VEInstrInfo.cpp
21.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the VE implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "VEInstrInfo.h"
#include "VE.h"
#include "VEMachineFunctionInfo.h"
#include "VESubtarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#define DEBUG_TYPE "ve-instr-info"
using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#include "VEGenInstrInfo.inc"
// Pin the vtable to this file.
void VEInstrInfo::anchor() {}
VEInstrInfo::VEInstrInfo(VESubtarget &ST)
: VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {}
static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); }
static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) {
switch (CC) {
case VECC::CC_IG:
return VECC::CC_ILE;
case VECC::CC_IL:
return VECC::CC_IGE;
case VECC::CC_INE:
return VECC::CC_IEQ;
case VECC::CC_IEQ:
return VECC::CC_INE;
case VECC::CC_IGE:
return VECC::CC_IL;
case VECC::CC_ILE:
return VECC::CC_IG;
case VECC::CC_AF:
return VECC::CC_AT;
case VECC::CC_G:
return VECC::CC_LENAN;
case VECC::CC_L:
return VECC::CC_GENAN;
case VECC::CC_NE:
return VECC::CC_EQNAN;
case VECC::CC_EQ:
return VECC::CC_NENAN;
case VECC::CC_GE:
return VECC::CC_LNAN;
case VECC::CC_LE:
return VECC::CC_GNAN;
case VECC::CC_NUM:
return VECC::CC_NAN;
case VECC::CC_NAN:
return VECC::CC_NUM;
case VECC::CC_GNAN:
return VECC::CC_LE;
case VECC::CC_LNAN:
return VECC::CC_GE;
case VECC::CC_NENAN:
return VECC::CC_EQ;
case VECC::CC_EQNAN:
return VECC::CC_NE;
case VECC::CC_GENAN:
return VECC::CC_L;
case VECC::CC_LENAN:
return VECC::CC_G;
case VECC::CC_AT:
return VECC::CC_AF;
case VECC::UNKNOWN:
return VECC::UNKNOWN;
}
llvm_unreachable("Invalid cond code");
}
// Treat br.l [BRCF AT] as unconditional branch
static bool isUncondBranchOpcode(int Opc) {
return Opc == VE::BRCFLa || Opc == VE::BRCFWa ||
Opc == VE::BRCFLa_nt || Opc == VE::BRCFWa_nt ||
Opc == VE::BRCFLa_t || Opc == VE::BRCFWa_t ||
Opc == VE::BRCFDa || Opc == VE::BRCFSa ||
Opc == VE::BRCFDa_nt || Opc == VE::BRCFSa_nt ||
Opc == VE::BRCFDa_t || Opc == VE::BRCFSa_t;
}
static bool isCondBranchOpcode(int Opc) {
return Opc == VE::BRCFLrr || Opc == VE::BRCFLir ||
Opc == VE::BRCFLrr_nt || Opc == VE::BRCFLir_nt ||
Opc == VE::BRCFLrr_t || Opc == VE::BRCFLir_t ||
Opc == VE::BRCFWrr || Opc == VE::BRCFWir ||
Opc == VE::BRCFWrr_nt || Opc == VE::BRCFWir_nt ||
Opc == VE::BRCFWrr_t || Opc == VE::BRCFWir_t ||
Opc == VE::BRCFDrr || Opc == VE::BRCFDir ||
Opc == VE::BRCFDrr_nt || Opc == VE::BRCFDir_nt ||
Opc == VE::BRCFDrr_t || Opc == VE::BRCFDir_t ||
Opc == VE::BRCFSrr || Opc == VE::BRCFSir ||
Opc == VE::BRCFSrr_nt || Opc == VE::BRCFSir_nt ||
Opc == VE::BRCFSrr_t || Opc == VE::BRCFSir_t;
}
static bool isIndirectBranchOpcode(int Opc) {
return Opc == VE::BCFLari || Opc == VE::BCFLari ||
Opc == VE::BCFLari_nt || Opc == VE::BCFLari_nt ||
Opc == VE::BCFLari_t || Opc == VE::BCFLari_t ||
Opc == VE::BCFLari || Opc == VE::BCFLari ||
Opc == VE::BCFLari_nt || Opc == VE::BCFLari_nt ||
Opc == VE::BCFLari_t || Opc == VE::BCFLari_t;
}
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
SmallVectorImpl<MachineOperand> &Cond) {
Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm()));
Cond.push_back(LastInst->getOperand(1));
Cond.push_back(LastInst->getOperand(2));
Target = LastInst->getOperand(3).getMBB();
}
bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
if (I == MBB.end())
return false;
if (!isUnpredicatedTerminator(*I))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = &*I;
unsigned LastOpc = LastInst->getOpcode();
// If there is only one terminator instruction, process it.
