IntegerDivision.cpp 26.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains an implementation of 32bit and 64bit scalar integer
// division for targets that don't have native support. It's largely derived
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
// but hand-tuned for targets that prefer less control flow.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/IntegerDivision.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "integer-division"

/// Generate code to compute the remainder of two signed integers. Returns the
/// remainder, which will have the sign of the dividend. Builder's insert point
/// should be pointing where the caller wants code generated, e.g. at the srem
/// instruction. This will generate a urem in the process, and Builder's insert
/// point will be pointing at the uren (if present, i.e. not folded), ready to
/// be expanded if the user wishes
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
                                          IRBuilder<> &Builder) {
  unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
  ConstantInt *Shift;

  if (BitWidth == 64) {
    Shift = Builder.getInt64(63);
  } else {
    assert(BitWidth == 32 && "Unexpected bit width");
    Shift = Builder.getInt32(31);
  }

  // Following instructions are generated for both i32 (shift 31) and
  // i64 (shift 63).

  // ;   %dividend_sgn = ashr i32 %dividend, 31
  // ;   %divisor_sgn  = ashr i32 %divisor, 31
  // ;   %dvd_xor      = xor i32 %dividend, %dividend_sgn
  // ;   %dvs_xor      = xor i32 %divisor, %divisor_sgn
  // ;   %u_dividend   = sub i32 %dvd_xor, %dividend_sgn
  // ;   %u_divisor    = sub i32 %dvs_xor, %divisor_sgn
  // ;   %urem         = urem i32 %dividend, %divisor
  // ;   %xored        = xor i32 %urem, %dividend_sgn
  // ;   %srem         = sub i32 %xored, %dividend_sgn
  Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
  Value *DivisorSign  = Builder.CreateAShr(Divisor, Shift);
  Value *DvdXor       = Builder.CreateXor(Dividend, DividendSign);
  Value *DvsXor       = Builder.CreateXor(Divisor, DivisorSign);
  Value *UDividend    = Builder.CreateSub(DvdXor, DividendSign);
  Value *UDivisor     = Builder.CreateSub(DvsXor, DivisorSign);
  Value *URem         = Builder.CreateURem(UDividend, UDivisor);
  Value *Xored        = Builder.CreateXor(URem, DividendSign);
  Value *SRem         = Builder.CreateSub(Xored, DividendSign);

  if (Instruction *URemInst = dyn_cast<Instruction>(URem))
    Builder.SetInsertPoint(URemInst);

  return SRem;
}


/// Generate code to compute the remainder of two unsigned integers. Returns the
/// remainder. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the urem instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes
static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
                                             IRBuilder<> &Builder) {
  // Remainder = Dividend - Quotient*Divisor

  // Following instructions are generated for both i32 and i64

  // ;   %quotient  = udiv i32 %dividend, %divisor
  // ;   %product   = mul i32 %divisor, %quotient
  // ;   %remainder = sub i32 %dividend, %product
  Value *Quotient  = Builder.CreateUDiv(Dividend, Divisor);
  Value *Product   = Builder.CreateMul(Divisor, Quotient);
  Value *Remainder = Builder.CreateSub(Dividend, Product);

  if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
    Builder.SetInsertPoint(UDiv);

  return Remainder;
}

/// Generate code to divide two signed integers. Returns the quotient, rounded
/// towards 0. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes.
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
                                         IRBuilder<> &Builder) {
  // Implementation taken from compiler-rt's __divsi3 and __divdi3

  unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
  ConstantInt *Shift;

  if (BitWidth == 64) {
    Shift = Builder.getInt64(63);
  } else {
    assert(BitWidth == 32 && "Unexpected bit width");
    Shift = Builder.getInt32(31);
  }

  // Following instructions are generated for both i32 (shift 31) and
  // i64 (shift 63).

  // ;   %tmp    = ashr i32 %dividend, 31
  // ;   %tmp1   = ashr i32 %divisor, 31
  // ;   %tmp2   = xor i32 %tmp, %dividend
  // ;   %u_dvnd = sub nsw i32 %tmp2, %tmp
  // ;   %tmp3   = xor i32 %tmp1, %divisor
  // ;   %u_dvsr = sub nsw i32 %tmp3, %tmp1
  // ;   %q_sgn  = xor i32 %tmp1, %tmp
  // ;   %q_mag  = udiv i32 %u_dvnd, %u_dvsr
  // ;   %tmp4   = xor i32 %q_mag, %q_sgn
  // ;   %q      = sub i32 %tmp4, %q_sgn
  Value *Tmp    = Builder.CreateAShr(Dividend, Shift);
  Value *Tmp1   = Builder.CreateAShr(Divisor, Shift);
  Value *Tmp2   = Builder.CreateXor(Tmp, Dividend);
  Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
  Value *Tmp3   = Builder.CreateXor(Tmp1, Divisor);
  Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
  Value *Q_Sgn  = Builder.CreateXor(Tmp1, Tmp);
  Value *Q_Mag  = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
  Value *Tmp4   = Builder.CreateXor(Q_Mag, Q_Sgn);
  Value *Q      = Builder.CreateSub(Tmp4, Q_Sgn);

