X86InstCombineIntrinsic.cpp 73 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
//===-- X86InstCombineIntrinsic.cpp - X86 specific InstCombine pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// X86 target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#include "X86TargetTransformInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"

using namespace llvm;

#define DEBUG_TYPE "x86tti"

/// Return a constant boolean vector that has true elements in all positions
/// where the input constant data vector has an element with the sign bit set.
static Constant *getNegativeIsTrueBoolVec(Constant *V) {
  VectorType *IntTy = VectorType::getInteger(cast<VectorType>(V->getType()));
  V = ConstantExpr::getBitCast(V, IntTy);
  V = ConstantExpr::getICmp(CmpInst::ICMP_SGT, Constant::getNullValue(IntTy),
                            V);
  return V;
}

/// Convert the x86 XMM integer vector mask to a vector of bools based on
/// each element's most significant bit (the sign bit).
static Value *getBoolVecFromMask(Value *Mask) {
  // Fold Constant Mask.
  if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask))
    return getNegativeIsTrueBoolVec(ConstantMask);

  // Mask was extended from a boolean vector.
  Value *ExtMask;
  if (PatternMatch::match(
          Mask, PatternMatch::m_SExt(PatternMatch::m_Value(ExtMask))) &&
      ExtMask->getType()->isIntOrIntVectorTy(1))
    return ExtMask;

  return nullptr;
}

// TODO: If the x86 backend knew how to convert a bool vector mask back to an
// XMM register mask efficiently, we could transform all x86 masked intrinsics
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
  Value *Ptr = II.getOperand(0);
  Value *Mask = II.getOperand(1);
  Constant *ZeroVec = Constant::getNullValue(II.getType());

  // Zero Mask - masked load instruction creates a zero vector.
  if (isa<ConstantAggregateZero>(Mask))
    return IC.replaceInstUsesWith(II, ZeroVec);

  // The mask is constant or extended from a bool vector. Convert this x86
  // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
  if (Value *BoolMask = getBoolVecFromMask(Mask)) {
    // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
    // the LLVM intrinsic definition for the pointer argument.
    unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
    PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
    Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");

    // The pass-through vector for an x86 masked load is a zero vector.
    CallInst *NewMaskedLoad =
        IC.Builder.CreateMaskedLoad(PtrCast, Align(1), BoolMask, ZeroVec);
    return IC.replaceInstUsesWith(II, NewMaskedLoad);
  }

  return nullptr;
}

// TODO: If the x86 backend knew how to convert a bool vector mask back to an
// XMM register mask efficiently, we could transform all x86 masked intrinsics
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
  Value *Ptr = II.getOperand(0);
  Value *Mask = II.getOperand(1);
  Value *Vec = II.getOperand(2);

  // Zero Mask - this masked store instruction does nothing.
  if (isa<ConstantAggregateZero>(Mask)) {
    IC.eraseInstFromFunction(II);
    return true;
  }

  // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
  // anything else at this level.
  if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
    return false;

  // The mask is constant or extended from a bool vector. Convert this x86
  // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
  if (Value *BoolMask = getBoolVecFromMask(Mask)) {
    unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
    PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
    Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");

    IC.Builder.CreateMaskedStore(Vec, PtrCast, Align(1), BoolMask);

    // 'Replace uses' doesn't work for stores. Erase the original masked store.
    IC.eraseInstFromFunction(II);
    return true;
  }

  return false;
}

static Value *simplifyX86immShift(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  bool LogicalShift = false;
  bool ShiftLeft = false;
  bool IsImm = false;

  switch (II.getIntrinsicID()) {
  default:
    llvm_unreachable("Unexpected intrinsic!");
  case Intrinsic::x86_sse2_psrai_d:
  case Intrinsic::x86_sse2_psrai_w:
  case Intrinsic::x86_avx2_psrai_d:
  case Intrinsic::x86_avx2_psrai_w:
  case Intrinsic::x86_avx512_psrai_q_128:
  case Intrinsic::x86_avx512_psrai_q_256:
  case Intrinsic::x86_avx512_psrai_d_512:
  case Intrinsic::x86_avx512_psrai_q_512:
  case Intrinsic::x86_avx512_psrai_w_512:
    IsImm = true;
    LLVM_FALLTHROUGH;
  case Intrinsic::x86_sse2_psra_d:
  case Intrinsic::x86_sse2_psra_w:
  case Intrinsic::x86_avx2_psra_d:
  case Intrinsic::x86_avx2_psra_w:
  case Intrinsic::x86_avx512_psra_q_128:
  case Intrinsic::x86_avx512_psra_q_256:
  case Intrinsic::x86_avx512_psra_d_512:
  case Intrinsic::x86_avx512_psra_q_512:
  case Intrinsic::x86_avx512_psra_w_512:
    LogicalShift = false;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_sse2_psrli_d:
  case Intrinsic::x86_sse2_psrli_q:
  case Intrinsic::x86_sse2_psrli_w:
  case Intrinsic::x86_avx2_psrli_d:
  case Intrinsic::x86_avx2_psrli_q:
  case Intrinsic::x86_avx2_psrli_w:
  case Intrinsic::x86_avx512_psrli_d_512:
  case Intrinsic::x86_avx512_psrli_q_512:
  case Intrinsic::x86_avx512_psrli_w_512:
    IsImm = true;
    LLVM_FALLTHROUGH;
  case Intrinsic::x86_sse2_psrl_d:
  case Intrinsic::x86_sse2_psrl_q:
  case Intrinsic::x86_sse2_psrl_w:
  case Intrinsic::x86_avx2_psrl_d:
  case Intrinsic::x86_avx2_psrl_q:
  case Intrinsic::x86_avx2_psrl_w:
  case Intrinsic::x86_avx512_psrl_d_512:
  case Intrinsic::x86_avx512_psrl_q_512:
  case Intrinsic::x86_avx512_psrl_w_512:
    LogicalShift = true;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_sse2_pslli_d:
  case Intrinsic::x86_sse2_pslli_q:
  case Intrinsic::x86_sse2_pslli_w:
  case Intrinsic::x86_avx2_pslli_d:
  case Intrinsic::x86_avx2_pslli_q:
  case Intrinsic::x86_avx2_pslli_w:
  case Intrinsic::x86_avx512_pslli_d_512:
  case Intrinsic::x86_avx512_pslli_q_512:
  case Intrinsic::x86_avx512_pslli_w_512:
    IsImm = true;
    LLVM_FALLTHROUGH;
  case Intrinsic::x86_sse2_psll_d:
  case Intrinsic::x86_sse2_psll_q:
  case Intrinsic::x86_sse2_psll_w:
  case Intrinsic::x86_avx2_psll_d:
  case Intrinsic::x86_avx2_psll_q:
  case Intrinsic::x86_avx2_psll_w:
  case Intrinsic::x86_avx512_psll_d_512:
  case Intrinsic::x86_avx512_psll_q_512:
  case Intrinsic::x86_avx512_psll_w_512:
    LogicalShift = true;
    ShiftLeft = true;
    break;
  }
  assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");

  auto Vec = II.getArgOperand(0);
  auto Amt = II.getArgOperand(1);
  auto VT = cast<FixedVectorType>(Vec->getType());
  auto SVT = VT->getElementType();
  auto AmtVT = Amt->getType();
  unsigned VWidth = VT->getNumElements();
  unsigned BitWidth = SVT->getPrimitiveSizeInBits();

  // If the shift amount is guaranteed to be in-range we can replace it with a
  // generic shift. If its guaranteed to be out of range, logical shifts combine
  // to zero and arithmetic shifts are clamped to (BitWidth - 1).
  if (IsImm) {
    assert(AmtVT->isIntegerTy(32) && "Unexpected shift-by-immediate type");
    KnownBits KnownAmtBits =
        llvm::computeKnownBits(Amt, II.getModule()->getDataLayout());
    if (KnownAmtBits.getMaxValue().ult(BitWidth)) {
      Amt = Builder.CreateZExtOrTrunc(Amt, SVT);
      Amt = Builder.CreateVectorSplat(VWidth, Amt);
      return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
                                        : Builder.CreateLShr(Vec, Amt))
                           : Builder.CreateAShr(Vec, Amt));
    }
    if (KnownAmtBits.getMinValue().uge(BitWidth)) {
      if (LogicalShift)
        return ConstantAggregateZero::get(VT);
      Amt = ConstantInt::get(SVT, BitWidth - 1);
      return Builder.CreateAShr(Vec, Builder.CreateVectorSplat(VWidth, Amt));
    }
  } else {
    // Ensure the first element has an in-range value and the rest of the
    // elements in the bottom 64 bits are zero.
    assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
           cast<VectorType>(AmtVT)->getElementType() == SVT &&
           "Unexpected shift-by-scalar type");
    unsigned NumAmtElts = cast<FixedVectorType>(AmtVT)->getNumElements();
    APInt DemandedLower = APInt::getOneBitSet(NumAmtElts, 0);
    APInt DemandedUpper = APInt::getBitsSet(NumAmtElts, 1, NumAmtElts / 2);
    KnownBits KnownLowerBits = llvm::computeKnownBits(
        Amt, DemandedLower, II.getModule()->getDataLayout());
    KnownBits KnownUpperBits = llvm::computeKnownBits(
        Amt, DemandedUpper, II.getModule()->getDataLayout());
    if (KnownLowerBits.getMaxValue().ult(BitWidth) &&
        (DemandedUpper.isNullValue() || KnownUpperBits.isZero())) {
      SmallVector<int, 16> ZeroSplat(VWidth, 0);
      Amt = Builder.CreateShuffleVector(Amt, Amt, ZeroSplat);
      return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
                                        : Builder.CreateLShr(Vec, Amt))
                           : Builder.CreateAShr(Vec, Amt));
    }
  }

