X86PartialReduction.cpp 15.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//===-- X86PartialReduction.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for add instructions used by a horizontal reduction to see
// if we might be able to use pmaddwd or psadbw. Some cases of this require
// cross basic block knowledge and can't be done in SelectionDAG.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "X86TargetMachine.h"

using namespace llvm;

#define DEBUG_TYPE "x86-partial-reduction"

namespace {

class X86PartialReduction : public FunctionPass {
  const DataLayout *DL;
  const X86Subtarget *ST;

public:
  static char ID; // Pass identification, replacement for typeid.

  X86PartialReduction() : FunctionPass(ID) { }

  bool runOnFunction(Function &Fn) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
  }

  StringRef getPassName() const override {
    return "X86 Partial Reduction";
  }

private:
  bool tryMAddReplacement(Instruction *Op);
  bool trySADReplacement(Instruction *Op);
};
}

FunctionPass *llvm::createX86PartialReductionPass() {
  return new X86PartialReduction();
}

char X86PartialReduction::ID = 0;

INITIALIZE_PASS(X86PartialReduction, DEBUG_TYPE,
                "X86 Partial Reduction", false, false)

bool X86PartialReduction::tryMAddReplacement(Instruction *Op) {
  if (!ST->hasSSE2())
    return false;

  // Need at least 8 elements.
  if (cast<FixedVectorType>(Op->getType())->getNumElements() < 8)
    return false;

  // Element type should be i32.
  if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
    return false;

  auto *Mul = dyn_cast<BinaryOperator>(Op);
  if (!Mul || Mul->getOpcode() != Instruction::Mul)
    return false;

  Value *LHS = Mul->getOperand(0);
  Value *RHS = Mul->getOperand(1);

  // LHS and RHS should be only used once or if they are the same then only
  // used twice. Only check this when SSE4.1 is enabled and we have zext/sext
  // instructions, otherwise we use punpck to emulate zero extend in stages. The
  // trunc/ we need to do likely won't introduce new instructions in that case.
  if (ST->hasSSE41()) {
    if (LHS == RHS) {
      if (!isa<Constant>(LHS) && !LHS->hasNUses(2))
        return false;
    } else {
      if (!isa<Constant>(LHS) && !LHS->hasOneUse())
        return false;
      if (!isa<Constant>(RHS) && !RHS->hasOneUse())
        return false;
    }
  }

  auto CanShrinkOp = [&](Value *Op) {
    auto IsFreeTruncation = [&](Value *Op) {
      if (auto *Cast = dyn_cast<CastInst>(Op)) {
        if (Cast->getParent() == Mul->getParent() &&
            (Cast->getOpcode() == Instruction::SExt ||
             Cast->getOpcode() == Instruction::ZExt) &&
            Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 16)
          return true;
      }

      return isa<Constant>(Op);
    };

    // If the operation can be freely truncated and has enough sign bits we
    // can shrink.
    if (IsFreeTruncation(Op) &&
        ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
      return true;

    // SelectionDAG has limited support for truncating through an add or sub if
    // the inputs are freely truncatable.
    if (auto *BO = dyn_cast<BinaryOperator>(Op)) {
      if (BO->getParent() == Mul->getParent() &&
          IsFreeTruncation(BO->getOperand(0)) &&
          IsFreeTruncation(BO->getOperand(1)) &&
          ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
        return true;
    }

    return false;
  };

  // Both Ops need to be shrinkable.
  if (!CanShrinkOp(LHS) && !CanShrinkOp(RHS))
    return false;

  IRBuilder<> Builder(Mul);

  auto *MulTy = cast<FixedVectorType>(Op->getType());
  unsigned NumElts = MulTy->getNumElements();

  // Extract even elements and odd elements and add them together. This will
  // be pattern matched by SelectionDAG to pmaddwd. This instruction will be
  // half the original width.
  SmallVector<int, 16> EvenMask(NumElts / 2);
  SmallVector<int, 16> OddMask(NumElts / 2);
  for (int i = 0, e = NumElts / 2; i != e; ++i) {
    EvenMask[i] = i * 2;
    OddMask[i] = i * 2 + 1;
  }
  // Creating a new mul so the replaceAllUsesWith below doesn't replace the
  // uses in the shuffles we're creating.
  Value *NewMul = Builder.CreateMul(Mul->getOperand(0), Mul->getOperand(1));
  Value *EvenElts = Builder.CreateShuffleVector(NewMul, NewMul, EvenMask);
  Value *OddElts = Builder.CreateShuffleVector(NewMul, NewMul, OddMask);
  Value *MAdd = Builder.CreateAdd(EvenElts, OddElts);