  if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
    Builder.SetInsertPoint(UDiv);

  return Q;
}

/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
/// Returns the quotient, rounded towards 0. Builder's insert point should
/// point where the caller wants code generated, e.g. at the udiv instruction.
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
                                           IRBuilder<> &Builder) {
  // The basic algorithm can be found in the compiler-rt project's
  // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
  // that's been hand-tuned to lessen the amount of control flow involved.

  // Some helper values
  IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
  unsigned BitWidth = DivTy->getBitWidth();

  ConstantInt *Zero;
  ConstantInt *One;
  ConstantInt *NegOne;
  ConstantInt *MSB;

  if (BitWidth == 64) {
    Zero      = Builder.getInt64(0);
    One       = Builder.getInt64(1);
    NegOne    = ConstantInt::getSigned(DivTy, -1);
    MSB       = Builder.getInt64(63);
  } else {
    assert(BitWidth == 32 && "Unexpected bit width");
    Zero      = Builder.getInt32(0);
    One       = Builder.getInt32(1);
    NegOne    = ConstantInt::getSigned(DivTy, -1);
    MSB       = Builder.getInt32(31);
  }

  ConstantInt *True = Builder.getTrue();

  BasicBlock *IBB = Builder.GetInsertBlock();
  Function *F = IBB->getParent();
  Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
                                             DivTy);

  // Our CFG is going to look like:
  // +---------------------+
  // | special-cases       |
  // |   ...               |
  // +---------------------+
  //  |       |
  //  |   +----------+
  //  |   |  bb1     |
  //  |   |  ...     |
  //  |   +----------+
  //  |    |      |
  //  |    |  +------------+
  //  |    |  |  preheader |
  //  |    |  |  ...       |
  //  |    |  +------------+
  //  |    |      |
  //  |    |      |      +---+
  //  |    |      |      |   |
  //  |    |  +------------+ |
  //  |    |  |  do-while  | |
  //  |    |  |  ...       | |
  //  |    |  +------------+ |
  //  |    |      |      |   |
  //  |   +-----------+  +---+
  //  |   | loop-exit |
  //  |   |  ...      |
  //  |   +-----------+
  //  |     |
  // +-------+
  // | ...   |
  // | end   |
  // +-------+
  BasicBlock *SpecialCases = Builder.GetInsertBlock();
  SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
  BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
                                                  "udiv-end");
  BasicBlock *LoopExit  = BasicBlock::Create(Builder.getContext(),
                                             "udiv-loop-exit", F, End);
  BasicBlock *DoWhile   = BasicBlock::Create(Builder.getContext(),
                                             "udiv-do-while", F, End);
  BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
                                             "udiv-preheader", F, End);
  BasicBlock *BB1       = BasicBlock::Create(Builder.getContext(),
                                             "udiv-bb1", F, End);

  // We'll be overwriting the terminator to insert our extra blocks
  SpecialCases->getTerminator()->eraseFromParent();

  // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).

  // First off, check for special cases: dividend or divisor is zero, divisor
  // is greater than dividend, and divisor is 1.
  // ; special-cases:
  // ;   %ret0_1      = icmp eq i32 %divisor, 0
  // ;   %ret0_2      = icmp eq i32 %dividend, 0
  // ;   %ret0_3      = or i1 %ret0_1, %ret0_2
  // ;   %tmp0        = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
  // ;   %tmp1        = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
  // ;   %sr          = sub nsw i32 %tmp0, %tmp1
  // ;   %ret0_4      = icmp ugt i32 %sr, 31
  // ;   %ret0        = or i1 %ret0_3, %ret0_4
  // ;   %retDividend = icmp eq i32 %sr, 31
  // ;   %retVal      = select i1 %ret0, i32 0, i32 %dividend
  // ;   %earlyRet    = or i1 %ret0, %retDividend
  // ;   br i1 %earlyRet, label %end, label %bb1
  Builder.SetInsertPoint(SpecialCases);
  Value *Ret0_1      = Builder.CreateICmpEQ(Divisor, Zero);
  Value *Ret0_2      = Builder.CreateICmpEQ(Dividend, Zero);
  Value *Ret0_3      = Builder.CreateOr(Ret0_1, Ret0_2);
  Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
  Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
  Value *SR          = Builder.CreateSub(Tmp0, Tmp1);
  Value *Ret0_4      = Builder.CreateICmpUGT(SR, MSB);
  Value *Ret0        = Builder.CreateOr(Ret0_3, Ret0_4);
  Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
  Value *RetVal      = Builder.CreateSelect(Ret0, Zero, Dividend);
  Value *EarlyRet    = Builder.CreateOr(Ret0, RetDividend);
  Builder.CreateCondBr(EarlyRet, End, BB1);

