X86InstrCompiler.td 97.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the various pseudo instructions used by the compiler,
// as well as Pat patterns used during instruction selection.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pattern Matching Support

def GetLo32XForm : SDNodeXForm<imm, [{
  // Transformation function: get the low 32 bits.
  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
}]>;


//===----------------------------------------------------------------------===//
// Random Pseudo Instructions.

// PIC base construction.  This expands to code that looks like this:
//     call  $next_inst
//     popl %destreg"
let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
    SchedRW = [WriteJump] in
  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
                      "", []>;

// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                           Requires<[NotLP64]>;
}
def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;


// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                           Requires<[IsLP64]>;
}
def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;

let SchedRW = [WriteSystem] in {

// x86-64 va_start lowering magic.
let usesCustomInserter = 1, Defs = [EFLAGS] in {
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
                              (outs),
                              (ins GR8:$al,
                                   i64imm:$regsavefi, i64imm:$offset,
                                   variable_ops),
                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
                              [(X86vastart_save_xmm_regs GR8:$al,
                                                         imm:$regsavefi,
                                                         imm:$offset),
                               (implicit EFLAGS)]>;

// The VAARG_64 pseudo-instruction takes the address of the va_list,
// and places the address of the next argument into a register.
let Defs = [EFLAGS] in
def VAARG_64 : I<0, Pseudo,
                 (outs GR64:$dst),
                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
                 [(set GR64:$dst,
                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
                  (implicit EFLAGS)]>;


// When using segmented stacks these are lowered into instructions which first
// check if the current stacklet has enough free memory. If it does, memory is
// allocated by bumping the stack pointer. Otherwise memory is allocated from
// the heap.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR32:$dst,
                         (X86SegAlloca GR32:$size))]>,
                    Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR64:$dst,
                         (X86SegAlloca GR64:$size))]>,
                    Requires<[In64BitMode]>;

// To protect against stack clash, dynamic allocation should perform a memory
// probe at each page.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def PROBED_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
                      "# variable sized alloca with probing",
                      [(set GR32:$dst,
                         (X86ProbedAlloca GR32:$size))]>,
                    Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def PROBED_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
                      "# variable sized alloca with probing",
                      [(set GR64:$dst,
                         (X86ProbedAlloca GR64:$size))]>,
                    Requires<[In64BitMode]>;
}

let hasNoSchedulingInfo = 1 in
def STACKALLOC_W_PROBING : I<0, Pseudo, (outs), (ins i64imm:$stacksize),
                             "# fixed size alloca with probing",
                             []>;

// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
// targets.  These calls are needed to probe the stack when allocating more than
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
// ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
                     "# dynamic stack allocation",
                     [(X86WinAlloca GR32:$size)]>,
                     Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
                     "# dynamic stack allocation",
                     [(X86WinAlloca GR64:$size)]>,
                     Requires<[In64BitMode]>;
} // SchedRW

// These instructions XOR the frame pointer into a GPR. They are used in some
// stack protection schemes. These are post-RA pseudos because we only know the
// frame register after register allocation.
let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
                  "xorl\t$$FP, $src", []>,
                  Requires<[NotLP64]>, Sched<[WriteALU]>;
  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
                  "xorq\t$$FP $src", []>,
                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
}

//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let SchedRW = [WriteSystem] in {
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
                    "ret\t#eh_return, addr: $addr",
                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;

}

let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
                     "ret\t#eh_return, addr: $addr",
                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;

}

let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;

  // CATCHRET needs a custom inserter for SEH.
  let usesCustomInserter = 1 in
    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
                     "# CATCHRET",
                     [(catchret bb:$dst, bb:$from)]>;
}

let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    usesCustomInserter = 1 in {
  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
                            "#EH_SJLJ_SETJMP32",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
                            "#EH_SJLJ_SETJMP64",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[In64BitMode]>;
  let isTerminator = 1 in {
  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
                            "#EH_SJLJ_LONGJMP32",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
                            "#EH_SJLJ_LONGJMP64",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[In64BitMode]>;
  }
}

let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
                        "#EH_SjLj_Setup\t$dst", []>;
}
} // SchedRW

//===----------------------------------------------------------------------===//
// Pseudo instructions used by unwind info.
//
let isPseudo = 1, SchedRW = [WriteSystem] in {
  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
                            "#SEH_PushReg $reg", []>;
  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
                            "#SEH_SaveReg $reg, $dst", []>;
  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
                            "#SEH_SaveXMM $reg, $dst", []>;
  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
                            "#SEH_StackAlloc $size", []>;
  def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
                            "#SEH_StackAlign $align", []>;
  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
                            "#SEH_SetFrame $reg, $offset", []>;
  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
                            "#SEH_PushFrame $mode", []>;
  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
                            "#SEH_EndPrologue", []>;
  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
                            "#SEH_Epilogue", []>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions used by segmented stacks.
//

// This is lowered into a RET instruction by MCInstLower.  We need
// this so that we don't have to have a MachineBasicBlock which ends
// with a RET and also has successors.
let isPseudo = 1, SchedRW = [WriteJumpLd] in {
def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;

// This instruction is lowered to a RET followed by a MOV.  The two
// instructions are not generated on a higher level since then the
// verifier sees a MachineBasicBlock ending with a non-terminator.
def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
}

//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//

// Alias instruction mapping movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
    isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;

// Other widths can also make use of the 32-bit xor, which may have a smaller
// encoding and avoid partial register updates.
let AddedComplexity = 10 in {
def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
}

let Predicates = [OptForSize, Not64BitMode],
    AddedComplexity = 10 in {
  let SchedRW = [WriteALU] in {
  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
  // which only require 3 bytes compared to MOV32ri which requires 5.
  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                        [(set GR32:$dst, 1)]>;
    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                        [(set GR32:$dst, -1)]>;
  }
  } // SchedRW

