at offset '") +
            Twine(CurrentOffset) + "'",
        std::make_error_code(std::errc::invalid_argument));
  CurrentOffset = Offset;
  H.Thread = Extractor.getU64(&Offset);
  if (Offset == CurrentOffset)
    return make_error<StringError>(
        Twine("Error parsing block header thread id at offset '") +
            Twine(CurrentOffset) + "'",
        std::make_error_code(std::errc::invalid_argument));
  return H;
}

static Expected<std::vector<Profile::FuncID>> readPath(DataExtractor &Extractor,
                                                       uint64_t &Offset) {
  // We're reading a sequence of int32_t's until we find a 0.
  std::vector<Profile::FuncID> Path;
  auto CurrentOffset = Offset;
  int32_t FuncId;
  do {
    FuncId = Extractor.getSigned(&Offset, 4);
    if (CurrentOffset == Offset)
      return make_error<StringError>(
          Twine("Error parsing path at offset '") + Twine(CurrentOffset) + "'",
          std::make_error_code(std::errc::invalid_argument));
    CurrentOffset = Offset;
    Path.push_back(FuncId);
  } while (FuncId != 0);
  return std::move(Path);
}

static Expected<Profile::Data> readData(DataExtractor &Extractor,
                                        uint64_t &Offset) {
  // We expect a certain number of elements for Data:
  //   - A 64-bit CallCount
  //   - A 64-bit CumulativeLocalTime counter
  Profile::Data D;
  auto CurrentOffset = Offset;
  D.CallCount = Extractor.getU64(&Offset);
  if (CurrentOffset == Offset)
    return make_error<StringError>(
        Twine("Error parsing call counts at offset '") + Twine(CurrentOffset) +
            "'",
        std::make_error_code(std::errc::invalid_argument));
  CurrentOffset = Offset;
  D.CumulativeLocalTime = Extractor.getU64(&Offset);
  if (CurrentOffset == Offset)
    return make_error<StringError>(
        Twine("Error parsing cumulative local time at offset '") +
            Twine(CurrentOffset) + "'",
        std::make_error_code(std::errc::invalid_argument));
  return D;
}

} // namespace

Error Profile::addBlock(Block &&B) {
  if (B.PathData.empty())
    return make_error<StringError>(
        "Block may not have empty path data.",
        std::make_error_code(std::errc::invalid_argument));

  Blocks.emplace_back(std::move(B));
  return Error::success();
}

Expected<std::vector<Profile::FuncID>> Profile::expandPath(PathID P) const {
  auto It = PathIDMap.find(P);
  if (It == PathIDMap.end())
    return make_error<StringError>(
        Twine("PathID not found: ") + Twine(P),
        std::make_error_code(std::errc::invalid_argument));
  std::vector<Profile::FuncID> Path;
  for (auto Node = It->second; Node; Node = Node->Caller)
    Path.push_back(Node->Func);
  return std::move(Path);
}

Profile::PathID Profile::internPath(ArrayRef<FuncID> P) {
  if (P.empty())
    return 0;

  auto RootToLeafPath = reverse(P);

  // Find the root.
  auto It = RootToLeafPath.begin();
  auto PathRoot = *It++;
  auto RootIt =
      find_if(Roots, [PathRoot](TrieNode *N) { return N->Func == PathRoot; });

  // If we've not seen this root before, remember it.
  TrieNode *Node = nullptr;
  if (RootIt == Roots.end()) {
    NodeStorage.emplace_back();
    Node = &NodeStorage.back();
    Node->Func = PathRoot;
    Roots.push_back(Node);
  } else {
    Node = *RootIt;
  }

  // Now traverse the path, re-creating if necessary.
  while (It != RootToLeafPath.end()) {
    auto NodeFuncID = *It++;
    auto CalleeIt = find_if(Node->Callees, [NodeFuncID](TrieNode *N) {
      return N->Func == NodeFuncID;
    });
    if (CalleeIt == Node->Callees.end()) {
      NodeStorage.emplace_back();
      auto NewNode = &NodeStorage.back();
      NewNode->Func = NodeFuncID;
      NewNode->Caller = Node;
      Node->Callees.push_back(NewNode);
      Node = NewNode;
    } else {
      Node = *CalleeIt;
    }
  }

