IntegerDivision.cpp
26.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains an implementation of 32bit and 64bit scalar integer
// division for targets that don't have native support. It's largely derived
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
// but hand-tuned for targets that prefer less control flow.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/IntegerDivision.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "integer-division"
/// Generate code to compute the remainder of two signed integers. Returns the
/// remainder, which will have the sign of the dividend. Builder's insert point
/// should be pointing where the caller wants code generated, e.g. at the srem
/// instruction. This will generate a urem in the process, and Builder's insert
/// point will be pointing at the uren (if present, i.e. not folded), ready to
/// be expanded if the user wishes
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
ConstantInt *Shift;
if (BitWidth == 64) {
Shift = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Shift = Builder.getInt32(31);
}
// Following instructions are generated for both i32 (shift 31) and
// i64 (shift 63).
// ; %dividend_sgn = ashr i32 %dividend, 31
// ; %divisor_sgn = ashr i32 %divisor, 31
// ; %dvd_xor = xor i32 %dividend, %dividend_sgn
// ; %dvs_xor = xor i32 %divisor, %divisor_sgn
// ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
// ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
// ; %urem = urem i32 %dividend, %divisor
// ; %xored = xor i32 %urem, %dividend_sgn
// ; %srem = sub i32 %xored, %dividend_sgn
Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
Value *URem = Builder.CreateURem(UDividend, UDivisor);
Value *Xored = Builder.CreateXor(URem, DividendSign);
Value *SRem = Builder.CreateSub(Xored, DividendSign);
if (Instruction *URemInst = dyn_cast<Instruction>(URem))
Builder.SetInsertPoint(URemInst);
return SRem;
}
/// Generate code to compute the remainder of two unsigned integers. Returns the
/// remainder. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the urem instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes
static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// Remainder = Dividend - Quotient*Divisor
// Following instructions are generated for both i32 and i64
// ; %quotient = udiv i32 %dividend, %divisor
// ; %product = mul i32 %divisor, %quotient
// ; %remainder = sub i32 %dividend, %product
Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
Value *Product = Builder.CreateMul(Divisor, Quotient);
Value *Remainder = Builder.CreateSub(Dividend, Product);
if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
Builder.SetInsertPoint(UDiv);
return Remainder;
}
/// Generate code to divide two signed integers. Returns the quotient, rounded
/// towards 0. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes.
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// Implementation taken from compiler-rt's __divsi3 and __divdi3
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
ConstantInt *Shift;
if (BitWidth == 64) {
Shift = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Shift = Builder.getInt32(31);
}
// Following instructions are generated for both i32 (shift 31) and
// i64 (shift 63).
// ; %tmp = ashr i32 %dividend, 31
// ; %tmp1 = ashr i32 %divisor, 31
// ; %tmp2 = xor i32 %tmp, %dividend
// ; %u_dvnd = sub nsw i32 %tmp2, %tmp
// ; %tmp3 = xor i32 %tmp1, %divisor
// ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
// ; %q_sgn = xor i32 %tmp1, %tmp
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
// ; %tmp4 = xor i32 %q_mag, %q_sgn
// ; %q = sub i32 %tmp4, %q_sgn
Value *Tmp = Builder.CreateAShr(Dividend, Shift);
Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
Builder.SetInsertPoint(UDiv);
return Q;
}
/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
/// Returns the quotient, rounded towards 0. Builder's insert point should
/// point where the caller wants code generated, e.g. at the udiv instruction.
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// The basic algorithm can be found in the compiler-rt project's
// implementation of __udivsi3.c. Here, we do a lower-level IR based approach
// that's been hand-tuned to lessen the amount of control flow involved.