  // MOV16ri is 4 bytes, so the instructions above are smaller.
  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
}

let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
    SchedRW = [WriteALU] in {
// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
                       [(set GR32:$dst, i32immSExt8:$src)]>,
                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
                       [(set GR64:$dst, i64immSExt8:$src)]>,
                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
}

// Materialize i64 constant where top 32-bits are zero. This could theoretically
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
// that would make it more difficult to rematerialize.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
    isPseudo = 1, SchedRW = [WriteMove] in
def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "",
                  [(set GR64:$dst, i64immZExt32:$src)]>;

// This 64-bit pseudo-move can also be used for labels in the x86-64 small code
// model.
def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [X86Wrapper]>;
def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;

// Use sbb to materialize carry bit.
let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteADC],
    hasSideEffects = 0 in {
// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
// However, Pat<> can't replicate the destination reg into the inputs of the
// result.
def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", []>;
def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", []>;
} // isCodeGenOnly

//===----------------------------------------------------------------------===//
// String Pseudo Instructions
//
let SchedRW = [WriteMicrocoded] in {
let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
                    "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
                    [(X86rep_movs i8)]>, REP, AdSize32,
                   Requires<[NotLP64]>;
def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
                    [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
                   Requires<[NotLP64]>;
def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
                    [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
                   Requires<[NotLP64]>;
def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
                    [(X86rep_movs i64)]>, REP, AdSize32,
                   Requires<[NotLP64, In64BitMode]>;
}

let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
                    "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
                    [(X86rep_movs i8)]>, REP, AdSize64,
                   Requires<[IsLP64]>;
def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
                    [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
                   Requires<[IsLP64]>;
def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
                    [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
                   Requires<[IsLP64]>;
def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
                    [(X86rep_movs i64)]>, REP, AdSize64,
                   Requires<[IsLP64]>;
}

// FIXME: Should use "(X86rep_stos AL)" as the pattern.
let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
  let Uses = [AL,ECX,EDI] in
  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
                       "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
                      [(X86rep_stos i8)]>, REP, AdSize32,
                     Requires<[NotLP64]>;
  let Uses = [AX,ECX,EDI] in
  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
                      [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
                     Requires<[NotLP64]>;
  let Uses = [EAX,ECX,EDI] in
  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
                      [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
                     Requires<[NotLP64]>;
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
                        "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
                        [(X86rep_stos i64)]>, REP, AdSize32,
                        Requires<[NotLP64, In64BitMode]>;
}

let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
  let Uses = [AL,RCX,RDI] in
  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
                       "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
                       [(X86rep_stos i8)]>, REP, AdSize64,
                       Requires<[IsLP64]>;
  let Uses = [AX,RCX,RDI] in
  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
                       "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
                       [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
                       Requires<[IsLP64]>;
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
                       [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
                       Requires<[IsLP64]>;

  let Uses = [RAX,RCX,RDI] in
  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
                        "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
                        [(X86rep_stos i64)]>, REP, AdSize64,
                        Requires<[IsLP64]>;
}
} // SchedRW

//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//
let SchedRW = [WriteSystem] in {

// ELF TLS Support
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
    usesCustomInserter = 1, Uses = [ESP, SSP] in {
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_addr32",
                  [(X86tlsaddr tls32addr:$sym)]>,
                  Requires<[Not64BitMode]>;
def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_base_addr32",
                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
                  Requires<[Not64BitMode]>;
}

// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
    usesCustomInserter = 1, Uses = [RSP, SSP] in {
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_addr64",
                  [(X86tlsaddr tls64addr:$sym)]>,
                  Requires<[In64BitMode]>;
def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_base_addr64",
                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
                  Requires<[In64BitMode]>;
}

// Darwin TLS Support
// For i386, the address of the thunk is passed on the stack, on return the
// address of the variable is in %eax.  %ecx is trashed during the function
// call.  All other registers are preserved.
let Defs = [EAX, ECX, EFLAGS, DF],
    Uses = [ESP, SSP],
    usesCustomInserter = 1 in
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                "# TLSCall_32",
                [(X86TLSCall addr:$sym)]>,
                Requires<[Not64BitMode]>;

// For x86_64, the address of the thunk is passed in %rdi, but the
// pseudo directly use the symbol, so do not add an implicit use of
// %rdi. The lowering will do the right thing with RDI.
// On return the address of the variable is in %rax.  All other
// registers are preserved.
let Defs = [RAX, EFLAGS, DF],
    Uses = [RSP, SSP],
    usesCustomInserter = 1 in
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                  "# TLSCall_64",
                  [(X86TLSCall addr:$sym)]>,
                  Requires<[In64BitMode]>;
} // SchedRW

//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions

// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
// instruction selection into a branch sequence.
multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
  def CMOV#NAME  : I<0, Pseudo,
                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
                    "#CMOV_"#NAME#" PSEUDO!",
                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, timm:$cond,
                                                EFLAGS)))]>;
}

let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
  // however that requires promoting the operands, and can induce additional
  // i8 register pressure.
  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;

  let Predicates = [NoCMov] in {
    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
  } // Predicates = [NoCMov]

  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
  // SSE1/SSE2.
  let Predicates = [FPStackf32] in
    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;

  let Predicates = [FPStackf64] in
    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;