  // Simplify if count is constant vector.
  auto CDV = dyn_cast<ConstantDataVector>(Amt);
  if (!CDV)
    return nullptr;

  // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
  // operand to compute the shift amount.
  assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
         cast<VectorType>(AmtVT)->getElementType() == SVT &&
         "Unexpected shift-by-scalar type");

  // Concatenate the sub-elements to create the 64-bit value.
  APInt Count(64, 0);
  for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) {
    unsigned SubEltIdx = (NumSubElts - 1) - i;
    auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
    Count <<= BitWidth;
    Count |= SubElt->getValue().zextOrTrunc(64);
  }

  // If shift-by-zero then just return the original value.
  if (Count.isNullValue())
    return Vec;

  // Handle cases when Shift >= BitWidth.
  if (Count.uge(BitWidth)) {
    // If LogicalShift - just return zero.
    if (LogicalShift)
      return ConstantAggregateZero::get(VT);

    // If ArithmeticShift - clamp Shift to (BitWidth - 1).
    Count = APInt(64, BitWidth - 1);
  }

  // Get a constant vector of the same type as the first operand.
  auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
  auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);

  if (ShiftLeft)
    return Builder.CreateShl(Vec, ShiftVec);

  if (LogicalShift)
    return Builder.CreateLShr(Vec, ShiftVec);

  return Builder.CreateAShr(Vec, ShiftVec);
}

// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
static Value *simplifyX86varShift(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  bool LogicalShift = false;
  bool ShiftLeft = false;

  switch (II.getIntrinsicID()) {
  default:
    llvm_unreachable("Unexpected intrinsic!");
  case Intrinsic::x86_avx2_psrav_d:
  case Intrinsic::x86_avx2_psrav_d_256:
  case Intrinsic::x86_avx512_psrav_q_128:
  case Intrinsic::x86_avx512_psrav_q_256:
  case Intrinsic::x86_avx512_psrav_d_512:
  case Intrinsic::x86_avx512_psrav_q_512:
  case Intrinsic::x86_avx512_psrav_w_128:
  case Intrinsic::x86_avx512_psrav_w_256:
  case Intrinsic::x86_avx512_psrav_w_512:
    LogicalShift = false;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_avx2_psrlv_d:
  case Intrinsic::x86_avx2_psrlv_d_256:
  case Intrinsic::x86_avx2_psrlv_q:
  case Intrinsic::x86_avx2_psrlv_q_256:
  case Intrinsic::x86_avx512_psrlv_d_512:
  case Intrinsic::x86_avx512_psrlv_q_512:
  case Intrinsic::x86_avx512_psrlv_w_128:
  case Intrinsic::x86_avx512_psrlv_w_256:
  case Intrinsic::x86_avx512_psrlv_w_512:
    LogicalShift = true;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_avx2_psllv_d:
  case Intrinsic::x86_avx2_psllv_d_256:
  case Intrinsic::x86_avx2_psllv_q:
  case Intrinsic::x86_avx2_psllv_q_256:
  case Intrinsic::x86_avx512_psllv_d_512:
  case Intrinsic::x86_avx512_psllv_q_512:
  case Intrinsic::x86_avx512_psllv_w_128:
  case Intrinsic::x86_avx512_psllv_w_256:
  case Intrinsic::x86_avx512_psllv_w_512:
    LogicalShift = true;
    ShiftLeft = true;
    break;
  }
  assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");

  auto Vec = II.getArgOperand(0);
  auto Amt = II.getArgOperand(1);
  auto VT = cast<FixedVectorType>(II.getType());
  auto SVT = VT->getElementType();
  int NumElts = VT->getNumElements();
  int BitWidth = SVT->getIntegerBitWidth();

  // If the shift amount is guaranteed to be in-range we can replace it with a
  // generic shift.
  APInt UpperBits =
      APInt::getHighBitsSet(BitWidth, BitWidth - Log2_32(BitWidth));
  if (llvm::MaskedValueIsZero(Amt, UpperBits,
                              II.getModule()->getDataLayout())) {
    return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
                                      : Builder.CreateLShr(Vec, Amt))
                         : Builder.CreateAShr(Vec, Amt));
  }

  // Simplify if all shift amounts are constant/undef.
  auto *CShift = dyn_cast<Constant>(Amt);
  if (!CShift)
    return nullptr;

  // Collect each element's shift amount.
  // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
  bool AnyOutOfRange = false;
  SmallVector<int, 8> ShiftAmts;
  for (int I = 0; I < NumElts; ++I) {
    auto *CElt = CShift->getAggregateElement(I);
    if (isa_and_nonnull<UndefValue>(CElt)) {
      ShiftAmts.push_back(-1);
      continue;
    }

    auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
    if (!COp)
      return nullptr;

    // Handle out of range shifts.
    // If LogicalShift - set to BitWidth (special case).
    // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
    APInt ShiftVal = COp->getValue();
    if (ShiftVal.uge(BitWidth)) {
      AnyOutOfRange = LogicalShift;
      ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
      continue;
    }

    ShiftAmts.push_back((int)ShiftVal.getZExtValue());
  }

  // If all elements out of range or UNDEF, return vector of zeros/undefs.
  // ArithmeticShift should only hit this if they are all UNDEF.
  auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
  if (llvm::all_of(ShiftAmts, OutOfRange)) {
    SmallVector<Constant *, 8> ConstantVec;
    for (int Idx : ShiftAmts) {
      if (Idx < 0) {
        ConstantVec.push_back(UndefValue::get(SVT));
      } else {
        assert(LogicalShift && "Logical shift expected");
        ConstantVec.push_back(ConstantInt::getNullValue(SVT));
      }
    }
    return ConstantVector::get(ConstantVec);
  }

  // We can't handle only some out of range values with generic logical shifts.
  if (AnyOutOfRange)
    return nullptr;

  // Build the shift amount constant vector.
  SmallVector<Constant *, 8> ShiftVecAmts;
  for (int Idx : ShiftAmts) {
    if (Idx < 0)
      ShiftVecAmts.push_back(UndefValue::get(SVT));
    else
      ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
  }
  auto ShiftVec = ConstantVector::get(ShiftVecAmts);

  if (ShiftLeft)
    return Builder.CreateShl(Vec, ShiftVec);

  if (LogicalShift)
    return Builder.CreateLShr(Vec, ShiftVec);

  return Builder.CreateAShr(Vec, ShiftVec);
}

static Value *simplifyX86pack(IntrinsicInst &II,
                              InstCombiner::BuilderTy &Builder, bool IsSigned) {
  Value *Arg0 = II.getArgOperand(0);
  Value *Arg1 = II.getArgOperand(1);
  Type *ResTy = II.getType();

  // Fast all undef handling.
  if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
    return UndefValue::get(ResTy);

  auto *ArgTy = cast<FixedVectorType>(Arg0->getType());
  unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
  unsigned NumSrcElts = ArgTy->getNumElements();
  assert(cast<FixedVectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) &&
         "Unexpected packing types");

  unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
  unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
  unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
  assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
         "Unexpected packing types");

  // Constant folding.
  if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
    return nullptr;

  // Clamp Values - signed/unsigned both use signed clamp values, but they
  // differ on the min/max values.
  APInt MinValue, MaxValue;
  if (IsSigned) {
    // PACKSS: Truncate signed value with signed saturation.
    // Source values less than dst minint are saturated to minint.
    // Source values greater than dst maxint are saturated to maxint.
    MinValue =
        APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
    MaxValue =
        APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
  } else {
    // PACKUS: Truncate signed value with unsigned saturation.
    // Source values less than zero are saturated to zero.
    // Source values greater than dst maxuint are saturated to maxuint.
    MinValue = APInt::getNullValue(SrcScalarSizeInBits);
    MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
  }

  auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
  auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
  Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
  Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
  Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
  Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);