  // Concatenate zeroes to extend back to the original type.
  SmallVector<int, 32> ConcatMask(NumElts);
  std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
  Value *Zero = Constant::getNullValue(MAdd->getType());
  Value *Concat = Builder.CreateShuffleVector(MAdd, Zero, ConcatMask);

  Mul->replaceAllUsesWith(Concat);
  Mul->eraseFromParent();

  return true;
}

bool X86PartialReduction::trySADReplacement(Instruction *Op) {
  if (!ST->hasSSE2())
    return false;

  // TODO: There's nothing special about i32, any integer type above i16 should
  // work just as well.
  if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
    return false;

  // Operand should be a select.
  auto *SI = dyn_cast<SelectInst>(Op);
  if (!SI)
    return false;

  // Select needs to implement absolute value.
  Value *LHS, *RHS;
  auto SPR = matchSelectPattern(SI, LHS, RHS);
  if (SPR.Flavor != SPF_ABS)
    return false;

  // Need a subtract of two values.
  auto *Sub = dyn_cast<BinaryOperator>(LHS);
  if (!Sub || Sub->getOpcode() != Instruction::Sub)
    return false;

  // Look for zero extend from i8.
  auto getZeroExtendedVal = [](Value *Op) -> Value * {
    if (auto *ZExt = dyn_cast<ZExtInst>(Op))
      if (cast<VectorType>(ZExt->getOperand(0)->getType())
              ->getElementType()
              ->isIntegerTy(8))
        return ZExt->getOperand(0);

    return nullptr;
  };

  // Both operands of the subtract should be extends from vXi8.
  Value *Op0 = getZeroExtendedVal(Sub->getOperand(0));
  Value *Op1 = getZeroExtendedVal(Sub->getOperand(1));
  if (!Op0 || !Op1)
    return false;

  IRBuilder<> Builder(SI);

  auto *OpTy = cast<FixedVectorType>(Op->getType());
  unsigned NumElts = OpTy->getNumElements();

  unsigned IntrinsicNumElts;
  Intrinsic::ID IID;
  if (ST->hasBWI() && NumElts >= 64) {
    IID = Intrinsic::x86_avx512_psad_bw_512;
    IntrinsicNumElts = 64;
  } else if (ST->hasAVX2() && NumElts >= 32) {
    IID = Intrinsic::x86_avx2_psad_bw;
    IntrinsicNumElts = 32;
  } else {
    IID = Intrinsic::x86_sse2_psad_bw;
    IntrinsicNumElts = 16;
  }

  Function *PSADBWFn = Intrinsic::getDeclaration(SI->getModule(), IID);

  if (NumElts < 16) {
    // Pad input with zeroes.
    SmallVector<int, 32> ConcatMask(16);
    for (unsigned i = 0; i != NumElts; ++i)
      ConcatMask[i] = i;
    for (unsigned i = NumElts; i != 16; ++i)
      ConcatMask[i] = (i % NumElts) + NumElts;

    Value *Zero = Constant::getNullValue(Op0->getType());
    Op0 = Builder.CreateShuffleVector(Op0, Zero, ConcatMask);
    Op1 = Builder.CreateShuffleVector(Op1, Zero, ConcatMask);
    NumElts = 16;
  }

  // Intrinsics produce vXi64 and need to be casted to vXi32.
  auto *I32Ty =
      FixedVectorType::get(Builder.getInt32Ty(), IntrinsicNumElts / 4);

  assert(NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!");
  unsigned NumSplits = NumElts / IntrinsicNumElts;