  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;

  let Predicates = [HasMMX] in
    defm _VR64   : CMOVrr_PSEUDO<VR64, x86mmx>;

  let Predicates = [HasSSE1,NoAVX512] in
    defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
  let Predicates = [HasSSE2,NoAVX512] in
    defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
  let Predicates = [HasAVX512] in {
    defm _FR32X  : CMOVrr_PSEUDO<FR32X, f32>;
    defm _FR64X  : CMOVrr_PSEUDO<FR64X, f64>;
  }
  let Predicates = [NoVLX] in {
    defm _VR128  : CMOVrr_PSEUDO<VR128, v2i64>;
    defm _VR256  : CMOVrr_PSEUDO<VR256, v4i64>;
  }
  let Predicates = [HasVLX] in {
    defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
    defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
  }
  defm _VR512  : CMOVrr_PSEUDO<VR512, v8i64>;
  defm _VK1    : CMOVrr_PSEUDO<VK1,  v1i1>;
  defm _VK2    : CMOVrr_PSEUDO<VK2,  v2i1>;
  defm _VK4    : CMOVrr_PSEUDO<VK4,  v4i1>;
  defm _VK8    : CMOVrr_PSEUDO<VK8,  v8i1>;
  defm _VK16   : CMOVrr_PSEUDO<VK16, v16i1>;
  defm _VK32   : CMOVrr_PSEUDO<VK32, v32i1>;
  defm _VK64   : CMOVrr_PSEUDO<VK64, v64i1>;
} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]

def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
          (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;

let Predicates = [NoVLX] in {
  def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;

  def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
}
let Predicates = [HasVLX] in {
  def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;

  def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
}

def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;

//===----------------------------------------------------------------------===//
// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
//===----------------------------------------------------------------------===//

// FIXME: Use normal instructions and add lock prefix dynamically.

// Memory barriers

let isCodeGenOnly = 1, Defs = [EFLAGS] in
def OR32mi8Locked  : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
                         "or{l}\t{$zero, $dst|$dst, $zero}", []>,
                         Requires<[Not64BitMode]>, OpSize32, LOCK,
                         Sched<[WriteALURMW]>;

let hasSideEffects = 1 in
def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
                     "#MEMBARRIER",
                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;

// RegOpc corresponds to the mr version of the instruction
// ImmOpc corresponds to the mi version of the instruction
// ImmOpc8 corresponds to the mi8 version of the instruction
// ImmMod corresponds to the instruction format of the mi and mi8 versions
multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
                           Format ImmMod, SDNode Op, string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    SchedRW = [WriteALURMW] in {

def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
                  !strconcat(mnemonic, "{b}\t",
                             "{$src2, $dst|$dst, $src2}"),
                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;

def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
                   !strconcat(mnemonic, "{w}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
                   OpSize16, LOCK;

def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
                   !strconcat(mnemonic, "{l}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
                   OpSize32, LOCK;

def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                    !strconcat(mnemonic, "{q}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;

// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
                      OpSize16, LOCK;

def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
                      OpSize32, LOCK;

def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
                       !strconcat(mnemonic, "{q}\t",
                                  "{$src2, $dst|$dst, $src2}"),
                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
                       LOCK;

def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
                    !strconcat(mnemonic, "{b}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;

def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
                      OpSize16, LOCK;

def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
                      OpSize32, LOCK;

def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
                          !strconcat(mnemonic, "{q}\t",
                                     "{$src2, $dst|$dst, $src2}"),
                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
                          LOCK;
}

}

defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;

def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs),
                               (X86lock_add node:$lhs, node:$rhs), [{
  return hasNoCarryFlagUses(SDValue(N, 0));
}]>;

def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs),
                               (X86lock_sub node:$lhs, node:$rhs), [{
  return hasNoCarryFlagUses(SDValue(N, 0));
}]>;

let Predicates = [UseIncDec] in {
  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
      SchedRW = [WriteALURMW]  in {
    def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
                        "inc{b}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
                        LOCK;
    def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
                        "inc{w}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
                        OpSize16, LOCK;
    def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
                        "inc{l}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
                        OpSize32, LOCK;
    def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
                         "inc{q}\t$dst",
                         [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
                         LOCK;

    def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
                        "dec{b}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
                        LOCK;
    def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
                        "dec{w}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
                        OpSize16, LOCK;
    def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
                        "dec{l}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
                        OpSize32, LOCK;
    def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
                         "dec{q}\t$dst",
                         [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
                         LOCK;
  }

  // Additional patterns for -1 constant.
  def : Pat<(X86lock_add addr:$dst, (i8  -1)), (LOCK_DEC8m  addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i8  -1)), (LOCK_INC8m  addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
}

// Atomic compare and swap.
multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
                         SDPatternOperator frag, X86MemOperand x86memop> {
let isCodeGenOnly = 1, usesCustomInserter = 1 in {
  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
               !strconcat(mnemonic, "\t$ptr"),
               [(frag addr:$ptr)]>, TB, LOCK;
}
}

multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
                          string mnemonic, SDPatternOperator frag> {
let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
  let Defs = [AL, EFLAGS], Uses = [AL] in
  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
  let Defs = [AX, EFLAGS], Uses = [AX] in
  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
  let Defs = [EAX, EFLAGS], Uses = [EAX] in
  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
  let Defs = [RAX, EFLAGS], Uses = [RAX] in
  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
}
}

let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
    Predicates = [HasCmpxchg8b], SchedRW = [WriteCMPXCHGRMW] in {
defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem>;
}

// This pseudo must be used when the frame uses RBX as
// the base pointer. Indeed, in such situation RBX is a reserved
// register and the register allocator will ignore any use/def of
// it. In other words, the register will not fix the clobbering of
// RBX that will happen when setting the arguments for the instrucion.
//
// Unlike the actual related instruction, we mark that this one
// defines EBX (instead of using EBX).
// The rationale is that we will define RBX during the expansion of
// the pseudo. The argument feeding EBX is ebx_input.
//
// The additional argument, $ebx_save, is a temporary register used to
// save the value of RBX across the actual instruction.
//
// To make sure the register assigned to $ebx_save does not interfere with
// the definition of the actual instruction, we use a definition $dst which
// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
// the instruction and we are sure we will have a valid register to restore
// the value of RBX.
let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
    Predicates = [HasCmpxchg8b], SchedRW = [WriteCMPXCHGRMW],
    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$ebx_save = $dst",
    usesCustomInserter = 1 in {
def LCMPXCHG8B_SAVE_EBX :
    I<0, Pseudo, (outs GR32:$dst),
      (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
      !strconcat("cmpxchg8b", "\t$ptr"),
      [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
                                        GR32:$ebx_save))]>;
}


let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
    Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW] in {
defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
                                 X86cas16, i128mem>, REX_W;
}

// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
    Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
    usesCustomInserter = 1 in {
def LCMPXCHG16B_SAVE_RBX :
    I<0, Pseudo, (outs GR64:$dst),
      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
      !strconcat("cmpxchg16b", "\t$ptr"),
      [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
                                                    GR64:$rbx_save))]>;
}

// This pseudo must be used when the frame uses RBX/EBX as
// the base pointer.
// cf comment for LCMPXCHG16B_SAVE_RBX.
let Defs = [EBX], Uses = [ECX, EAX],
    Predicates = [HasMWAITX], SchedRW = [WriteSystem],
    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst" in {
def MWAITX_SAVE_RBX :
    I<0, Pseudo, (outs GR64:$dst),
      (ins GR32:$ebx_input, GR64:$rbx_save),
      "mwaitx",
      []>;
}

// Pseudo mwaitx instruction to use for custom insertion.
let Predicates = [HasMWAITX], SchedRW = [WriteSystem],
    isCodeGenOnly = 1, isPseudo = 1,
    usesCustomInserter = 1 in {
def MWAITX :
    I<0, Pseudo, (outs), (ins GR32:$ecx, GR32:$eax, GR32:$ebx),
      "mwaitx",
      [(int_x86_mwaitx GR32:$ecx, GR32:$eax, GR32:$ebx)]>;
}


defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;

// Atomic exchange and add
multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
                             string frag> {
  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
      SchedRW = [WriteALURMW] in {
    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
                    (ins GR8:$val, i8mem:$ptr),
                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
                    [(set GR8:$dst,
                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
                    (ins GR16:$val, i16mem:$ptr),
                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR16:$dst,
                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
                    OpSize16;
    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
                    (ins GR32:$val, i32mem:$ptr),
                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR32:$dst,
                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>, 
                    OpSize32;
    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
                     (ins GR64:$val, i64mem:$ptr),
                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
                     [(set
                        GR64:$dst,
                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
  }
}

defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;

/* The following multiclass tries to make sure that in code like
 *    x.store (immediate op x.load(acquire), release)
 * and
 *    x.store (register op x.load(acquire), release)
 * an operation directly on memory is generated instead of wasting a register.
 * It is not automatic as atomic_store/load are only lowered to MOV instructions
 * extremely late to prevent them from being accidentally reordered in the backend
 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
 */
multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
  def : Pat<(atomic_store_8 addr:$dst,
             (op (atomic_load_8 addr:$dst), (i8 imm:$src))),
            (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_16 addr:$dst,
             (op (atomic_load_16 addr:$dst), (i16 imm:$src))),
            (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_32 addr:$dst,
             (op (atomic_load_32 addr:$dst), (i32 imm:$src))),
            (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_64 addr:$dst,
             (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))),
            (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;

  def : Pat<(atomic_store_8 addr:$dst,
             (op (atomic_load_8 addr:$dst), (i8 GR8:$src))),
            (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
  def : Pat<(atomic_store_16 addr:$dst,
             (op (atomic_load_16 addr:$dst), (i16 GR16:$src))),
            (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
  def : Pat<(atomic_store_32 addr:$dst,
             (op (atomic_load_32 addr:$dst), (i32 GR32:$src))),
            (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
  def : Pat<(atomic_store_64 addr:$dst,
             (op (atomic_load_64 addr:$dst), (i64 GR64:$src))),
            (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
}
defm : RELEASE_BINOP_MI<"ADD", add>;
defm : RELEASE_BINOP_MI<"AND", and>;
defm : RELEASE_BINOP_MI<"OR",  or>;
defm : RELEASE_BINOP_MI<"XOR", xor>;
defm : RELEASE_BINOP_MI<"SUB", sub>;

// Atomic load + floating point patterns.
// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> {
  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
            (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>,
            Requires<[UseSSE1]>;
  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>,
            Requires<[UseAVX]>;
  def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>,
            Requires<[HasAVX512]>;

  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
            (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>,
            Requires<[UseSSE1]>;
  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>,
            Requires<[UseAVX]>;
  def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>,
            Requires<[HasAVX512]>;
}
defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>;
// FIXME: Add fsub, fmul, fdiv, ...

multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
                        dag dag64> {
  def : Pat<(atomic_store_8 addr:$dst, dag8),
            (!cast<Instruction>(Name#8m) addr:$dst)>;
  def : Pat<(atomic_store_16 addr:$dst, dag16),
            (!cast<Instruction>(Name#16m) addr:$dst)>;
  def : Pat<(atomic_store_32 addr:$dst, dag32),
            (!cast<Instruction>(Name#32m) addr:$dst)>;
  def : Pat<(atomic_store_64 addr:$dst, dag64),
            (!cast<Instruction>(Name#64m) addr:$dst)>;
}

let Predicates = [UseIncDec] in {
  defm : RELEASE_UNOP<"INC",
      (add (atomic_load_8  addr:$dst), (i8 1)),
      (add (atomic_load_16 addr:$dst), (i16 1)),
      (add (atomic_load_32 addr:$dst), (i32 1)),
      (add (atomic_load_64 addr:$dst), (i64 1))>;
  defm : RELEASE_UNOP<"DEC",
      (add (atomic_load_8  addr:$dst), (i8 -1)),
      (add (atomic_load_16 addr:$dst), (i16 -1)),
      (add (atomic_load_32 addr:$dst), (i32 -1)),
      (add (atomic_load_64 addr:$dst), (i64 -1))>;
}