  // Shuffle clamped args together at the lane level.
  SmallVector<int, 32> PackMask;
  for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
    for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
      PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
    for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
      PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
  }
  auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);

  // Truncate to dst size.
  return Builder.CreateTrunc(Shuffle, ResTy);
}

static Value *simplifyX86movmsk(const IntrinsicInst &II,
                                InstCombiner::BuilderTy &Builder) {
  Value *Arg = II.getArgOperand(0);
  Type *ResTy = II.getType();

  // movmsk(undef) -> zero as we must ensure the upper bits are zero.
  if (isa<UndefValue>(Arg))
    return Constant::getNullValue(ResTy);

  auto *ArgTy = dyn_cast<FixedVectorType>(Arg->getType());
  // We can't easily peek through x86_mmx types.
  if (!ArgTy)
    return nullptr;

  // Expand MOVMSK to compare/bitcast/zext:
  // e.g. PMOVMSKB(v16i8 x):
  // %cmp = icmp slt <16 x i8> %x, zeroinitializer
  // %int = bitcast <16 x i1> %cmp to i16
  // %res = zext i16 %int to i32
  unsigned NumElts = ArgTy->getNumElements();
  Type *IntegerVecTy = VectorType::getInteger(ArgTy);
  Type *IntegerTy = Builder.getIntNTy(NumElts);

  Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
  Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
  Res = Builder.CreateBitCast(Res, IntegerTy);
  Res = Builder.CreateZExtOrTrunc(Res, ResTy);
  return Res;
}

static Value *simplifyX86addcarry(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  Value *CarryIn = II.getArgOperand(0);
  Value *Op1 = II.getArgOperand(1);
  Value *Op2 = II.getArgOperand(2);
  Type *RetTy = II.getType();
  Type *OpTy = Op1->getType();
  assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
         RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
         "Unexpected types for x86 addcarry");

  // If carry-in is zero, this is just an unsigned add with overflow.
  if (match(CarryIn, PatternMatch::m_ZeroInt())) {
    Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
                                          {Op1, Op2});
    // The types have to be adjusted to match the x86 call types.
    Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
    Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
                                       Builder.getInt8Ty());
    Value *Res = UndefValue::get(RetTy);
    Res = Builder.CreateInsertValue(Res, UAddOV, 0);
    return Builder.CreateInsertValue(Res, UAddResult, 1);
  }

  return nullptr;
}

static Value *simplifyX86insertps(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
  if (!CInt)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");

  // The immediate permute control byte looks like this:
  //    [3:0] - zero mask for each 32-bit lane
  //    [5:4] - select one 32-bit destination lane
  //    [7:6] - select one 32-bit source lane

  uint8_t Imm = CInt->getZExtValue();
  uint8_t ZMask = Imm & 0xf;
  uint8_t DestLane = (Imm >> 4) & 0x3;
  uint8_t SourceLane = (Imm >> 6) & 0x3;

  ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);

  // If all zero mask bits are set, this was just a weird way to
  // generate a zero vector.
  if (ZMask == 0xf)
    return ZeroVector;

  // Initialize by passing all of the first source bits through.
  int ShuffleMask[4] = {0, 1, 2, 3};

  // We may replace the second operand with the zero vector.
  Value *V1 = II.getArgOperand(1);

  if (ZMask) {
    // If the zero mask is being used with a single input or the zero mask
    // overrides the destination lane, this is a shuffle with the zero vector.
    if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
        (ZMask & (1 << DestLane))) {
      V1 = ZeroVector;
      // We may still move 32-bits of the first source vector from one lane
      // to another.
      ShuffleMask[DestLane] = SourceLane;
      // The zero mask may override the previous insert operation.
      for (unsigned i = 0; i < 4; ++i)
        if ((ZMask >> i) & 0x1)
          ShuffleMask[i] = i + 4;
    } else {
      // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
      return nullptr;
    }
  } else {
    // Replace the selected destination lane with the selected source lane.
    ShuffleMask[DestLane] = SourceLane + 4;
  }

  return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
}

/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
/// or conversion to a shuffle vector.
static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
                               ConstantInt *CILength, ConstantInt *CIIndex,
                               InstCombiner::BuilderTy &Builder) {
  auto LowConstantHighUndef = [&](uint64_t Val) {
    Type *IntTy64 = Type::getInt64Ty(II.getContext());
    Constant *Args[] = {ConstantInt::get(IntTy64, Val),
                        UndefValue::get(IntTy64)};
    return ConstantVector::get(Args);
  };

  // See if we're dealing with constant values.
  Constant *C0 = dyn_cast<Constant>(Op0);
  ConstantInt *CI0 =
      C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
         : nullptr;

  // Attempt to constant fold.
  if (CILength && CIIndex) {
    // From AMD documentation: "The bit index and field length are each six
    // bits in length other bits of the field are ignored."
    APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
    APInt APLength = CILength->getValue().zextOrTrunc(6);

    unsigned Index = APIndex.getZExtValue();

    // From AMD documentation: "a value of zero in the field length is
    // defined as length of 64".
    unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();

    // From AMD documentation: "If the sum of the bit index + length field
    // is greater than 64, the results are undefined".
    unsigned End = Index + Length;

    // Note that both field index and field length are 8-bit quantities.
    // Since variables 'Index' and 'Length' are unsigned values
    // obtained from zero-extending field index and field length
    // respectively, their sum should never wrap around.
    if (End > 64)
      return UndefValue::get(II.getType());

    // If we are inserting whole bytes, we can convert this to a shuffle.
    // Lowering can recognize EXTRQI shuffle masks.
    if ((Length % 8) == 0 && (Index % 8) == 0) {
      // Convert bit indices to byte indices.
      Length /= 8;
      Index /= 8;

      Type *IntTy8 = Type::getInt8Ty(II.getContext());
      auto *ShufTy = FixedVectorType::get(IntTy8, 16);

      SmallVector<int, 16> ShuffleMask;
      for (int i = 0; i != (int)Length; ++i)
        ShuffleMask.push_back(i + Index);
      for (int i = Length; i != 8; ++i)
        ShuffleMask.push_back(i + 16);
      for (int i = 8; i != 16; ++i)
        ShuffleMask.push_back(-1);

      Value *SV = Builder.CreateShuffleVector(
          Builder.CreateBitCast(Op0, ShufTy),
          ConstantAggregateZero::get(ShufTy), ShuffleMask);
      return Builder.CreateBitCast(SV, II.getType());
    }

    // Constant Fold - shift Index'th bit to lowest position and mask off
    // Length bits.
    if (CI0) {
      APInt Elt = CI0->getValue();
      Elt.lshrInPlace(Index);
      Elt = Elt.zextOrTrunc(Length);
      return LowConstantHighUndef(Elt.getZExtValue());
    }

    // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
    if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
      Value *Args[] = {Op0, CILength, CIIndex};
      Module *M = II.getModule();
      Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
      return Builder.CreateCall(F, Args);
    }
  }

  // Constant Fold - extraction from zero is always {zero, undef}.
  if (CI0 && CI0->isZero())
    return LowConstantHighUndef(0);

  return nullptr;
}

/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
/// folding or conversion to a shuffle vector.
static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
                                 APInt APLength, APInt APIndex,
                                 InstCombiner::BuilderTy &Builder) {
  // From AMD documentation: "The bit index and field length are each six bits
  // in length other bits of the field are ignored."
  APIndex = APIndex.zextOrTrunc(6);
  APLength = APLength.zextOrTrunc(6);

  // Attempt to constant fold.
  unsigned Index = APIndex.getZExtValue();

  // From AMD documentation: "a value of zero in the field length is
  // defined as length of 64".
  unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();

  // From AMD documentation: "If the sum of the bit index + length field
  // is greater than 64, the results are undefined".
  unsigned End = Index + Length;

  // Note that both field index and field length are 8-bit quantities.
  // Since variables 'Index' and 'Length' are unsigned values
  // obtained from zero-extending field index and field length
  // respectively, their sum should never wrap around.
  if (End > 64)
    return UndefValue::get(II.getType());

  // If we are inserting whole bytes, we can convert this to a shuffle.
  // Lowering can recognize INSERTQI shuffle masks.
  if ((Length % 8) == 0 && (Index % 8) == 0) {
    // Convert bit indices to byte indices.
    Length /= 8;
    Index /= 8;

    Type *IntTy8 = Type::getInt8Ty(II.getContext());
    auto *ShufTy = FixedVectorType::get(IntTy8, 16);