  // ; bb1:                                             ; preds = %special-cases
  // ;   %sr_1     = add i32 %sr, 1
  // ;   %tmp2     = sub i32 31, %sr
  // ;   %q        = shl i32 %dividend, %tmp2
  // ;   %skipLoop = icmp eq i32 %sr_1, 0
  // ;   br i1 %skipLoop, label %loop-exit, label %preheader
  Builder.SetInsertPoint(BB1);
  Value *SR_1     = Builder.CreateAdd(SR, One);
  Value *Tmp2     = Builder.CreateSub(MSB, SR);
  Value *Q        = Builder.CreateShl(Dividend, Tmp2);
  Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
  Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);

  // ; preheader:                                           ; preds = %bb1
  // ;   %tmp3 = lshr i32 %dividend, %sr_1
  // ;   %tmp4 = add i32 %divisor, -1
  // ;   br label %do-while
  Builder.SetInsertPoint(Preheader);
  Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
  Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
  Builder.CreateBr(DoWhile);

  // ; do-while:                                 ; preds = %do-while, %preheader
  // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
  // ;   %sr_3    = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
  // ;   %r_1     = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
  // ;   %q_2     = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
  // ;   %tmp5  = shl i32 %r_1, 1
  // ;   %tmp6  = lshr i32 %q_2, 31
  // ;   %tmp7  = or i32 %tmp5, %tmp6
  // ;   %tmp8  = shl i32 %q_2, 1
  // ;   %q_1   = or i32 %carry_1, %tmp8
  // ;   %tmp9  = sub i32 %tmp4, %tmp7
  // ;   %tmp10 = ashr i32 %tmp9, 31
  // ;   %carry = and i32 %tmp10, 1
  // ;   %tmp11 = and i32 %tmp10, %divisor
  // ;   %r     = sub i32 %tmp7, %tmp11
  // ;   %sr_2  = add i32 %sr_3, -1
  // ;   %tmp12 = icmp eq i32 %sr_2, 0
  // ;   br i1 %tmp12, label %loop-exit, label %do-while
  Builder.SetInsertPoint(DoWhile);
  PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
  PHINode *SR_3    = Builder.CreatePHI(DivTy, 2);
  PHINode *R_1     = Builder.CreatePHI(DivTy, 2);
  PHINode *Q_2     = Builder.CreatePHI(DivTy, 2);
  Value *Tmp5  = Builder.CreateShl(R_1, One);
  Value *Tmp6  = Builder.CreateLShr(Q_2, MSB);
  Value *Tmp7  = Builder.CreateOr(Tmp5, Tmp6);
  Value *Tmp8  = Builder.CreateShl(Q_2, One);
  Value *Q_1   = Builder.CreateOr(Carry_1, Tmp8);
  Value *Tmp9  = Builder.CreateSub(Tmp4, Tmp7);
  Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
  Value *Carry = Builder.CreateAnd(Tmp10, One);
  Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
  Value *R     = Builder.CreateSub(Tmp7, Tmp11);
  Value *SR_2  = Builder.CreateAdd(SR_3, NegOne);
  Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
  Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);

  // ; loop-exit:                                      ; preds = %do-while, %bb1
  // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
  // ;   %q_3     = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
  // ;   %tmp13 = shl i32 %q_3, 1
  // ;   %q_4   = or i32 %carry_2, %tmp13
  // ;   br label %end
  Builder.SetInsertPoint(LoopExit);
  PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
  PHINode *Q_3     = Builder.CreatePHI(DivTy, 2);
  Value *Tmp13 = Builder.CreateShl(Q_3, One);
  Value *Q_4   = Builder.CreateOr(Carry_2, Tmp13);
  Builder.CreateBr(End);