defm : RELEASE_UNOP<"NEG",
    (ineg (i8 (atomic_load_8  addr:$dst))),
    (ineg (i16 (atomic_load_16 addr:$dst))),
    (ineg (i32 (atomic_load_32 addr:$dst))),
    (ineg (i64 (atomic_load_64 addr:$dst)))>;
defm : RELEASE_UNOP<"NOT",
    (not (i8 (atomic_load_8  addr:$dst))),
    (not (i16 (atomic_load_16 addr:$dst))),
    (not (i32 (atomic_load_32 addr:$dst))),
    (not (i64 (atomic_load_64 addr:$dst)))>;

def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)),
          (MOV8mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)),
          (MOV16mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)),
          (MOV32mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)),
          (MOV64mi32 addr:$dst, i64immSExt32:$src)>;

def : Pat<(atomic_store_8 addr:$dst, GR8:$src),
          (MOV8mr addr:$dst, GR8:$src)>;
def : Pat<(atomic_store_16 addr:$dst, GR16:$src),
          (MOV16mr addr:$dst, GR16:$src)>;
def : Pat<(atomic_store_32 addr:$dst, GR32:$src),
          (MOV32mr addr:$dst, GR32:$src)>;
def : Pat<(atomic_store_64 addr:$dst, GR64:$src),
          (MOV64mr addr:$dst, GR64:$src)>;

def : Pat<(i8  (atomic_load_8 addr:$src)),  (MOV8rm addr:$src)>;
def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;

// Floating point loads/stores.
def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
          (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>;
def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
          (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>;
def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
          (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>;

def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
          (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>;
def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>;
def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>;

def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
          (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>;
def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
          (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>;
def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
          (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>;

def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
          (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>;
def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
          (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>;
def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
          (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>;

//===----------------------------------------------------------------------===//
// DAG Pattern Matching Rules
//===----------------------------------------------------------------------===//

// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
// binary size compared to a regular MOV, but it introduces an unnecessary
// load, so is not suitable for regular or optsize functions.
let Predicates = [OptForMinSize] in {
def : Pat<(simple_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
def : Pat<(simple_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
def : Pat<(simple_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
def : Pat<(simple_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
def : Pat<(simple_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
def : Pat<(simple_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
}

// In kernel code model, we can get the address of a label
// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
// the MOV64ri32 should accept these.
def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper mcsym:$dst)),
          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;

// If we have small model and -static mode, it is safe to store global addresses
// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
// for MOV64mi32 should handle this sort of thing.
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tconstpool:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tjumptable:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, texternalsym:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, mcsym:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
          Requires<[NearData, IsNotPIC]>;

def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;

// Calls

// tls has some funny stuff here...
// This corresponds to movabs $foo@tpoff, %rax
def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
          (MOV64ri32 tglobaltlsaddr :$dst)>;
// This corresponds to add $foo@tpoff, %rax
def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;


// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
          (CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
          (CALL64pcrel32 texternalsym:$dst)>;

// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
// can never use callee-saved registers. That is the purpose of the GR64_TC
// register classes.
//
// The only volatile register that is never used by the calling convention is
// %r11. This happens when calling a vararg function with 6 arguments.
//
// Match an X86tcret that uses less than 7 volatile registers.
def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
                             (X86tcret node:$ptr, node:$off), [{
  // X86tcret args: (*chain, ptr, imm, regs..., glue)
  unsigned NumRegs = 0;
  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
      return false;
  return true;
}]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[Not64BitMode, NotUseIndirectThunkCalls]>;

// FIXME: This is disabled for 32-bit PIC mode because the global base
// register which is part of the address mode may be assigned a
// callee-saved register.
def : Pat<(X86tcret (load addr:$dst), imm:$off),
          (TCRETURNmi addr:$dst, imm:$off)>,
          Requires<[Not64BitMode, IsNotPIC, NotUseIndirectThunkCalls]>;

def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
          (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
          Requires<[NotLP64]>;

def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
          (TCRETURNdi texternalsym:$dst, imm:$off)>,
          Requires<[NotLP64]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;

// Don't fold loads into X86tcret requiring more than 6 regs.
// There wouldn't be enough scratch registers for base+index.
def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
          (TCRETURNmi64 addr:$dst, imm:$off)>,
          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (INDIRECT_THUNK_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[In64BitMode, UseIndirectThunkCalls]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (INDIRECT_THUNK_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[Not64BitMode, UseIndirectThunkCalls]>;

def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
          Requires<[IsLP64]>;

def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
          Requires<[IsLP64]>;

// Normal calls, with various flavors of addresses.
def : Pat<(X86call (i32 tglobaladdr:$dst)),
          (CALLpcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i32 texternalsym:$dst)),
          (CALLpcrel32 texternalsym:$dst)>;
def : Pat<(X86call (i32 imm:$dst)),
          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;

// Comparisons.

// TEST R,R is smaller than CMP R,0
def : Pat<(X86cmp GR8:$src1, 0),
          (TEST8rr GR8:$src1, GR8:$src1)>;
def : Pat<(X86cmp GR16:$src1, 0),
          (TEST16rr GR16:$src1, GR16:$src1)>;
def : Pat<(X86cmp GR32:$src1, 0),
          (TEST32rr GR32:$src1, GR32:$src1)>;
def : Pat<(X86cmp GR64:$src1, 0),
          (TEST64rr GR64:$src1, GR64:$src1)>;

// zextload bool -> zextload byte
// i1 stored in one byte in zero-extended form.
// Upper bits cleanup should be executed before Store.
def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
def : Pat<(zextloadi16i1 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(zextloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;

// extload bool -> extload byte
// When extloading from 16-bit and smaller memory locations into 64-bit
// registers, use zero-extending loads so that the entire 64-bit register is
// defined, avoiding partial-register updates.

def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
def : Pat<(extloadi16i1 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;

// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
// NOTE: The extloadi64i32 pattern needs to be first as it will try to form
// 32-bit loads for 4 byte aligned i8/i16 loads.
def : Pat<(extloadi64i32 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
def : Pat<(extloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i8 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i16 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;