    SmallVector<int, 16> ShuffleMask;
    for (int i = 0; i != (int)Index; ++i)
      ShuffleMask.push_back(i);
    for (int i = 0; i != (int)Length; ++i)
      ShuffleMask.push_back(i + 16);
    for (int i = Index + Length; i != 8; ++i)
      ShuffleMask.push_back(i);
    for (int i = 8; i != 16; ++i)
      ShuffleMask.push_back(-1);

    Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
                                            Builder.CreateBitCast(Op1, ShufTy),
                                            ShuffleMask);
    return Builder.CreateBitCast(SV, II.getType());
  }

  // See if we're dealing with constant values.
  Constant *C0 = dyn_cast<Constant>(Op0);
  Constant *C1 = dyn_cast<Constant>(Op1);
  ConstantInt *CI00 =
      C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
         : nullptr;
  ConstantInt *CI10 =
      C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
         : nullptr;

  // Constant Fold - insert bottom Length bits starting at the Index'th bit.
  if (CI00 && CI10) {
    APInt V00 = CI00->getValue();
    APInt V10 = CI10->getValue();
    APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
    V00 = V00 & ~Mask;
    V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
    APInt Val = V00 | V10;
    Type *IntTy64 = Type::getInt64Ty(II.getContext());
    Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
                        UndefValue::get(IntTy64)};
    return ConstantVector::get(Args);
  }

  // If we were an INSERTQ call, we'll save demanded elements if we convert to
  // INSERTQI.
  if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
    Type *IntTy8 = Type::getInt8Ty(II.getContext());
    Constant *CILength = ConstantInt::get(IntTy8, Length, false);
    Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);

    Value *Args[] = {Op0, Op1, CILength, CIIndex};
    Module *M = II.getModule();
    Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
    return Builder.CreateCall(F, Args);
  }

  return nullptr;
}

/// Attempt to convert pshufb* to shufflevector if the mask is constant.
static Value *simplifyX86pshufb(const IntrinsicInst &II,
                                InstCombiner::BuilderTy &Builder) {
  Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
  if (!V)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  unsigned NumElts = VecTy->getNumElements();
  assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
         "Unexpected number of elements in shuffle mask!");

  // Construct a shuffle mask from constant integers or UNDEFs.
  int Indexes[64];

  // Each byte in the shuffle control mask forms an index to permute the
  // corresponding byte in the destination operand.
  for (unsigned I = 0; I < NumElts; ++I) {
    Constant *COp = V->getAggregateElement(I);
    if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
      return nullptr;

    if (isa<UndefValue>(COp)) {
      Indexes[I] = -1;
      continue;
    }

    int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();

    // If the most significant bit (bit[7]) of each byte of the shuffle
    // control mask is set, then zero is written in the result byte.
    // The zero vector is in the right-hand side of the resulting
    // shufflevector.

    // The value of each index for the high 128-bit lane is the least
    // significant 4 bits of the respective shuffle control byte.
    Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
    Indexes[I] = Index;
  }

  auto V1 = II.getArgOperand(0);
  auto V2 = Constant::getNullValue(VecTy);
  return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, NumElts));
}

/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
                                    InstCombiner::BuilderTy &Builder) {
  Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
  if (!V)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  unsigned NumElts = VecTy->getNumElements();
  bool IsPD = VecTy->getScalarType()->isDoubleTy();
  unsigned NumLaneElts = IsPD ? 2 : 4;
  assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);

  // Construct a shuffle mask from constant integers or UNDEFs.
  int Indexes[16];

  // The intrinsics only read one or two bits, clear the rest.
  for (unsigned I = 0; I < NumElts; ++I) {
    Constant *COp = V->getAggregateElement(I);
    if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
      return nullptr;

    if (isa<UndefValue>(COp)) {
      Indexes[I] = -1;
      continue;
    }

    APInt Index = cast<ConstantInt>(COp)->getValue();
    Index = Index.zextOrTrunc(32).getLoBits(2);

    // The PD variants uses bit 1 to select per-lane element index, so
    // shift down to convert to generic shuffle mask index.
    if (IsPD)
      Index.lshrInPlace(1);

    // The _256 variants are a bit trickier since the mask bits always index
    // into the corresponding 128 half. In order to convert to a generic
    // shuffle, we have to make that explicit.
    Index += APInt(32, (I / NumLaneElts) * NumLaneElts);

    Indexes[I] = Index.getZExtValue();
  }

  auto V1 = II.getArgOperand(0);
  auto V2 = UndefValue::get(V1->getType());
  return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, NumElts));
}

/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
static Value *simplifyX86vpermv(const IntrinsicInst &II,
                                InstCombiner::BuilderTy &Builder) {
  auto *V = dyn_cast<Constant>(II.getArgOperand(1));
  if (!V)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  unsigned Size = VecTy->getNumElements();
  assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
         "Unexpected shuffle mask size");

  // Construct a shuffle mask from constant integers or UNDEFs.
  int Indexes[64];

  for (unsigned I = 0; I < Size; ++I) {
    Constant *COp = V->getAggregateElement(I);
    if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
      return nullptr;

    if (isa<UndefValue>(COp)) {
      Indexes[I] = -1;
      continue;
    }

    uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
    Index &= Size - 1;
    Indexes[I] = Index;
  }

  auto V1 = II.getArgOperand(0);
  auto V2 = UndefValue::get(VecTy);
  return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, Size));
}

Optional<Instruction *>
X86TTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
  auto SimplifyDemandedVectorEltsLow = [&IC](Value *Op, unsigned Width,
                                             unsigned DemandedWidth) {
    APInt UndefElts(Width, 0);
    APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
    return IC.SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
  };

  Intrinsic::ID IID = II.getIntrinsicID();
  switch (IID) {
  case Intrinsic::x86_bmi_bextr_32:
  case Intrinsic::x86_bmi_bextr_64:
  case Intrinsic::x86_tbm_bextri_u32:
  case Intrinsic::x86_tbm_bextri_u64:
    // If the RHS is a constant we can try some simplifications.
    if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      uint64_t Shift = C->getZExtValue();
      uint64_t Length = (Shift >> 8) & 0xff;
      Shift &= 0xff;
      unsigned BitWidth = II.getType()->getIntegerBitWidth();
      // If the length is 0 or the shift is out of range, replace with zero.
      if (Length == 0 || Shift >= BitWidth) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      // If the LHS is also a constant, we can completely constant fold this.
      if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Result = InC->getZExtValue() >> Shift;
        if (Length > BitWidth)
          Length = BitWidth;
        Result &= maskTrailingOnes<uint64_t>(Length);
        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
      // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
      // are only masking bits that a shift already cleared?
    }
    break;

  case Intrinsic::x86_bmi_bzhi_32:
  case Intrinsic::x86_bmi_bzhi_64:
    // If the RHS is a constant we can try some simplifications.
    if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      uint64_t Index = C->getZExtValue() & 0xff;
      unsigned BitWidth = II.getType()->getIntegerBitWidth();
      if (Index >= BitWidth) {
        return IC.replaceInstUsesWith(II, II.getArgOperand(0));
      }
      if (Index == 0) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      // If the LHS is also a constant, we can completely constant fold this.
      if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Result = InC->getZExtValue();
        Result &= maskTrailingOnes<uint64_t>(Index);
        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
      // TODO should we convert this to an AND if the RHS is constant?
    }
    break;
  case Intrinsic::x86_bmi_pext_32:
  case Intrinsic::x86_bmi_pext_64:
    if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      if (MaskC->isNullValue()) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      if (MaskC->isAllOnesValue()) {
        return IC.replaceInstUsesWith(II, II.getArgOperand(0));
      }

      if (MaskC->getValue().isShiftedMask()) {
        // any single contingous sequence of 1s anywhere in the mask simply
        // describes a subset of the input bits shifted to the appropriate
        // position.  Replace with the straight forward IR.
        unsigned ShiftAmount = MaskC->getValue().countTrailingZeros();
        Value *Input = II.getArgOperand(0);
        Value *Masked = IC.Builder.CreateAnd(Input, II.getArgOperand(1));
        Value *Shifted = IC.Builder.CreateLShr(Masked,
                                               ConstantInt::get(II.getType(),
                                                                ShiftAmount));
        return IC.replaceInstUsesWith(II, Shifted);
      }


      if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Src = SrcC->getZExtValue();
        uint64_t Mask = MaskC->getZExtValue();
        uint64_t Result = 0;
        uint64_t BitToSet = 1;

        while (Mask) {
          // Isolate lowest set bit.
          uint64_t BitToTest = Mask & -Mask;
          if (BitToTest & Src)
            Result |= BitToSet;

          BitToSet <<= 1;
          // Clear lowest set bit.
          Mask &= Mask - 1;
        }