  // First collect the pieces we need.
  SmallVector<Value *, 4> Ops(NumSplits);
  for (unsigned i = 0; i != NumSplits; ++i) {
    SmallVector<int, 64> ExtractMask(IntrinsicNumElts);
    std::iota(ExtractMask.begin(), ExtractMask.end(), i * IntrinsicNumElts);
    Value *ExtractOp0 = Builder.CreateShuffleVector(Op0, Op0, ExtractMask);
    Value *ExtractOp1 = Builder.CreateShuffleVector(Op1, Op0, ExtractMask);
    Ops[i] = Builder.CreateCall(PSADBWFn, {ExtractOp0, ExtractOp1});
    Ops[i] = Builder.CreateBitCast(Ops[i], I32Ty);
  }

  assert(isPowerOf2_32(NumSplits) && "Expected power of 2 splits");
  unsigned Stages = Log2_32(NumSplits);
  for (unsigned s = Stages; s > 0; --s) {
    unsigned NumConcatElts =
        cast<FixedVectorType>(Ops[0]->getType())->getNumElements() * 2;
    for (unsigned i = 0; i != 1U << (s - 1); ++i) {
      SmallVector<int, 64> ConcatMask(NumConcatElts);
      std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
      Ops[i] = Builder.CreateShuffleVector(Ops[i*2], Ops[i*2+1], ConcatMask);
    }
  }

  // At this point the final value should be in Ops[0]. Now we need to adjust
  // it to the final original type.
  NumElts = cast<FixedVectorType>(OpTy)->getNumElements();
  if (NumElts == 2) {
    // Extract down to 2 elements.
    Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{0, 1});
  } else if (NumElts >= 8) {
    SmallVector<int, 32> ConcatMask(NumElts);
    unsigned SubElts =
        cast<FixedVectorType>(Ops[0]->getType())->getNumElements();
    for (unsigned i = 0; i != SubElts; ++i)
      ConcatMask[i] = i;
    for (unsigned i = SubElts; i != NumElts; ++i)
      ConcatMask[i] = (i % SubElts) + SubElts;

    Value *Zero = Constant::getNullValue(Ops[0]->getType());
    Ops[0] = Builder.CreateShuffleVector(Ops[0], Zero, ConcatMask);
  }

  SI->replaceAllUsesWith(Ops[0]);
  SI->eraseFromParent();

  return true;
}

// Walk backwards from the ExtractElementInst and determine if it is the end of
// a horizontal reduction. Return the input to the reduction if we find one.
static Value *matchAddReduction(const ExtractElementInst &EE) {
  // Make sure we're extracting index 0.
  auto *Index = dyn_cast<ConstantInt>(EE.getIndexOperand());
  if (!Index || !Index->isNullValue())
    return nullptr;

  const auto *BO = dyn_cast<BinaryOperator>(EE.getVectorOperand());
  if (!BO || BO->getOpcode() != Instruction::Add || !BO->hasOneUse())
    return nullptr;

  unsigned NumElems = cast<FixedVectorType>(BO->getType())->getNumElements();
  // Ensure the reduction size is a power of 2.
  if (!isPowerOf2_32(NumElems))
    return nullptr;

  const Value *Op = BO;
  unsigned Stages = Log2_32(NumElems);
  for (unsigned i = 0; i != Stages; ++i) {
    const auto *BO = dyn_cast<BinaryOperator>(Op);
    if (!BO || BO->getOpcode() != Instruction::Add)
      return nullptr;

    // If this isn't the first add, then it should only have 2 users, the
    // shuffle and another add which we checked in the previous iteration.
    if (i != 0 && !BO->hasNUses(2))
      return nullptr;

    Value *LHS = BO->getOperand(0);
    Value *RHS = BO->getOperand(1);

    auto *Shuffle = dyn_cast<ShuffleVectorInst>(LHS);
    if (Shuffle) {
      Op = RHS;
    } else {
      Shuffle = dyn_cast<ShuffleVectorInst>(RHS);
      Op = LHS;
    }

    // The first operand of the shuffle should be the same as the other operand
    // of the bin op.
    if (!Shuffle || Shuffle->getOperand(0) != Op)
      return nullptr;