// anyext. Define these to do an explicit zero-extend to
// avoid partial-register updates.
def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;

// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
def : Pat<(i32 (anyext GR16:$src)),
          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;

def : Pat<(i64 (anyext GR8 :$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR16:$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;

// If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX
// instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move
// %ah to the lower byte of a register. By using a MOVSX here we allow a
// post-isel peephole to merge the two MOVSX instructions into one.
def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{
  return (N->getOperand(0).getOpcode() == ISD::SDIVREM &&
          N->getOperand(0).getResNo() == 1);
}]>;
def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;

// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. Any other 32-bit operation will zero-extend
// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper
// 32 bits, they're probably just qualifying a CopyFromReg.
def def32 : PatLeaf<(i32 GR32:$src), [{
  return N->getOpcode() != ISD::TRUNCATE &&
         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
         N->getOpcode() != ISD::CopyFromReg &&
         N->getOpcode() != ISD::AssertSext &&
         N->getOpcode() != ISD::AssertZext;
}]>;

// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)),
          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)),
          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;

//===----------------------------------------------------------------------===//
// Pattern match OR as ADD
//===----------------------------------------------------------------------===//

// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
// 3-addressified into an LEA instruction to avoid copies.  However, we also
// want to finally emit these instructions as an or at the end of the code
// generator to make the generated code easier to read.  To do this, we select
// into "disjoint bits" pseudo ops.

// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());

  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
  return (~Known0.Zero & ~Known1.Zero) == 0;
}]>;


// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
// Try this before the selecting to OR.
let SchedRW = [WriteALU] in {

let isConvertibleToThreeAddress = 1, isPseudo = 1,
    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
let isCommutable = 1 in {
def ADD8rr_DB   : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
                    "", // orb/addb REG, REG
                    [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>;
def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
                    "", // orw/addw REG, REG
                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
                    "", // orl/addl REG, REG
                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "", // orq/addq REG, REG
                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
} // isCommutable

// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.

def ADD8ri_DB :   I<0, Pseudo,
                    (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
                    "", // orb/addb REG, imm8
                    [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>;
def ADD16ri8_DB : I<0, Pseudo,
                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
                    "", // orw/addw REG, imm8
                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
                    "", // orw/addw REG, imm
                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;

def ADD32ri8_DB : I<0, Pseudo,
                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
                    "", // orl/addl REG, imm8
                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
                    "", // orl/addl REG, imm
                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;


def ADD64ri8_DB : I<0, Pseudo,
                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "", // orq/addq REG, imm8
                    [(set GR64:$dst, (or_is_add GR64:$src1,
                                                i64immSExt8:$src2))]>;
def ADD64ri32_DB : I<0, Pseudo,
                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                     "", // orq/addq REG, imm
                     [(set GR64:$dst, (or_is_add GR64:$src1,
                                                 i64immSExt32:$src2))]>;
}
} // AddedComplexity, SchedRW

//===----------------------------------------------------------------------===//
// Pattern match SUB as XOR
//===----------------------------------------------------------------------===//

// An immediate in the LHS of a subtract can't be encoded in the instruction.
// If there is no possibility of a borrow we can use an XOR instead of a SUB
// to enable the immediate to be folded.
// TODO: Move this to a DAG combine?

def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
    KnownBits Known = CurDAG->computeKnownBits(N->getOperand(1));

    // If all possible ones in the RHS are set in the LHS then there can't be
    // a borrow and we can use xor.
    return (~Known.Zero).isSubsetOf(CN->getAPIntValue());
  }

  return false;
}]>;

let AddedComplexity = 5 in {
def : Pat<(sub_is_xor imm:$src2, GR8:$src1),
          (XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1),
          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub_is_xor imm:$src2, GR16:$src1),
          (XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1),
          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(sub_is_xor imm:$src2, GR32:$src1),
          (XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1),
          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1),
          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
}

//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//

// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR16:$src1, 128),
          (SUB16ri8 GR16:$src1, -128)>;
def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
          (SUB16mi8 addr:$dst, -128)>;

def : Pat<(add GR32:$src1, 128),
          (SUB32ri8 GR32:$src1, -128)>;
def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
          (SUB32mi8 addr:$dst, -128)>;

def : Pat<(add GR64:$src1, 128),
          (SUB64ri8 GR64:$src1, -128)>;
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
          (SUB64mi8 addr:$dst, -128)>;

def : Pat<(X86add_flag_nocf GR16:$src1, 128),
          (SUB16ri8 GR16:$src1, -128)>;
def : Pat<(X86add_flag_nocf GR32:$src1, 128),
          (SUB32ri8 GR32:$src1, -128)>;
def : Pat<(X86add_flag_nocf GR64:$src1, 128),
          (SUB64ri8 GR64:$src1, -128)>;

// The same trick applies for 32-bit immediate fields in 64-bit
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;

def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;

// To avoid needing to materialize an immediate in a register, use a 32-bit and
// with implicit zero-extension instead of a 64-bit and if the immediate has at
// least 32 bits of leading zeros. If in addition the last 32 bits can be
// represented with a sign extension of a 8 bit constant, use that.
// This can also reduce instruction size by eliminating the need for the REX
// prefix.

// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
let AddedComplexity = 1 in {
def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri8
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo32XForm imm:$imm))),
            sub_32bit)>;

def : Pat<(and GR64:$src, i64immZExt32:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo32XForm imm:$imm))),
            sub_32bit)>;
} // AddedComplexity = 1


// AddedComplexity is needed due to the increased complexity on the
// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
// the MOVZX patterns keeps thems together in DAGIsel tables.
let AddedComplexity = 1 in {
// r & (2^16-1) ==> movz
def : Pat<(and GR32:$src1, 0xffff),
          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
             sub_16bit)>;

// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
          (SUBREG_TO_REG (i64 0),
                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
                         sub_32bit)>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
          (SUBREG_TO_REG (i64 0),
                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
                      sub_32bit)>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
          (SUBREG_TO_REG (i64 0),
                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
                         sub_32bit)>;
} // AddedComplexity = 1


// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.

def BTRXForm : SDNodeXForm<imm, [{
  // Transformation function: Find the lowest 0.
  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
}]>;

def BTCBTSXForm : SDNodeXForm<imm, [{
  // Transformation function: Find the lowest 1.
  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
}]>;

def BTRMask64 : ImmLeaf<i64, [{
  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
}]>;

def BTCBTSMask64 : ImmLeaf<i64, [{
  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
}]>;

// For now only do this for optsize.
let AddedComplexity = 1, Predicates=[OptForSize] in {
  def : Pat<(and GR64:$src1, BTRMask64:$mask),
            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
}


// sext_inreg patterns
def : Pat<(sext_inreg GR32:$src, i16),
          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;

def : Pat<(sext_inreg GR16:$src, i8),
           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
             sub_16bit)>;

def : Pat<(sext_inreg GR64:$src, i32),
          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
def : Pat<(sext_inreg GR64:$src, i16),
          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
def : Pat<(sext_inreg GR64:$src, i8),
          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;

// sext, sext_load, zext, zext_load
def: Pat<(i16 (sext GR8:$src)),
          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(sextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
def: Pat<(i16 (zext GR8:$src)),
          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(zextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;

// trunc patterns
def : Pat<(i16 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
def : Pat<(i16 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
      Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
      Requires<[In64BitMode]>;

def immff00_ffff  : ImmLeaf<i32, [{
  return Imm >= 0xff00 && Imm <= 0xffff;
}]>;

// h-register tricks
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
          (EXTRACT_SUBREG
            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_16bit)>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;

// h-register tricks.
// For now, be conservative on x86-64 and use an h-register extract only if the
// value is immediately zero-extended or stored, which are somewhat common
// cases. This uses a bunch of code to prevent a register requiring a REX prefix
// from being allocated in the same instruction as the h register, as there's
// currently no way to describe this requirement to the register allocator.

// h-register extract and zero-extend.
def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_32bit)>;

// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
      Requires<[In64BitMode]>;

// Special pattern to catch the last step of __builtin_parity handling. Our
// goal is to use an xor of an h-register with the corresponding l-register.
// The above patterns would handle this on non 64-bit targets, but for 64-bit
// we need to be more careful. We're using a NOREX instruction here in case
// register allocation fails to keep the two registers together. So we need to
// make sure we can't accidentally mix R8-R15 with an h-register.
def : Pat<(X86xor_flag (i8 (trunc GR32:$src)),
                       (i8 (trunc (srl_su GR32:$src, (i8 8))))),
          (XOR8rr_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit),
                        (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;

// (shl x, 1) ==> (add x, x)
// Note that if x is undef (immediate or otherwise), we could theoretically
// end up with the two uses of x getting different values, producing a result
// where the least significant bit is not 0. However, the probability of this
// happening is considered low enough that this is officially not a
// "real problem".
def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;

def shiftMask8 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 3);
}]>;

def shiftMask16 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 4);
}]>;

def shiftMask32 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 5);
}]>;

def shiftMask64 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 6);
}]>;


// Shift amount is implicitly masked.
multiclass MaskedShiftAmountPats<SDNode frag, string name> {
  // (shift x (and y, 31)) ==> (shift x, y)
  def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
  def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst),
            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst),
            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
            (!cast<Instruction>(name # "32mCL") addr:$dst)>;

  // (shift x (and y, 63)) ==> (shift x, y)
  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
}

defm : MaskedShiftAmountPats<shl, "SHL">;
defm : MaskedShiftAmountPats<srl, "SHR">;
defm : MaskedShiftAmountPats<sra, "SAR">;

// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
// because over-rotating produces the same result. This is noted in the Intel
// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
// amount could affect EFLAGS results, but that does not matter because we are
// not tracking flags for these nodes.
multiclass MaskedRotateAmountPats<SDNode frag, string name> {
  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
  def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
  (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
  def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
  (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
  (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst),
  (!cast<Instruction>(name # "8mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst),
  (!cast<Instruction>(name # "16mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
  (!cast<Instruction>(name # "32mCL") addr:$dst)>;

  // (rot x (and y, 63)) ==> (rot x, y)
  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
  (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
  (!cast<Instruction>(name # "64mCL") addr:$dst)>;
}


defm : MaskedRotateAmountPats<rotl, "ROL">;
defm : MaskedRotateAmountPats<rotr, "ROR">;

// Double "funnel" shift amount is implicitly masked.
// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) (NOTE: modulo32)
def : Pat<(X86fshl GR16:$src1, GR16:$src2, (shiftMask32 CL)),
          (SHLD16rrCL GR16:$src1, GR16:$src2)>;
def : Pat<(X86fshr GR16:$src2, GR16:$src1, (shiftMask32 CL)),
          (SHRD16rrCL GR16:$src1, GR16:$src2)>;

// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y)
def : Pat<(fshl GR32:$src1, GR32:$src2, (shiftMask32 CL)),
          (SHLD32rrCL GR32:$src1, GR32:$src2)>;
def : Pat<(fshr GR32:$src2, GR32:$src1, (shiftMask32 CL)),
          (SHRD32rrCL GR32:$src1, GR32:$src2)>;