        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
    }
    break;
  case Intrinsic::x86_bmi_pdep_32:
  case Intrinsic::x86_bmi_pdep_64:
    if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      if (MaskC->isNullValue()) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      if (MaskC->isAllOnesValue()) {
        return IC.replaceInstUsesWith(II, II.getArgOperand(0));
      }
      if (MaskC->getValue().isShiftedMask()) {
        // any single contingous sequence of 1s anywhere in the mask simply
        // describes a subset of the input bits shifted to the appropriate
        // position.  Replace with the straight forward IR.
        unsigned ShiftAmount = MaskC->getValue().countTrailingZeros();
        Value *Input = II.getArgOperand(0);
        Value *Shifted = IC.Builder.CreateShl(Input,
                                              ConstantInt::get(II.getType(),
                                                               ShiftAmount));
        Value *Masked = IC.Builder.CreateAnd(Shifted, II.getArgOperand(1));
        return IC.replaceInstUsesWith(II, Masked);
      }

      if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Src = SrcC->getZExtValue();
        uint64_t Mask = MaskC->getZExtValue();
        uint64_t Result = 0;
        uint64_t BitToTest = 1;

        while (Mask) {
          // Isolate lowest set bit.
          uint64_t BitToSet = Mask & -Mask;
          if (BitToTest & Src)
            Result |= BitToSet;

          BitToTest <<= 1;
          // Clear lowest set bit;
          Mask &= Mask - 1;
        }

        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
    }
    break;

  case Intrinsic::x86_sse_cvtss2si:
  case Intrinsic::x86_sse_cvtss2si64:
  case Intrinsic::x86_sse_cvttss2si:
  case Intrinsic::x86_sse_cvttss2si64:
  case Intrinsic::x86_sse2_cvtsd2si:
  case Intrinsic::x86_sse2_cvtsd2si64:
  case Intrinsic::x86_sse2_cvttsd2si:
  case Intrinsic::x86_sse2_cvttsd2si64:
  case Intrinsic::x86_avx512_vcvtss2si32:
  case Intrinsic::x86_avx512_vcvtss2si64:
  case Intrinsic::x86_avx512_vcvtss2usi32:
  case Intrinsic::x86_avx512_vcvtss2usi64:
  case Intrinsic::x86_avx512_vcvtsd2si32:
  case Intrinsic::x86_avx512_vcvtsd2si64:
  case Intrinsic::x86_avx512_vcvtsd2usi32:
  case Intrinsic::x86_avx512_vcvtsd2usi64:
  case Intrinsic::x86_avx512_cvttss2si:
  case Intrinsic::x86_avx512_cvttss2si64:
  case Intrinsic::x86_avx512_cvttss2usi:
  case Intrinsic::x86_avx512_cvttss2usi64:
  case Intrinsic::x86_avx512_cvttsd2si:
  case Intrinsic::x86_avx512_cvttsd2si64:
  case Intrinsic::x86_avx512_cvttsd2usi:
  case Intrinsic::x86_avx512_cvttsd2usi64: {
    // These intrinsics only demand the 0th element of their input vectors. If
    // we can simplify the input based on that, do so now.
    Value *Arg = II.getArgOperand(0);
    unsigned VWidth = cast<FixedVectorType>(Arg->getType())->getNumElements();
    if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
      return IC.replaceOperand(II, 0, V);
    }
    break;
  }

  case Intrinsic::x86_mmx_pmovmskb:
  case Intrinsic::x86_sse_movmsk_ps:
  case Intrinsic::x86_sse2_movmsk_pd:
  case Intrinsic::x86_sse2_pmovmskb_128:
  case Intrinsic::x86_avx_movmsk_pd_256:
  case Intrinsic::x86_avx_movmsk_ps_256:
  case Intrinsic::x86_avx2_pmovmskb:
    if (Value *V = simplifyX86movmsk(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse_comieq_ss:
  case Intrinsic::x86_sse_comige_ss:
  case Intrinsic::x86_sse_comigt_ss:
  case Intrinsic::x86_sse_comile_ss:
  case Intrinsic::x86_sse_comilt_ss:
  case Intrinsic::x86_sse_comineq_ss:
  case Intrinsic::x86_sse_ucomieq_ss:
  case Intrinsic::x86_sse_ucomige_ss:
  case Intrinsic::x86_sse_ucomigt_ss:
  case Intrinsic::x86_sse_ucomile_ss:
  case Intrinsic::x86_sse_ucomilt_ss:
  case Intrinsic::x86_sse_ucomineq_ss:
  case Intrinsic::x86_sse2_comieq_sd:
  case Intrinsic::x86_sse2_comige_sd:
  case Intrinsic::x86_sse2_comigt_sd:
  case Intrinsic::x86_sse2_comile_sd:
  case Intrinsic::x86_sse2_comilt_sd:
  case Intrinsic::x86_sse2_comineq_sd:
  case Intrinsic::x86_sse2_ucomieq_sd:
  case Intrinsic::x86_sse2_ucomige_sd:
  case Intrinsic::x86_sse2_ucomigt_sd:
  case Intrinsic::x86_sse2_ucomile_sd:
  case Intrinsic::x86_sse2_ucomilt_sd:
  case Intrinsic::x86_sse2_ucomineq_sd:
  case Intrinsic::x86_avx512_vcomi_ss:
  case Intrinsic::x86_avx512_vcomi_sd:
  case Intrinsic::x86_avx512_mask_cmp_ss:
  case Intrinsic::x86_avx512_mask_cmp_sd: {
    // These intrinsics only demand the 0th element of their input vectors. If
    // we can simplify the input based on that, do so now.
    bool MadeChange = false;
    Value *Arg0 = II.getArgOperand(0);
    Value *Arg1 = II.getArgOperand(1);
    unsigned VWidth = cast<FixedVectorType>(Arg0->getType())->getNumElements();
    if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
      IC.replaceOperand(II, 0, V);
      MadeChange = true;
    }
    if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
      IC.replaceOperand(II, 1, V);
      MadeChange = true;
    }
    if (MadeChange) {
      return &II;
    }
    break;
  }

  case Intrinsic::x86_avx512_add_ps_512:
  case Intrinsic::x86_avx512_div_ps_512:
  case Intrinsic::x86_avx512_mul_ps_512:
  case Intrinsic::x86_avx512_sub_ps_512:
  case Intrinsic::x86_avx512_add_pd_512:
  case Intrinsic::x86_avx512_div_pd_512:
  case Intrinsic::x86_avx512_mul_pd_512:
  case Intrinsic::x86_avx512_sub_pd_512:
    // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
    // IR operations.
    if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
      if (R->getValue() == 4) {
        Value *Arg0 = II.getArgOperand(0);
        Value *Arg1 = II.getArgOperand(1);

        Value *V;
        switch (IID) {
        default:
          llvm_unreachable("Case stmts out of sync!");
        case Intrinsic::x86_avx512_add_ps_512:
        case Intrinsic::x86_avx512_add_pd_512:
          V = IC.Builder.CreateFAdd(Arg0, Arg1);
          break;
        case Intrinsic::x86_avx512_sub_ps_512:
        case Intrinsic::x86_avx512_sub_pd_512:
          V = IC.Builder.CreateFSub(Arg0, Arg1);
          break;
        case Intrinsic::x86_avx512_mul_ps_512:
        case Intrinsic::x86_avx512_mul_pd_512:
          V = IC.Builder.CreateFMul(Arg0, Arg1);
          break;
        case Intrinsic::x86_avx512_div_ps_512:
        case Intrinsic::x86_avx512_div_pd_512:
          V = IC.Builder.CreateFDiv(Arg0, Arg1);
          break;
        }

        return IC.replaceInstUsesWith(II, V);
      }
    }
    break;

  case Intrinsic::x86_avx512_mask_add_ss_round:
  case Intrinsic::x86_avx512_mask_div_ss_round:
  case Intrinsic::x86_avx512_mask_mul_ss_round:
  case Intrinsic::x86_avx512_mask_sub_ss_round:
  case Intrinsic::x86_avx512_mask_add_sd_round:
  case Intrinsic::x86_avx512_mask_div_sd_round:
  case Intrinsic::x86_avx512_mask_mul_sd_round:
  case Intrinsic::x86_avx512_mask_sub_sd_round:
    // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
    // IR operations.
    if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(4))) {
      if (R->getValue() == 4) {
        // Extract the element as scalars.
        Value *Arg0 = II.getArgOperand(0);
        Value *Arg1 = II.getArgOperand(1);
        Value *LHS = IC.Builder.CreateExtractElement(Arg0, (uint64_t)0);
        Value *RHS = IC.Builder.CreateExtractElement(Arg1, (uint64_t)0);