  // ; end:                                 ; preds = %loop-exit, %special-cases
  // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
  // ;   ret i32 %q_5
  Builder.SetInsertPoint(End, End->begin());
  PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);

  // Populate the Phis, since all values have now been created. Our Phis were:
  // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
  Carry_1->addIncoming(Zero, Preheader);
  Carry_1->addIncoming(Carry, DoWhile);
  // ;   %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
  SR_3->addIncoming(SR_1, Preheader);
  SR_3->addIncoming(SR_2, DoWhile);
  // ;   %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
  R_1->addIncoming(Tmp3, Preheader);
  R_1->addIncoming(R, DoWhile);
  // ;   %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
  Q_2->addIncoming(Q, Preheader);
  Q_2->addIncoming(Q_1, DoWhile);
  // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
  Carry_2->addIncoming(Zero, BB1);
  Carry_2->addIncoming(Carry, DoWhile);
  // ;   %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
  Q_3->addIncoming(Q, BB1);
  Q_3->addIncoming(Q_1, DoWhile);
  // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
  Q_5->addIncoming(Q_4, LoopExit);
  Q_5->addIncoming(RetVal, SpecialCases);

  return Q_5;
}

/// Generate code to calculate the remainder of two integers, replacing Rem with
/// the generated code. This currently generates code using the udiv expansion,
/// but future work includes generating more specialized code, e.g. when more
/// information about the operands are known. Implements both 32bit and 64bit
/// scalar division.
///
/// Replace Rem with generated code.
bool llvm::expandRemainder(BinaryOperator *Rem) {
  assert((Rem->getOpcode() == Instruction::SRem ||
          Rem->getOpcode() == Instruction::URem) &&
         "Trying to expand remainder from a non-remainder function");

  IRBuilder<> Builder(Rem);

  assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
  assert((Rem->getType()->getIntegerBitWidth() == 32 ||
          Rem->getType()->getIntegerBitWidth() == 64) &&
         "Div of bitwidth other than 32 or 64 not supported");

  // First prepare the sign if it's a signed remainder
  if (Rem->getOpcode() == Instruction::SRem) {
    Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
                                                   Rem->getOperand(1), Builder);

    // Check whether this is the insert point while Rem is still valid.
    bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
    Rem->replaceAllUsesWith(Remainder);
    Rem->dropAllReferences();
    Rem->eraseFromParent();

    // If we didn't actually generate an urem instruction, we're done
    // This happens for example if the input were constant. In this case the
    // Builder insertion point was unchanged
    if (IsInsertPoint)
      return true;

    BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
    Rem = BO;
  }

  Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
                                                    Rem->getOperand(1),
                                                    Builder);

  Rem->replaceAllUsesWith(Remainder);
  Rem->dropAllReferences();
  Rem->eraseFromParent();

  // Expand the udiv
  if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
    assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
    expandDivision(UDiv);
  }

  return true;
}


/// Generate code to divide two integers, replacing Div with the generated
/// code. This currently generates code similarly to compiler-rt's
/// implementations, but future work includes generating more specialized code
/// when more information about the operands are known. Implements both
/// 32bit and 64bit scalar division.
///
/// Replace Div with generated code.
bool llvm::expandDivision(BinaryOperator *Div) {
  assert((Div->getOpcode() == Instruction::SDiv ||
          Div->getOpcode() == Instruction::UDiv) &&
         "Trying to expand division from a non-division function");

  IRBuilder<> Builder(Div);

  assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
  assert((Div->getType()->getIntegerBitWidth() == 32 ||
          Div->getType()->getIntegerBitWidth() == 64) &&
         "Div of bitwidth other than 32 or 64 not supported");

  // First prepare the sign if it's a signed division
  if (Div->getOpcode() == Instruction::SDiv) {
    // Lower the code to unsigned division, and reset Div to point to the udiv.
    Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
                                                 Div->getOperand(1), Builder);

    // Check whether this is the insert point while Div is still valid.
    bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
    Div->replaceAllUsesWith(Quotient);
    Div->dropAllReferences();
    Div->eraseFromParent();

    // If we didn't actually generate an udiv instruction, we're done
    // This happens for example if the input were constant. In this case the
    // Builder insertion point was unchanged
    if (IsInsertPoint)
      return true;

    BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
    Div = BO;
  }

  // Insert the unsigned division code
  Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
                                                 Div->getOperand(1),
                                                 Builder);
  Div->replaceAllUsesWith(Quotient);
  Div->dropAllReferences();
  Div->eraseFromParent();

  return true;
}

/// Generate code to compute the remainder of two integers of bitwidth up to
/// 32 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 32 bits; that is, these routines are good for targets
/// that have no or very little suppport for smaller than 32 bit integer
/// arithmetic.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
  assert((Rem->getOpcode() == Instruction::SRem ||
          Rem->getOpcode() == Instruction::URem) &&
          "Trying to expand remainder from a non-remainder function");

  Type *RemTy = Rem->getType();
  assert(!RemTy->isVectorTy() && "Div over vectors not supported");

  unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();

  assert(RemTyBitWidth <= 32 &&
         "Div of bitwidth greater than 32 not supported");

  if (RemTyBitWidth == 32)
    return expandRemainder(Rem);

  // If bitwidth smaller than 32 extend inputs, extend output and proceed
  // with 32 bit division.
  IRBuilder<> Builder(Rem);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtRem;
  Value *Trunc;
  Type *Int32Ty = Builder.getInt32Ty();

  if (Rem->getOpcode() == Instruction::SRem) {
    ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
    ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
    ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtRem, RemTy);

  Rem->replaceAllUsesWith(Trunc);
  Rem->dropAllReferences();
  Rem->eraseFromParent();

  return expandRemainder(cast<BinaryOperator>(ExtRem));
}

/// Generate code to compute the remainder of two integers of bitwidth up to
/// 64 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 64 bits.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
  assert((Rem->getOpcode() == Instruction::SRem ||
          Rem->getOpcode() == Instruction::URem) &&
          "Trying to expand remainder from a non-remainder function");

  Type *RemTy = Rem->getType();
  assert(!RemTy->isVectorTy() && "Div over vectors not supported");

  unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();

  assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");

  if (RemTyBitWidth == 64)
    return expandRemainder(Rem);

  // If bitwidth smaller than 64 extend inputs, extend output and proceed
  // with 64 bit division.
  IRBuilder<> Builder(Rem);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtRem;
  Value *Trunc;
  Type *Int64Ty = Builder.getInt64Ty();

  if (Rem->getOpcode() == Instruction::SRem) {
    ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
    ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
    ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtRem, RemTy);

  Rem->replaceAllUsesWith(Trunc);
  Rem->dropAllReferences();
  Rem->eraseFromParent();

  return expandRemainder(cast<BinaryOperator>(ExtRem));
}

/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 32 bits; that is, these routines are good for targets that have no
/// or very little support for smaller than 32 bit integer arithmetic.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
  assert((Div->getOpcode() == Instruction::SDiv ||
          Div->getOpcode() == Instruction::UDiv) &&
          "Trying to expand division from a non-division function");

  Type *DivTy = Div->getType();
  assert(!DivTy->isVectorTy() && "Div over vectors not supported");

  unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();

  assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");

  if (DivTyBitWidth == 32)
    return expandDivision(Div);

  // If bitwidth smaller than 32 extend inputs, extend output and proceed
  // with 32 bit division.
  IRBuilder<> Builder(Div);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtDiv;
  Value *Trunc;
  Type *Int32Ty = Builder.getInt32Ty();

  if (Div->getOpcode() == Instruction::SDiv) {
    ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
    ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
    ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtDiv, DivTy);

  Div->replaceAllUsesWith(Trunc);
  Div->dropAllReferences();
  Div->eraseFromParent();

  return expandDivision(cast<BinaryOperator>(ExtDiv));
}

/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 64 bits.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
  assert((Div->getOpcode() == Instruction::SDiv ||
          Div->getOpcode() == Instruction::UDiv) &&
          "Trying to expand division from a non-division function");

  Type *DivTy = Div->getType();
  assert(!DivTy->isVectorTy() && "Div over vectors not supported");

  unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();

  assert(DivTyBitWidth <= 64 &&
         "Div of bitwidth greater than 64 not supported");

  if (DivTyBitWidth == 64)
    return expandDivision(Div);

  // If bitwidth smaller than 64 extend inputs, extend output and proceed
  // with 64 bit division.
  IRBuilder<> Builder(Div);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtDiv;
  Value *Trunc;
  Type *Int64Ty = Builder.getInt64Ty();

  if (Div->getOpcode() == Instruction::SDiv) {
    ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
    ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
    ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtDiv, DivTy);

  Div->replaceAllUsesWith(Trunc);
  Div->dropAllReferences();
  Div->eraseFromParent();

  return expandDivision(cast<BinaryOperator>(ExtDiv));
}