// Some helper values
IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
unsigned BitWidth = DivTy->getBitWidth();
ConstantInt *Zero;
ConstantInt *One;
ConstantInt *NegOne;
ConstantInt *MSB;
if (BitWidth == 64) {
Zero = Builder.getInt64(0);
One = Builder.getInt64(1);
NegOne = ConstantInt::getSigned(DivTy, -1);
MSB = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Zero = Builder.getInt32(0);
One = Builder.getInt32(1);
NegOne = ConstantInt::getSigned(DivTy, -1);
MSB = Builder.getInt32(31);
}
ConstantInt *True = Builder.getTrue();
BasicBlock *IBB = Builder.GetInsertBlock();
Function *F = IBB->getParent();
Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
DivTy);
// Our CFG is going to look like:
// +---------------------+
// | special-cases |
// | ... |
// +---------------------+
// | |
// | +----------+
// | | bb1 |
// | | ... |
// | +----------+
// | | |
// | | +------------+
// | | | preheader |
// | | | ... |
// | | +------------+
// | | |
// | | | +---+
// | | | | |
// | | +------------+ |
// | | | do-while | |
// | | | ... | |
// | | +------------+ |
// | | | | |
// | +-----------+ +---+
// | | loop-exit |
// | | ... |
// | +-----------+
// | |
// +-------+
// | ... |
// | end |
// +-------+
BasicBlock *SpecialCases = Builder.GetInsertBlock();
SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
"udiv-end");
BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
"udiv-loop-exit", F, End);
BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
"udiv-do-while", F, End);
BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
"udiv-preheader", F, End);
BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
"udiv-bb1", F, End);
// We'll be overwriting the terminator to insert our extra blocks
SpecialCases->getTerminator()->eraseFromParent();
// Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
// First off, check for special cases: dividend or divisor is zero, divisor
// is greater than dividend, and divisor is 1.
// ; special-cases:
// ; %ret0_1 = icmp eq i32 %divisor, 0
// ; %ret0_2 = icmp eq i32 %dividend, 0
// ; %ret0_3 = or i1 %ret0_1, %ret0_2
// ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
// ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
// ; %sr = sub nsw i32 %tmp0, %tmp1
// ; %ret0_4 = icmp ugt i32 %sr, 31
// ; %ret0 = or i1 %ret0_3, %ret0_4
// ; %retDividend = icmp eq i32 %sr, 31
// ; %retVal = select i1 %ret0, i32 0, i32 %dividend
// ; %earlyRet = or i1 %ret0, %retDividend
// ; br i1 %earlyRet, label %end, label %bb1
Builder.SetInsertPoint(SpecialCases);
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
Builder.CreateCondBr(EarlyRet, End, BB1);
// ; bb1: ; preds = %special-cases
// ; %sr_1 = add i32 %sr, 1
// ; %tmp2 = sub i32 31, %sr
// ; %q = shl i32 %dividend, %tmp2
// ; %skipLoop = icmp eq i32 %sr_1, 0
// ; br i1 %skipLoop, label %loop-exit, label %preheader
Builder.SetInsertPoint(BB1);
Value *SR_1 = Builder.CreateAdd(SR, One);
Value *Tmp2 = Builder.CreateSub(MSB, SR);
Value *Q = Builder.CreateShl(Dividend, Tmp2);
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
// ; preheader: ; preds = %bb1
// ; %tmp3 = lshr i32 %dividend, %sr_1
// ; %tmp4 = add i32 %divisor, -1
// ; br label %do-while
Builder.SetInsertPoint(Preheader);
Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
Builder.CreateBr(DoWhile);
// ; do-while: ; preds = %do-while, %preheader
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
// ; %tmp5 = shl i32 %r_1, 1
// ; %tmp6 = lshr i32 %q_2, 31
// ; %tmp7 = or i32 %tmp5, %tmp6
// ; %tmp8 = shl i32 %q_2, 1
// ; %q_1 = or i32 %carry_1, %tmp8
// ; %tmp9 = sub i32 %tmp4, %tmp7
// ; %tmp10 = ashr i32 %tmp9, 31
// ; %carry = and i32 %tmp10, 1
// ; %tmp11 = and i32 %tmp10, %divisor
// ; %r = sub i32 %tmp7, %tmp11
// ; %sr_2 = add i32 %sr_3, -1
// ; %tmp12 = icmp eq i32 %sr_2, 0
// ; br i1 %tmp12, label %loop-exit, label %do-while
Builder.SetInsertPoint(DoWhile);
PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
Value *Tmp5 = Builder.CreateShl(R_1, One);
Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
Value *Tmp8 = Builder.CreateShl(Q_2, One);
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
Value *Carry = Builder.CreateAnd(Tmp10, One);