        Value *V;
        switch (IID) {
        default:
          llvm_unreachable("Case stmts out of sync!");
        case Intrinsic::x86_avx512_mask_add_ss_round:
        case Intrinsic::x86_avx512_mask_add_sd_round:
          V = IC.Builder.CreateFAdd(LHS, RHS);
          break;
        case Intrinsic::x86_avx512_mask_sub_ss_round:
        case Intrinsic::x86_avx512_mask_sub_sd_round:
          V = IC.Builder.CreateFSub(LHS, RHS);
          break;
        case Intrinsic::x86_avx512_mask_mul_ss_round:
        case Intrinsic::x86_avx512_mask_mul_sd_round:
          V = IC.Builder.CreateFMul(LHS, RHS);
          break;
        case Intrinsic::x86_avx512_mask_div_ss_round:
        case Intrinsic::x86_avx512_mask_div_sd_round:
          V = IC.Builder.CreateFDiv(LHS, RHS);
          break;
        }

        // Handle the masking aspect of the intrinsic.
        Value *Mask = II.getArgOperand(3);
        auto *C = dyn_cast<ConstantInt>(Mask);
        // We don't need a select if we know the mask bit is a 1.
        if (!C || !C->getValue()[0]) {
          // Cast the mask to an i1 vector and then extract the lowest element.
          auto *MaskTy = FixedVectorType::get(
              IC.Builder.getInt1Ty(),
              cast<IntegerType>(Mask->getType())->getBitWidth());
          Mask = IC.Builder.CreateBitCast(Mask, MaskTy);
          Mask = IC.Builder.CreateExtractElement(Mask, (uint64_t)0);
          // Extract the lowest element from the passthru operand.
          Value *Passthru =
              IC.Builder.CreateExtractElement(II.getArgOperand(2), (uint64_t)0);
          V = IC.Builder.CreateSelect(Mask, V, Passthru);
        }

        // Insert the result back into the original argument 0.
        V = IC.Builder.CreateInsertElement(Arg0, V, (uint64_t)0);

        return IC.replaceInstUsesWith(II, V);
      }
    }
    break;

  // Constant fold ashr( <A x Bi>, Ci ).
  // Constant fold lshr( <A x Bi>, Ci ).
  // Constant fold shl( <A x Bi>, Ci ).
  case Intrinsic::x86_sse2_psrai_d:
  case Intrinsic::x86_sse2_psrai_w:
  case Intrinsic::x86_avx2_psrai_d:
  case Intrinsic::x86_avx2_psrai_w:
  case Intrinsic::x86_avx512_psrai_q_128:
  case Intrinsic::x86_avx512_psrai_q_256:
  case Intrinsic::x86_avx512_psrai_d_512:
  case Intrinsic::x86_avx512_psrai_q_512:
  case Intrinsic::x86_avx512_psrai_w_512:
  case Intrinsic::x86_sse2_psrli_d:
  case Intrinsic::x86_sse2_psrli_q:
  case Intrinsic::x86_sse2_psrli_w:
  case Intrinsic::x86_avx2_psrli_d:
  case Intrinsic::x86_avx2_psrli_q:
  case Intrinsic::x86_avx2_psrli_w:
  case Intrinsic::x86_avx512_psrli_d_512:
  case Intrinsic::x86_avx512_psrli_q_512:
  case Intrinsic::x86_avx512_psrli_w_512:
  case Intrinsic::x86_sse2_pslli_d:
  case Intrinsic::x86_sse2_pslli_q:
  case Intrinsic::x86_sse2_pslli_w:
  case Intrinsic::x86_avx2_pslli_d:
  case Intrinsic::x86_avx2_pslli_q:
  case Intrinsic::x86_avx2_pslli_w:
  case Intrinsic::x86_avx512_pslli_d_512:
  case Intrinsic::x86_avx512_pslli_q_512:
  case Intrinsic::x86_avx512_pslli_w_512:
    if (Value *V = simplifyX86immShift(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse2_psra_d:
  case Intrinsic::x86_sse2_psra_w:
  case Intrinsic::x86_avx2_psra_d:
  case Intrinsic::x86_avx2_psra_w:
  case Intrinsic::x86_avx512_psra_q_128:
  case Intrinsic::x86_avx512_psra_q_256:
  case Intrinsic::x86_avx512_psra_d_512:
  case Intrinsic::x86_avx512_psra_q_512:
  case Intrinsic::x86_avx512_psra_w_512:
  case Intrinsic::x86_sse2_psrl_d:
  case Intrinsic::x86_sse2_psrl_q:
  case Intrinsic::x86_sse2_psrl_w:
  case Intrinsic::x86_avx2_psrl_d:
  case Intrinsic::x86_avx2_psrl_q:
  case Intrinsic::x86_avx2_psrl_w:
  case Intrinsic::x86_avx512_psrl_d_512:
  case Intrinsic::x86_avx512_psrl_q_512:
  case Intrinsic::x86_avx512_psrl_w_512:
  case Intrinsic::x86_sse2_psll_d:
  case Intrinsic::x86_sse2_psll_q:
  case Intrinsic::x86_sse2_psll_w:
  case Intrinsic::x86_avx2_psll_d:
  case Intrinsic::x86_avx2_psll_q:
  case Intrinsic::x86_avx2_psll_w:
  case Intrinsic::x86_avx512_psll_d_512:
  case Intrinsic::x86_avx512_psll_q_512:
  case Intrinsic::x86_avx512_psll_w_512: {
    if (Value *V = simplifyX86immShift(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }

    // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
    // operand to compute the shift amount.
    Value *Arg1 = II.getArgOperand(1);
    assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
           "Unexpected packed shift size");
    unsigned VWidth = cast<FixedVectorType>(Arg1->getType())->getNumElements();

    if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
      return IC.replaceOperand(II, 1, V);
    }
    break;
  }

  case Intrinsic::x86_avx2_psllv_d:
  case Intrinsic::x86_avx2_psllv_d_256:
  case Intrinsic::x86_avx2_psllv_q:
  case Intrinsic::x86_avx2_psllv_q_256:
  case Intrinsic::x86_avx512_psllv_d_512:
  case Intrinsic::x86_avx512_psllv_q_512:
  case Intrinsic::x86_avx512_psllv_w_128:
  case Intrinsic::x86_avx512_psllv_w_256:
  case Intrinsic::x86_avx512_psllv_w_512:
  case Intrinsic::x86_avx2_psrav_d:
  case Intrinsic::x86_avx2_psrav_d_256:
  case Intrinsic::x86_avx512_psrav_q_128:
  case Intrinsic::x86_avx512_psrav_q_256:
  case Intrinsic::x86_avx512_psrav_d_512:
  case Intrinsic::x86_avx512_psrav_q_512:
  case Intrinsic::x86_avx512_psrav_w_128:
  case Intrinsic::x86_avx512_psrav_w_256:
  case Intrinsic::x86_avx512_psrav_w_512:
  case Intrinsic::x86_avx2_psrlv_d:
  case Intrinsic::x86_avx2_psrlv_d_256:
  case Intrinsic::x86_avx2_psrlv_q:
  case Intrinsic::x86_avx2_psrlv_q_256:
  case Intrinsic::x86_avx512_psrlv_d_512:
  case Intrinsic::x86_avx512_psrlv_q_512:
  case Intrinsic::x86_avx512_psrlv_w_128:
  case Intrinsic::x86_avx512_psrlv_w_256:
  case Intrinsic::x86_avx512_psrlv_w_512:
    if (Value *V = simplifyX86varShift(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse2_packssdw_128:
  case Intrinsic::x86_sse2_packsswb_128:
  case Intrinsic::x86_avx2_packssdw:
  case Intrinsic::x86_avx2_packsswb:
  case Intrinsic::x86_avx512_packssdw_512:
  case Intrinsic::x86_avx512_packsswb_512:
    if (Value *V = simplifyX86pack(II, IC.Builder, true)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse2_packuswb_128:
  case Intrinsic::x86_sse41_packusdw:
  case Intrinsic::x86_avx2_packusdw:
  case Intrinsic::x86_avx2_packuswb:
  case Intrinsic::x86_avx512_packusdw_512:
  case Intrinsic::x86_avx512_packuswb_512:
    if (Value *V = simplifyX86pack(II, IC.Builder, false)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_pclmulqdq:
  case Intrinsic::x86_pclmulqdq_256:
  case Intrinsic::x86_pclmulqdq_512: {
    if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
      unsigned Imm = C->getZExtValue();

      bool MadeChange = false;
      Value *Arg0 = II.getArgOperand(0);
      Value *Arg1 = II.getArgOperand(1);
      unsigned VWidth =
          cast<FixedVectorType>(Arg0->getType())->getNumElements();