  // At this point, Node *must* be pointing at the leaf.
  assert(Node->Func == P.front());
  if (Node->ID == 0) {
    Node->ID = NextID++;
    PathIDMap.insert({Node->ID, Node});
  }
  return Node->ID;
}

Profile mergeProfilesByThread(const Profile &L, const Profile &R) {
  Profile Merged;
  using PathDataMap = DenseMap<Profile::PathID, Profile::Data>;
  using PathDataMapPtr = std::unique_ptr<PathDataMap>;
  using PathDataVector = decltype(Profile::Block::PathData);
  using ThreadProfileIndexMap = DenseMap<Profile::ThreadID, PathDataMapPtr>;
  ThreadProfileIndexMap ThreadProfileIndex;

  for (const auto &P : {std::ref(L), std::ref(R)})
    for (const auto &Block : P.get()) {
      ThreadProfileIndexMap::iterator It;
      std::tie(It, std::ignore) = ThreadProfileIndex.insert(
          {Block.Thread, PathDataMapPtr{new PathDataMap()}});
      for (const auto &PathAndData : Block.PathData) {
        auto &PathID = PathAndData.first;
        auto &Data = PathAndData.second;
        auto NewPathID =
            Merged.internPath(cantFail(P.get().expandPath(PathID)));
        PathDataMap::iterator PathDataIt;
        bool Inserted;
        std::tie(PathDataIt, Inserted) = It->second->insert({NewPathID, Data});
        if (!Inserted) {
          auto &ExistingData = PathDataIt->second;
          ExistingData.CallCount += Data.CallCount;
          ExistingData.CumulativeLocalTime += Data.CumulativeLocalTime;
        }
      }
    }

  for (const auto &IndexedThreadBlock : ThreadProfileIndex) {
    PathDataVector PathAndData;
    PathAndData.reserve(IndexedThreadBlock.second->size());
    copy(*IndexedThreadBlock.second, std::back_inserter(PathAndData));
    cantFail(
        Merged.addBlock({IndexedThreadBlock.first, std::move(PathAndData)}));
  }
  return Merged;
}

Profile mergeProfilesByStack(const Profile &L, const Profile &R) {
  Profile Merged;
  using PathDataMap = DenseMap<Profile::PathID, Profile::Data>;
  PathDataMap PathData;
  using PathDataVector = decltype(Profile::Block::PathData);
  for (const auto &P : {std::ref(L), std::ref(R)})
    for (const auto &Block : P.get())
      for (const auto &PathAndData : Block.PathData) {
        auto &PathId = PathAndData.first;
        auto &Data = PathAndData.second;
        auto NewPathID =
            Merged.internPath(cantFail(P.get().expandPath(PathId)));
        PathDataMap::iterator PathDataIt;
        bool Inserted;
        std::tie(PathDataIt, Inserted) = PathData.insert({NewPathID, Data});
        if (!Inserted) {
          auto &ExistingData = PathDataIt->second;
          ExistingData.CallCount += Data.CallCount;
          ExistingData.CumulativeLocalTime += Data.CumulativeLocalTime;
        }
      }

  // In the end there's a single Block, for thread 0.
  PathDataVector Block;
  Block.reserve(PathData.size());
  copy(PathData, std::back_inserter(Block));
  cantFail(Merged.addBlock({0, std::move(Block)}));
  return Merged;
}

Expected<Profile> loadProfile(StringRef Filename) {
  Expected<sys::fs::file_t> FdOrErr = sys::fs::openNativeFileForRead(Filename);
  if (!FdOrErr)
    return FdOrErr.takeError();

  uint64_t FileSize;
  if (auto EC = sys::fs::file_size(Filename, FileSize))
    return make_error<StringError>(
        Twine("Cannot get filesize of '") + Filename + "'", EC);

  std::error_code EC;
  sys::fs::mapped_file_region MappedFile(
      *FdOrErr, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0,
      EC);
  sys::fs::closeFile(*FdOrErr);
  if (EC)
    return make_error<StringError>(
        Twine("Cannot mmap profile '") + Filename + "'", EC);
  StringRef Data(MappedFile.data(), MappedFile.size());