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
Value *R = Builder.CreateSub(Tmp7, Tmp11);
Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
// ; loop-exit: ; preds = %do-while, %bb1
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
// ; %tmp13 = shl i32 %q_3, 1
// ; %q_4 = or i32 %carry_2, %tmp13
// ; br label %end
Builder.SetInsertPoint(LoopExit);
PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
Value *Tmp13 = Builder.CreateShl(Q_3, One);
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
Builder.CreateBr(End);
// ; end: ; preds = %loop-exit, %special-cases
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
// ; ret i32 %q_5
Builder.SetInsertPoint(End, End->begin());
PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
// Populate the Phis, since all values have now been created. Our Phis were:
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
Carry_1->addIncoming(Zero, Preheader);
Carry_1->addIncoming(Carry, DoWhile);
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
SR_3->addIncoming(SR_1, Preheader);
SR_3->addIncoming(SR_2, DoWhile);
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
R_1->addIncoming(Tmp3, Preheader);
R_1->addIncoming(R, DoWhile);
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
Q_2->addIncoming(Q, Preheader);
Q_2->addIncoming(Q_1, DoWhile);
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
Carry_2->addIncoming(Zero, BB1);
Carry_2->addIncoming(Carry, DoWhile);
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
Q_3->addIncoming(Q, BB1);
Q_3->addIncoming(Q_1, DoWhile);
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
Q_5->addIncoming(Q_4, LoopExit);
Q_5->addIncoming(RetVal, SpecialCases);
return Q_5;
}
/// Generate code to calculate the remainder of two integers, replacing Rem with
/// the generated code. This currently generates code using the udiv expansion,
/// but future work includes generating more specialized code, e.g. when more
/// information about the operands are known. Implements both 32bit and 64bit
/// scalar division.
///
/// Replace Rem with generated code.
bool llvm::expandRemainder(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
IRBuilder<> Builder(Rem);
assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
assert((Rem->getType()->getIntegerBitWidth() == 32 ||
Rem->getType()->getIntegerBitWidth() == 64) &&
"Div of bitwidth other than 32 or 64 not supported");
// First prepare the sign if it's a signed remainder
if (Rem->getOpcode() == Instruction::SRem) {
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
Rem->getOperand(1), Builder);
// Check whether this is the insert point while Rem is still valid.
bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
Rem->replaceAllUsesWith(Remainder);
Rem->dropAllReferences();
Rem->eraseFromParent();
// If we didn't actually generate an urem instruction, we're done
// This happens for example if the input were constant. In this case the
// Builder insertion point was unchanged
if (IsInsertPoint)
return true;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Rem = BO;
}
Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
Rem->getOperand(1),
Builder);
Rem->replaceAllUsesWith(Remainder);
Rem->dropAllReferences();
Rem->eraseFromParent();
// Expand the udiv
if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
expandDivision(UDiv);
}
return true;
}
/// Generate code to divide two integers, replacing Div with the generated
/// code. This currently generates code similarly to compiler-rt's
/// implementations, but future work includes generating more specialized code
/// when more information about the operands are known. Implements both
/// 32bit and 64bit scalar division.
///
/// Replace Div with generated code.
bool llvm::expandDivision(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
IRBuilder<> Builder(Div);
assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
assert((Div->getType()->getIntegerBitWidth() == 32 ||
Div->getType()->getIntegerBitWidth() == 64) &&
"Div of bitwidth other than 32 or 64 not supported");
// First prepare the sign if it's a signed division
if (Div->getOpcode() == Instruction::SDiv) {
// Lower the code to unsigned division, and reset Div to point to the udiv.
Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
Div->getOperand(1), Builder);
// Check whether this is the insert point while Div is still valid.
bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
Div->replaceAllUsesWith(Quotient);
Div->dropAllReferences();
Div->eraseFromParent();
// If we didn't actually generate an udiv instruction, we're done
// This happens for example if the input were constant. In this case the
// Builder insertion point was unchanged
if (IsInsertPoint)
return true;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Div = BO;
}
// Insert the unsigned division code
Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
Div->getOperand(1),
Builder);
Div->replaceAllUsesWith(Quotient);
Div->dropAllReferences();
Div->eraseFromParent();
return true;
}
/// Generate code to compute the remainder of two integers of bitwidth up to
/// 32 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 32 bits; that is, these routines are good for targets
/// that have no or very little suppport for smaller than 32 bit integer
/// arithmetic.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
Type *RemTy = Rem->getType();
assert(!RemTy->isVectorTy() && "Div over vectors not supported");
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
assert(RemTyBitWidth <= 32 &&
"Div of bitwidth greater than 32 not supported");
if (RemTyBitWidth == 32)
return expandRemainder(Rem);
// If bitwidth smaller than 32 extend inputs, extend output and proceed
// with 32 bit division.
IRBuilder<> Builder(Rem);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtRem;
Value *Trunc;
Type *Int32Ty = Builder.getInt32Ty();
if (Rem->getOpcode() == Instruction::SRem) {
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
Rem->replaceAllUsesWith(Trunc);
Rem->dropAllReferences();
Rem->eraseFromParent();
return expandRemainder(cast<BinaryOperator>(ExtRem));
}
/// Generate code to compute the remainder of two integers of bitwidth up to
/// 64 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 64 bits.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
Type *RemTy = Rem->getType();
assert(!RemTy->isVectorTy() && "Div over vectors not supported");
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");
if (RemTyBitWidth == 64)
return expandRemainder(Rem);
// If bitwidth smaller than 64 extend inputs, extend output and proceed
// with 64 bit division.
IRBuilder<> Builder(Rem);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtRem;
Value *Trunc;
Type *Int64Ty = Builder.getInt64Ty();
if (Rem->getOpcode() == Instruction::SRem) {
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
Rem->replaceAllUsesWith(Trunc);
Rem->dropAllReferences();
Rem->eraseFromParent();
return expandRemainder(cast<BinaryOperator>(ExtRem));
}
/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 32 bits; that is, these routines are good for targets that have no
/// or very little support for smaller than 32 bit integer arithmetic.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
Type *DivTy = Div->getType();
assert(!DivTy->isVectorTy() && "Div over vectors not supported");
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
if (DivTyBitWidth == 32)
return expandDivision(Div);
// If bitwidth smaller than 32 extend inputs, extend output and proceed
// with 32 bit division.
IRBuilder<> Builder(Div);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtDiv;
Value *Trunc;
Type *Int32Ty = Builder.getInt32Ty();
if (Div->getOpcode() == Instruction::SDiv) {
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
Div->replaceAllUsesWith(Trunc);
Div->dropAllReferences();
Div->eraseFromParent();
return expandDivision(cast<BinaryOperator>(ExtDiv));
}
/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 64 bits.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
Type *DivTy = Div->getType();
assert(!DivTy->isVectorTy() && "Div over vectors not supported");
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
assert(DivTyBitWidth <= 64 &&
"Div of bitwidth greater than 64 not supported");
if (DivTyBitWidth == 64)
return expandDivision(Div);
// If bitwidth smaller than 64 extend inputs, extend output and proceed
// with 64 bit division.
IRBuilder<> Builder(Div);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtDiv;
Value *Trunc;
Type *Int64Ty = Builder.getInt64Ty();
if (Div->getOpcode() == Instruction::SDiv) {
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
Div->replaceAllUsesWith(Trunc);
Div->dropAllReferences();
Div->eraseFromParent();
return expandDivision(cast<BinaryOperator>(ExtDiv));
}