      APInt UndefElts1(VWidth, 0);
      APInt DemandedElts1 =
          APInt::getSplat(VWidth, APInt(2, (Imm & 0x01) ? 2 : 1));
      if (Value *V =
              IC.SimplifyDemandedVectorElts(Arg0, DemandedElts1, UndefElts1)) {
        IC.replaceOperand(II, 0, V);
        MadeChange = true;
      }

      APInt UndefElts2(VWidth, 0);
      APInt DemandedElts2 =
          APInt::getSplat(VWidth, APInt(2, (Imm & 0x10) ? 2 : 1));
      if (Value *V =
              IC.SimplifyDemandedVectorElts(Arg1, DemandedElts2, UndefElts2)) {
        IC.replaceOperand(II, 1, V);
        MadeChange = true;
      }

      // If either input elements are undef, the result is zero.
      if (DemandedElts1.isSubsetOf(UndefElts1) ||
          DemandedElts2.isSubsetOf(UndefElts2)) {
        return IC.replaceInstUsesWith(II,
                                      ConstantAggregateZero::get(II.getType()));
      }

      if (MadeChange) {
        return &II;
      }
    }
    break;
  }

  case Intrinsic::x86_sse41_insertps:
    if (Value *V = simplifyX86insertps(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse4a_extrq: {
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
    unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
           Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
           VWidth1 == 16 && "Unexpected operand sizes");

    // See if we're dealing with constant values.
    Constant *C1 = dyn_cast<Constant>(Op1);
    ConstantInt *CILength =
        C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
           : nullptr;
    ConstantInt *CIIndex =
        C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
           : nullptr;

    // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
    if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }

    // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
    // operands and the lowest 16-bits of the second.
    bool MadeChange = false;
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
      IC.replaceOperand(II, 0, V);
      MadeChange = true;
    }
    if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
      IC.replaceOperand(II, 1, V);
      MadeChange = true;
    }
    if (MadeChange) {
      return &II;
    }
    break;
  }

  case Intrinsic::x86_sse4a_extrqi: {
    // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
    // bits of the lower 64-bits. The upper 64-bits are undefined.
    Value *Op0 = II.getArgOperand(0);
    unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
           "Unexpected operand size");

    // See if we're dealing with constant values.
    ConstantInt *CILength = dyn_cast<ConstantInt>(II.getArgOperand(1));
    ConstantInt *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(2));

    // Attempt to simplify to a constant or shuffle vector.
    if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }

    // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
    // operand.
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
      return IC.replaceOperand(II, 0, V);
    }
    break;
  }

  case Intrinsic::x86_sse4a_insertq: {
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
           Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
           cast<FixedVectorType>(Op1->getType())->getNumElements() == 2 &&
           "Unexpected operand size");

    // See if we're dealing with constant values.
    Constant *C1 = dyn_cast<Constant>(Op1);
    ConstantInt *CI11 =
        C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
           : nullptr;

    // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
    if (CI11) {
      const APInt &V11 = CI11->getValue();
      APInt Len = V11.zextOrTrunc(6);
      APInt Idx = V11.lshr(8).zextOrTrunc(6);
      if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
        return IC.replaceInstUsesWith(II, V);
      }
    }

    // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
    // operand.
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
      return IC.replaceOperand(II, 0, V);
    }
    break;
  }

  case Intrinsic::x86_sse4a_insertqi: {
    // INSERTQI: Extract lowest Length bits from lower half of second source and
    // insert over first source starting at Index bit. The upper 64-bits are
    // undefined.
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
    unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
           Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
           VWidth1 == 2 && "Unexpected operand sizes");

    // See if we're dealing with constant values.
    ConstantInt *CILength = dyn_cast<ConstantInt>(II.getArgOperand(2));
    ConstantInt *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(3));

    // Attempt to simplify to a constant or shuffle vector.
    if (CILength && CIIndex) {
      APInt Len = CILength->getValue().zextOrTrunc(6);
      APInt Idx = CIIndex->getValue().zextOrTrunc(6);
      if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
        return IC.replaceInstUsesWith(II, V);
      }
    }

    // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
    // operands.
    bool MadeChange = false;
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
      IC.replaceOperand(II, 0, V);
      MadeChange = true;
    }
    if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
      IC.replaceOperand(II, 1, V);
      MadeChange = true;
    }
    if (MadeChange) {
      return &II;
    }
    break;
  }

  case Intrinsic::x86_sse41_pblendvb:
  case Intrinsic::x86_sse41_blendvps:
  case Intrinsic::x86_sse41_blendvpd:
  case Intrinsic::x86_avx_blendv_ps_256:
  case Intrinsic::x86_avx_blendv_pd_256:
  case Intrinsic::x86_avx2_pblendvb: {
    // fold (blend A, A, Mask) -> A
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    Value *Mask = II.getArgOperand(2);
    if (Op0 == Op1) {
      return IC.replaceInstUsesWith(II, Op0);
    }

    // Zero Mask - select 1st argument.
    if (isa<ConstantAggregateZero>(Mask)) {
      return IC.replaceInstUsesWith(II, Op0);
    }

    // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
    if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
      Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
      return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
    }

    // Convert to a vector select if we can bypass casts and find a boolean
    // vector condition value.
    Value *BoolVec;
    Mask = InstCombiner::peekThroughBitcast(Mask);
    if (match(Mask, PatternMatch::m_SExt(PatternMatch::m_Value(BoolVec))) &&
        BoolVec->getType()->isVectorTy() &&
        BoolVec->getType()->getScalarSizeInBits() == 1) {
      assert(Mask->getType()->getPrimitiveSizeInBits() ==
                 II.getType()->getPrimitiveSizeInBits() &&
             "Not expecting mask and operands with different sizes");

      unsigned NumMaskElts =
          cast<FixedVectorType>(Mask->getType())->getNumElements();
      unsigned NumOperandElts =
          cast<FixedVectorType>(II.getType())->getNumElements();
      if (NumMaskElts == NumOperandElts) {
        return SelectInst::Create(BoolVec, Op1, Op0);
      }

      // If the mask has less elements than the operands, each mask bit maps to
      // multiple elements of the operands. Bitcast back and forth.
      if (NumMaskElts < NumOperandElts) {
        Value *CastOp0 = IC.Builder.CreateBitCast(Op0, Mask->getType());
        Value *CastOp1 = IC.Builder.CreateBitCast(Op1, Mask->getType());
        Value *Sel = IC.Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
        return new BitCastInst(Sel, II.getType());
      }
    }

    break;
  }

  case Intrinsic::x86_ssse3_pshuf_b_128:
  case Intrinsic::x86_avx2_pshuf_b:
  case Intrinsic::x86_avx512_pshuf_b_512:
    if (Value *V = simplifyX86pshufb(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_avx_vpermilvar_ps:
  case Intrinsic::x86_avx_vpermilvar_ps_256:
  case Intrinsic::x86_avx512_vpermilvar_ps_512:
  case Intrinsic::x86_avx_vpermilvar_pd:
  case Intrinsic::x86_avx_vpermilvar_pd_256:
  case Intrinsic::x86_avx512_vpermilvar_pd_512:
    if (Value *V = simplifyX86vpermilvar(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_avx2_permd:
  case Intrinsic::x86_avx2_permps:
  case Intrinsic::x86_avx512_permvar_df_256:
  case Intrinsic::x86_avx512_permvar_df_512:
  case Intrinsic::x86_avx512_permvar_di_256:
  case Intrinsic::x86_avx512_permvar_di_512:
  case Intrinsic::x86_avx512_permvar_hi_128:
  case Intrinsic::x86_avx512_permvar_hi_256:
  case Intrinsic::x86_avx512_permvar_hi_512:
  case Intrinsic::x86_avx512_permvar_qi_128:
  case Intrinsic::x86_avx512_permvar_qi_256:
  case Intrinsic::x86_avx512_permvar_qi_512:
  case Intrinsic::x86_avx512_permvar_sf_512:
  case Intrinsic::x86_avx512_permvar_si_512:
    if (Value *V = simplifyX86vpermv(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_avx_maskload_ps:
  case Intrinsic::x86_avx_maskload_pd:
  case Intrinsic::x86_avx_maskload_ps_256:
  case Intrinsic::x86_avx_maskload_pd_256:
  case Intrinsic::x86_avx2_maskload_d:
  case Intrinsic::x86_avx2_maskload_q:
  case Intrinsic::x86_avx2_maskload_d_256:
  case Intrinsic::x86_avx2_maskload_q_256:
    if (Instruction *I = simplifyX86MaskedLoad(II, IC)) {
      return I;
    }
    break;

  case Intrinsic::x86_sse2_maskmov_dqu:
  case Intrinsic::x86_avx_maskstore_ps:
  case Intrinsic::x86_avx_maskstore_pd:
  case Intrinsic::x86_avx_maskstore_ps_256:
  case Intrinsic::x86_avx_maskstore_pd_256:
  case Intrinsic::x86_avx2_maskstore_d:
  case Intrinsic::x86_avx2_maskstore_q:
  case Intrinsic::x86_avx2_maskstore_d_256:
  case Intrinsic::x86_avx2_maskstore_q_256:
    if (simplifyX86MaskedStore(II, IC)) {
      return nullptr;
    }
    break;

  case Intrinsic::x86_addcarry_32:
  case Intrinsic::x86_addcarry_64:
    if (Value *V = simplifyX86addcarry(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  default:
    break;
  }
  return None;
}