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
if (isUncondBranchOpcode(LastOpc)) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
if (isCondBranchOpcode(LastOpc)) {
// Block ends with fall-through condbranch.
parseCondBranch(LastInst, TBB, Cond);
return false;
}
return true; // Can't handle indirect branch.
}
// Get the instruction before it if it is a terminator.
MachineInstr *SecondLastInst = &*I;
unsigned SecondLastOpc = SecondLastInst->getOpcode();
// If AllowModify is true and the block ends with two or more unconditional
// branches, delete all but the first unconditional branch.
if (AllowModify && isUncondBranchOpcode(LastOpc)) {
while (isUncondBranchOpcode(SecondLastOpc)) {
LastInst->eraseFromParent();
LastInst = SecondLastInst;
LastOpc = LastInst->getOpcode();
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
// Return now the only terminator is an unconditional branch.
TBB = LastInst->getOperand(0).getMBB();
return false;
}
SecondLastInst = &*I;
SecondLastOpc = SecondLastInst->getOpcode();
}
}
// If there are three terminators, we don't know what sort of block this is.
if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
return true;
// If the block ends with a B and a Bcc, handle it.
if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
parseCondBranch(SecondLastInst, TBB, Cond);
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two unconditional branches, handle it. The second
// one is not executed.
if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
TBB = SecondLastInst->getOperand(0).getMBB();
return false;
}
// ...likewise if it ends with an indirect branch followed by an unconditional
// branch.
if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return true;
}
// Otherwise, can't handle this.
return true;
}
unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL, int *BytesAdded) const {
assert(TBB && "insertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 3 || Cond.size() == 0) &&
"VE branch conditions should have three component!");
assert(!BytesAdded && "code size not handled");
if (Cond.empty()) {
// Uncondition branch
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(VE::BRCFLa_t))
.addMBB(TBB);
return 1;
}
// Conditional branch
// (BRCFir CC sy sz addr)
assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented");
unsigned opc[2];
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineFunction *MF = MBB.getParent();
const MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned Reg = Cond[2].getReg();
if (IsIntegerCC(Cond[0].getImm())) {
if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
opc[0] = VE::BRCFWir;
opc[1] = VE::BRCFWrr;
} else {
opc[0] = VE::BRCFLir;
opc[1] = VE::BRCFLrr;
}
} else {
if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
opc[0] = VE::BRCFSir;
opc[1] = VE::BRCFSrr;
} else {
opc[0] = VE::BRCFDir;
opc[1] = VE::BRCFDrr;
}
}
if (Cond[1].isImm()) {
BuildMI(&MBB, DL, get(opc[0]))
.add(Cond[0]) // condition code
.add(Cond[1]) // lhs
.add(Cond[2]) // rhs
.addMBB(TBB);
} else {
BuildMI(&MBB, DL, get(opc[1]))
.add(Cond[0])
.add(Cond[1])
.add(Cond[2])
.addMBB(TBB);
}
if (!FBB)
return 1;
BuildMI(&MBB, DL, get(VE::BRCFLa_t))
.addMBB(FBB);
return 2;
}
unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (!isUncondBranchOpcode(I->getOpcode()) &&
!isCondBranchOpcode(I->getOpcode()))
break; // Not a branch
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
bool VEInstrInfo::reverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const {
VECC::CondCode CC = static_cast<VECC::CondCode>(Cond[0].getImm());
Cond[0].setImm(GetOppositeBranchCondition(CC));
return false;
}
static bool IsAliasOfSX(Register Reg) {
return VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) ||
VE::F32RegClass.contains(Reg);
}
static void copyPhysSubRegs(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
const MCInstrDesc &MCID, unsigned int NumSubRegs,
const unsigned *SubRegIdx,
const TargetRegisterInfo *TRI) {
MachineInstr *MovMI = nullptr;
for (unsigned Idx = 0; Idx != NumSubRegs; ++Idx) {
Register SubDest = TRI->getSubReg(DestReg, SubRegIdx[Idx]);
Register SubSrc = TRI->getSubReg(SrcReg, SubRegIdx[Idx]);
assert(SubDest && SubSrc && "Bad sub-register");
if (MCID.getOpcode() == VE::ORri) {
// generate "ORri, dest, src, 0" instruction.