// (fshl/fshr x (and y, 63)) ==> (fshl/fshr x, y)
def : Pat<(fshl GR64:$src1, GR64:$src2, (shiftMask64 CL)),
          (SHLD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(fshr GR64:$src2, GR64:$src1, (shiftMask64 CL)),
          (SHRD64rrCL GR64:$src1, GR64:$src2)>;

let Predicates = [HasBMI2] in {
  let AddedComplexity = 1 in {
    def : Pat<(sra GR32:$src1, (shiftMask32 GR8:$src2)),
              (SARX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(sra GR64:$src1, (shiftMask64 GR8:$src2)),
              (SARX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

    def : Pat<(srl GR32:$src1, (shiftMask32 GR8:$src2)),
              (SHRX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(srl GR64:$src1, (shiftMask64 GR8:$src2)),
              (SHRX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

    def : Pat<(shl GR32:$src1, (shiftMask32 GR8:$src2)),
              (SHLX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(shl GR64:$src1, (shiftMask64 GR8:$src2)),
              (SHLX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  }

  def : Pat<(sra (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
            (SARX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(sra (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
            (SARX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  def : Pat<(srl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
            (SHRX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(srl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
            (SHRX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  def : Pat<(shl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
            (SHLX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(shl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
            (SHLX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}

// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
                            Instruction BTS, Instruction BTC,
                            PatFrag ShiftMask> {
  def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
            (BTR RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
            (BTS RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
            (BTC RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  // Similar to above, but removing unneeded masking of the shift amount.
  def : Pat<(and RC:$src1, (rotl -2, (ShiftMask GR8:$src2))),
            (BTR RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(or RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
            (BTS RC:$src1,
                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(xor RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
            (BTC RC:$src1,
                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}

defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>;
defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>;
defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>;

//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//

// add reg, reg
def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;

// add reg, mem
def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
          (ADD8rm GR8:$src1, addr:$src2)>;
def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
          (ADD16rm GR16:$src1, addr:$src2)>;
def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
          (ADD32rm GR32:$src1, addr:$src2)>;
def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
          (ADD64rm GR64:$src1, addr:$src2)>;

// add reg, imm
def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(add GR16:$src1, i16immSExt8:$src2),
          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(add GR32:$src1, i32immSExt8:$src2),
          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt8:$src2),
          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt32:$src2),
          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;

// sub reg, reg
def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;

// sub reg, mem
def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
          (SUB8rm GR8:$src1, addr:$src2)>;
def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
          (SUB16rm GR16:$src1, addr:$src2)>;
def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
          (SUB32rm GR32:$src1, addr:$src2)>;
def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
          (SUB64rm GR64:$src1, addr:$src2)>;

// sub reg, imm
def : Pat<(sub GR8:$src1, imm:$src2),
          (SUB8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, imm:$src2),
          (SUB16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub GR32:$src1, imm:$src2),
          (SUB32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;

// sub 0, reg
def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;

// mul reg, reg
def : Pat<(mul GR16:$src1, GR16:$src2),
          (IMUL16rr GR16:$src1, GR16:$src2)>;
def : Pat<(mul GR32:$src1, GR32:$src2),
          (IMUL32rr GR32:$src1, GR32:$src2)>;
def : Pat<(mul GR64:$src1, GR64:$src2),
          (IMUL64rr GR64:$src1, GR64:$src2)>;

// mul reg, mem
def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
          (IMUL16rm GR16:$src1, addr:$src2)>;
def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
          (IMUL32rm GR32:$src1, addr:$src2)>;
def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
          (IMUL64rm GR64:$src1, addr:$src2)>;

// mul reg, imm
def : Pat<(mul GR16:$src1, imm:$src2),
          (IMUL16rri GR16:$src1, imm:$src2)>;
def : Pat<(mul GR32:$src1, imm:$src2),
          (IMUL32rri GR32:$src1, imm:$src2)>;
def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;

// reg = mul mem, imm
def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
          (IMUL16rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
          (IMUL32rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;

// Increment/Decrement reg.
// Do not make INC/DEC if it is slow
let Predicates = [UseIncDec] in {
  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;

  def : Pat<(X86add_flag_nocf GR8:$src, -1),  (DEC8r GR8:$src)>;
  def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>;
  def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>;
  def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>;
  def : Pat<(X86sub_flag_nocf GR8:$src, -1),  (INC8r GR8:$src)>;
  def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>;
  def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>;
  def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>;
}

// or reg/reg.
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;

// or reg/mem
def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
          (OR8rm GR8:$src1, addr:$src2)>;
def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
          (OR16rm GR16:$src1, addr:$src2)>;
def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
          (OR32rm GR32:$src1, addr:$src2)>;
def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
          (OR64rm GR64:$src1, addr:$src2)>;

// or reg/imm
def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, i16immSExt8:$src2),
          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(or GR32:$src1, i32immSExt8:$src2),
          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt8:$src2),
          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt32:$src2),
          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// xor reg/reg
def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;

// xor reg/mem
def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
          (XOR8rm GR8:$src1, addr:$src2)>;
def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
          (XOR16rm GR16:$src1, addr:$src2)>;
def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
          (XOR32rm GR32:$src1, addr:$src2)>;
def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
          (XOR64rm GR64:$src1, addr:$src2)>;

// xor reg/imm
def : Pat<(xor GR8:$src1, imm:$src2),
          (XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, imm:$src2),
          (XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(xor GR32:$src1, imm:$src2),
          (XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// and reg/reg
def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;

// and reg/mem
def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
          (AND8rm GR8:$src1, addr:$src2)>;
def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
          (AND16rm GR16:$src1, addr:$src2)>;
def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
          (AND32rm GR32:$src1, addr:$src2)>;
def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
          (AND64rm GR64:$src1, addr:$src2)>;

// and reg/imm
def : Pat<(and GR8:$src1, imm:$src2),
          (AND8ri GR8:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, imm:$src2),
          (AND16ri GR16:$src1, imm:$src2)>;
def : Pat<(and GR32:$src1, imm:$src2),
          (AND32ri GR32:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, i16immSExt8:$src2),
          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(and GR32:$src1, i32immSExt8:$src2),
          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt8:$src2),
          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt32:$src2),
          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;

// Bit scan instruction patterns to match explicit zero-undef behavior.
def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;

// When HasMOVBE is enabled it is possible to get a non-legalized
// register-register 16 bit bswap. This maps it to a ROL instruction.
let Predicates = [HasMOVBE] in {
 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
}