Optional<Value *> X86TTIImpl::simplifyDemandedUseBitsIntrinsic(
    InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
    bool &KnownBitsComputed) const {
  switch (II.getIntrinsicID()) {
  default:
    break;
  case Intrinsic::x86_mmx_pmovmskb:
  case Intrinsic::x86_sse_movmsk_ps:
  case Intrinsic::x86_sse2_movmsk_pd:
  case Intrinsic::x86_sse2_pmovmskb_128:
  case Intrinsic::x86_avx_movmsk_ps_256:
  case Intrinsic::x86_avx_movmsk_pd_256:
  case Intrinsic::x86_avx2_pmovmskb: {
    // MOVMSK copies the vector elements' sign bits to the low bits
    // and zeros the high bits.
    unsigned ArgWidth;
    if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
      ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
    } else {
      auto Arg = II.getArgOperand(0);
      auto ArgType = cast<FixedVectorType>(Arg->getType());
      ArgWidth = ArgType->getNumElements();
    }

    // If we don't need any of low bits then return zero,
    // we know that DemandedMask is non-zero already.
    APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
    Type *VTy = II.getType();
    if (DemandedElts.isNullValue()) {
      return ConstantInt::getNullValue(VTy);
    }

    // We know that the upper bits are set to zero.
    Known.Zero.setBitsFrom(ArgWidth);
    KnownBitsComputed = true;
    break;
  }
  }
  return None;
}

Optional<Value *> X86TTIImpl::simplifyDemandedVectorEltsIntrinsic(
    InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
    APInt &UndefElts2, APInt &UndefElts3,
    std::function<void(Instruction *, unsigned, APInt, APInt &)>
        simplifyAndSetOp) const {
  unsigned VWidth = cast<FixedVectorType>(II.getType())->getNumElements();
  switch (II.getIntrinsicID()) {
  default:
    break;
  case Intrinsic::x86_xop_vfrcz_ss:
  case Intrinsic::x86_xop_vfrcz_sd:
    // The instructions for these intrinsics are speced to zero upper bits not
    // pass them through like other scalar intrinsics. So we shouldn't just
    // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
    // Instead we should return a zero vector.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return ConstantAggregateZero::get(II.getType());
    }

    // Only the lower element is used.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // Only the lower element is undefined. The high elements are zero.
    UndefElts = UndefElts[0];
    break;

  // Unary scalar-as-vector operations that work column-wise.
  case Intrinsic::x86_sse_rcp_ss:
  case Intrinsic::x86_sse_rsqrt_ss:
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }
    // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
    // checks).
    break;

  // Binary scalar-as-vector operations that work column-wise. The high
  // elements come from operand 0. The low element is a function of both
  // operands.
  case Intrinsic::x86_sse_min_ss:
  case Intrinsic::x86_sse_max_ss:
  case Intrinsic::x86_sse_cmp_ss:
  case Intrinsic::x86_sse2_min_sd:
  case Intrinsic::x86_sse2_max_sd:
  case Intrinsic::x86_sse2_cmp_sd: {
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }

    // Only lower element is used for operand 1.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);

    // Lower element is undefined if both lower elements are undefined.
    // Consider things like undef&0.  The result is known zero, not undef.
    if (!UndefElts2[0])
      UndefElts.clearBit(0);

    break;
  }

  // Binary scalar-as-vector operations that work column-wise. The high
  // elements come from operand 0 and the low element comes from operand 1.
  case Intrinsic::x86_sse41_round_ss:
  case Intrinsic::x86_sse41_round_sd: {
    // Don't use the low element of operand 0.
    APInt DemandedElts2 = DemandedElts;
    DemandedElts2.clearBit(0);
    simplifyAndSetOp(&II, 0, DemandedElts2, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }

    // Only lower element is used for operand 1.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);

    // Take the high undef elements from operand 0 and take the lower element
    // from operand 1.
    UndefElts.clearBit(0);
    UndefElts |= UndefElts2[0];
    break;
  }

  // Three input scalar-as-vector operations that work column-wise. The high
  // elements come from operand 0 and the low element is a function of all
  // three inputs.
  case Intrinsic::x86_avx512_mask_add_ss_round:
  case Intrinsic::x86_avx512_mask_div_ss_round:
  case Intrinsic::x86_avx512_mask_mul_ss_round:
  case Intrinsic::x86_avx512_mask_sub_ss_round:
  case Intrinsic::x86_avx512_mask_max_ss_round:
  case Intrinsic::x86_avx512_mask_min_ss_round:
  case Intrinsic::x86_avx512_mask_add_sd_round:
  case Intrinsic::x86_avx512_mask_div_sd_round:
  case Intrinsic::x86_avx512_mask_mul_sd_round:
  case Intrinsic::x86_avx512_mask_sub_sd_round:
  case Intrinsic::x86_avx512_mask_max_sd_round:
  case Intrinsic::x86_avx512_mask_min_sd_round:
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }

    // Only lower element is used for operand 1 and 2.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
    simplifyAndSetOp(&II, 2, DemandedElts, UndefElts3);

    // Lower element is undefined if all three lower elements are undefined.
    // Consider things like undef&0.  The result is known zero, not undef.
    if (!UndefElts2[0] || !UndefElts3[0])
      UndefElts.clearBit(0);

    break;

  case Intrinsic::x86_sse2_packssdw_128:
  case Intrinsic::x86_sse2_packsswb_128:
  case Intrinsic::x86_sse2_packuswb_128:
  case Intrinsic::x86_sse41_packusdw:
  case Intrinsic::x86_avx2_packssdw:
  case Intrinsic::x86_avx2_packsswb:
  case Intrinsic::x86_avx2_packusdw:
  case Intrinsic::x86_avx2_packuswb:
  case Intrinsic::x86_avx512_packssdw_512:
  case Intrinsic::x86_avx512_packsswb_512:
  case Intrinsic::x86_avx512_packusdw_512:
  case Intrinsic::x86_avx512_packuswb_512: {
    auto *Ty0 = II.getArgOperand(0)->getType();
    unsigned InnerVWidth = cast<FixedVectorType>(Ty0)->getNumElements();
    assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");

    unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
    unsigned VWidthPerLane = VWidth / NumLanes;
    unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;

    // Per lane, pack the elements of the first input and then the second.
    // e.g.
    // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
    // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
    for (int OpNum = 0; OpNum != 2; ++OpNum) {
      APInt OpDemandedElts(InnerVWidth, 0);
      for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
        unsigned LaneIdx = Lane * VWidthPerLane;
        for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
          unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
          if (DemandedElts[Idx])
            OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
        }
      }

      // Demand elements from the operand.
      APInt OpUndefElts(InnerVWidth, 0);
      simplifyAndSetOp(&II, OpNum, OpDemandedElts, OpUndefElts);

      // Pack the operand's UNDEF elements, one lane at a time.
      OpUndefElts = OpUndefElts.zext(VWidth);
      for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
        APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
        LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
        LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
        UndefElts |= LaneElts;
      }
    }
    break;
  }

  // PSHUFB
  case Intrinsic::x86_ssse3_pshuf_b_128:
  case Intrinsic::x86_avx2_pshuf_b:
  case Intrinsic::x86_avx512_pshuf_b_512:
  // PERMILVAR
  case Intrinsic::x86_avx_vpermilvar_ps:
  case Intrinsic::x86_avx_vpermilvar_ps_256:
  case Intrinsic::x86_avx512_vpermilvar_ps_512:
  case Intrinsic::x86_avx_vpermilvar_pd:
  case Intrinsic::x86_avx_vpermilvar_pd_256:
  case Intrinsic::x86_avx512_vpermilvar_pd_512:
  // PERMV
  case Intrinsic::x86_avx2_permd:
  case Intrinsic::x86_avx2_permps: {
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts);
    break;
  }

  // SSE4A instructions leave the upper 64-bits of the 128-bit result
  // in an undefined state.
  case Intrinsic::x86_sse4a_extrq:
  case Intrinsic::x86_sse4a_extrqi:
  case Intrinsic::x86_sse4a_insertq:
  case Intrinsic::x86_sse4a_insertqi:
    UndefElts.setHighBits(VWidth / 2);
    break;
  }
  return None;
}