  Profile P;
  uint64_t Offset = 0;
  DataExtractor Extractor(Data, true, 8);

  // For each block we get from the file:
  while (Offset != MappedFile.size()) {
    auto HeaderOrError = readBlockHeader(Extractor, Offset);
    if (!HeaderOrError)
      return HeaderOrError.takeError();

    // TODO: Maybe store this header information for each block, even just for
    // debugging?
    const auto &Header = HeaderOrError.get();

    // Read in the path data.
    auto PathOrError = readPath(Extractor, Offset);
    if (!PathOrError)
      return PathOrError.takeError();
    const auto &Path = PathOrError.get();

    // For each path we encounter, we should intern it to get a PathID.
    auto DataOrError = readData(Extractor, Offset);
    if (!DataOrError)
      return DataOrError.takeError();
    auto &Data = DataOrError.get();

    if (auto E =
            P.addBlock(Profile::Block{Profile::ThreadID{Header.Thread},
                                      {{P.internPath(Path), std::move(Data)}}}))
      return std::move(E);
  }

  return P;
}

namespace {

struct StackEntry {
  uint64_t Timestamp;
  Profile::FuncID FuncId;
};

} // namespace

Expected<Profile> profileFromTrace(const Trace &T) {
  Profile P;

  // The implementation of the algorithm re-creates the execution of
  // the functions based on the trace data. To do this, we set up a number of
  // data structures to track the execution context of every thread in the
  // Trace.
  DenseMap<Profile::ThreadID, std::vector<StackEntry>> ThreadStacks;
  DenseMap<Profile::ThreadID, DenseMap<Profile::PathID, Profile::Data>>
      ThreadPathData;

  //  We then do a pass through the Trace to account data on a per-thread-basis.
  for (const auto &E : T) {
    auto &TSD = ThreadStacks[E.TId];
    switch (E.Type) {
    case RecordTypes::ENTER:
    case RecordTypes::ENTER_ARG:

      // Push entries into the function call stack.
      TSD.push_back({E.TSC, E.FuncId});
      break;

    case RecordTypes::EXIT:
    case RecordTypes::TAIL_EXIT:

      // Exits cause some accounting to happen, based on the state of the stack.
      // For each function we pop off the stack, we take note of the path and
      // record the cumulative state for this path. As we're doing this, we
      // intern the path into the Profile.
      while (!TSD.empty()) {
        auto Top = TSD.back();
        auto FunctionLocalTime = AbsoluteDifference(Top.Timestamp, E.TSC);
        SmallVector<Profile::FuncID, 16> Path;
        transform(reverse(TSD), std::back_inserter(Path),
                  std::mem_fn(&StackEntry::FuncId));
        auto InternedPath = P.internPath(Path);
        auto &TPD = ThreadPathData[E.TId][InternedPath];
        ++TPD.CallCount;
        TPD.CumulativeLocalTime += FunctionLocalTime;
        TSD.pop_back();

        // If we've matched the corresponding entry event for this function,
        // then we exit the loop.
        if (Top.FuncId == E.FuncId)
          break;

        // FIXME: Consider the intermediate times and the cumulative tree time
        // as well.
      }

      break;

    case RecordTypes::CUSTOM_EVENT:
    case RecordTypes::TYPED_EVENT:
      // TODO: Support an extension point to allow handling of custom and typed
      // events in profiles.
      break;
    }
  }

  // Once we've gone through the Trace, we now create one Block per thread in
  // the Profile.
  for (const auto &ThreadPaths : ThreadPathData) {
    const auto &TID = ThreadPaths.first;
    const auto &PathsData = ThreadPaths.second;
    if (auto E = P.addBlock({
            TID,
            std::vector<std::pair<Profile::PathID, Profile::Data>>(
                PathsData.begin(), PathsData.end()),
        }))
      return std::move(E);
  }

  return P;
}

} // namespace xray
} // namespace llvm