    // Verify the shuffle has the expected (at this stage of the pyramid) mask.
    unsigned MaskEnd = 1 << i;
    for (unsigned Index = 0; Index < MaskEnd; ++Index)
      if (Shuffle->getMaskValue(Index) != (int)(MaskEnd + Index))
        return nullptr;
  }

  return const_cast<Value *>(Op);
}

// See if this BO is reachable from this Phi by walking forward through single
// use BinaryOperators with the same opcode. If we get back then we know we've
// found a loop and it is safe to step through this Add to find more leaves.
static bool isReachableFromPHI(PHINode *Phi, BinaryOperator *BO) {
  // The PHI itself should only have one use.
  if (!Phi->hasOneUse())
    return false;

  Instruction *U = cast<Instruction>(*Phi->user_begin());
  if (U == BO)
    return true;

  while (U->hasOneUse() && U->getOpcode() == BO->getOpcode())
    U = cast<Instruction>(*U->user_begin());

  return U == BO;
}

// Collect all the leaves of the tree of adds that feeds into the horizontal
// reduction. Root is the Value that is used by the horizontal reduction.
// We look through single use phis, single use adds, or adds that are used by
// a phi that forms a loop with the add.
static void collectLeaves(Value *Root, SmallVectorImpl<Instruction *> &Leaves) {
  SmallPtrSet<Value *, 8> Visited;
  SmallVector<Value *, 8> Worklist;
  Worklist.push_back(Root);

  while (!Worklist.empty()) {
    Value *V = Worklist.pop_back_val();
     if (!Visited.insert(V).second)
       continue;

    if (auto *PN = dyn_cast<PHINode>(V)) {
      // PHI node should have single use unless it is the root node, then it
      // has 2 uses.
      if (!PN->hasNUses(PN == Root ? 2 : 1))
        break;

      // Push incoming values to the worklist.
      for (Value *InV : PN->incoming_values())
        Worklist.push_back(InV);

      continue;
    }

    if (auto *BO = dyn_cast<BinaryOperator>(V)) {
      if (BO->getOpcode() == Instruction::Add) {
        // Simple case. Single use, just push its operands to the worklist.
        if (BO->hasNUses(BO == Root ? 2 : 1)) {
          for (Value *Op : BO->operands())
            Worklist.push_back(Op);
          continue;
        }

        // If there is additional use, make sure it is an unvisited phi that
        // gets us back to this node.
        if (BO->hasNUses(BO == Root ? 3 : 2)) {
          PHINode *PN = nullptr;
          for (auto *U : Root->users())
            if (auto *P = dyn_cast<PHINode>(U))
              if (!Visited.count(P))
                PN = P;

          // If we didn't find a 2-input PHI then this isn't a case we can
          // handle.
          if (!PN || PN->getNumIncomingValues() != 2)
            continue;

          // Walk forward from this phi to see if it reaches back to this add.
          if (!isReachableFromPHI(PN, BO))
            continue;

          // The phi forms a loop with this Add, push its operands.
          for (Value *Op : BO->operands())
            Worklist.push_back(Op);
        }
      }
    }

    // Not an add or phi, make it a leaf.
    if (auto *I = dyn_cast<Instruction>(V)) {
      if (!V->hasNUses(I == Root ? 2 : 1))
        continue;

      // Add this as a leaf.
      Leaves.push_back(I);
    }
  }
}

bool X86PartialReduction::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC)
    return false;

  auto &TM = TPC->getTM<X86TargetMachine>();
  ST = TM.getSubtargetImpl(F);

  DL = &F.getParent()->getDataLayout();

  bool MadeChange = false;
  for (auto &BB : F) {
    for (auto &I : BB) {
      auto *EE = dyn_cast<ExtractElementInst>(&I);
      if (!EE)
        continue;

      // First find a reduction tree.
      // FIXME: Do we need to handle other opcodes than Add?
      Value *Root = matchAddReduction(*EE);
      if (!Root)
        continue;

      SmallVector<Instruction *, 8> Leaves;
      collectLeaves(Root, Leaves);

      for (Instruction *I : Leaves) {
        if (tryMAddReplacement(I)) {
          MadeChange = true;
          continue;
        }

        // Don't do SAD matching on the root node. SelectionDAG already
        // has support for that and currently generates better code.
        if (I != Root && trySADReplacement(I))
          MadeChange = true;
      }
    }
  }

  return MadeChange;
}