MachineInstrBuilder MIB =
BuildMI(MBB, I, DL, MCID, SubDest).addReg(SubSrc).addImm(0);
MovMI = MIB.getInstr();
} else {
llvm_unreachable("Unexpected reg-to-reg copy instruction");
}
}
// Add implicit super-register defs and kills to the last MovMI.
MovMI->addRegisterDefined(DestReg, TRI);
if (KillSrc)
MovMI->addRegisterKilled(SrcReg, TRI, true);
}
void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
MCRegister DestReg, MCRegister SrcReg,
bool KillSrc) const {
if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) {
BuildMI(MBB, I, DL, get(VE::ORri), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc))
.addImm(0);
} else if (VE::F128RegClass.contains(DestReg, SrcReg)) {
// Use two instructions.
const unsigned SubRegIdx[] = {VE::sub_even, VE::sub_odd};
unsigned int NumSubRegs = 2;
copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ORri),
NumSubRegs, SubRegIdx, &getRegisterInfo());
} else {
const TargetRegisterInfo *TRI = &getRegisterInfo();
dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI)
<< " to " << printReg(DestReg, TRI) << "\n";
llvm_unreachable("Impossible reg-to-reg copy");
}
}
/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (MI.getOpcode() == VE::LDrii || // I64
MI.getOpcode() == VE::LDLSXrii || // I32
MI.getOpcode() == VE::LDUrii || // F32
MI.getOpcode() == VE::LDQrii // F128 (pseudo)
) {
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() &&
MI.getOperand(3).getImm() == 0) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (MI.getOpcode() == VE::STrii || // I64
MI.getOpcode() == VE::STLrii || // I32
MI.getOpcode() == VE::STUrii || // F32
MI.getOpcode() == VE::STQrii // F128 (pseudo)
) {
if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() &&
MI.getOperand(2).getImm() == 0) {
FrameIndex = MI.getOperand(0).getIndex();
return MI.getOperand(3).getReg();
}
}
return 0;
}
void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (I != MBB.end())
DL = I->getDebugLoc();
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
// On the order of operands here: think "[FrameIdx + 0] = SrcReg".
if (RC == &VE::I64RegClass) {
BuildMI(MBB, I, DL, get(VE::STrii))
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addReg(SrcReg, getKillRegState(isKill))
.addMemOperand(MMO);
} else if (RC == &VE::I32RegClass) {
BuildMI(MBB, I, DL, get(VE::STLrii))
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addReg(SrcReg, getKillRegState(isKill))
.addMemOperand(MMO);
} else if (RC == &VE::F32RegClass) {
BuildMI(MBB, I, DL, get(VE::STUrii))
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addReg(SrcReg, getKillRegState(isKill))
.addMemOperand(MMO);
} else if (VE::F128RegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(VE::STQrii))
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addReg(SrcReg, getKillRegState(isKill))
.addMemOperand(MMO);
} else
report_fatal_error("Can't store this register to stack slot");
}
void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register DestReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (I != MBB.end())
DL = I->getDebugLoc();
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
if (RC == &VE::I64RegClass) {
BuildMI(MBB, I, DL, get(VE::LDrii), DestReg)
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addMemOperand(MMO);
} else if (RC == &VE::I32RegClass) {
BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg)
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addMemOperand(MMO);
} else if (RC == &VE::F32RegClass) {
BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg)
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addMemOperand(MMO);
} else if (VE::F128RegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(VE::LDQrii), DestReg)
.addFrameIndex(FI)
.addImm(0)
.addImm(0)
.addMemOperand(MMO);
} else
report_fatal_error("Can't load this register from stack slot");
}
Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
VEMachineFunctionInfo *VEFI = MF->getInfo<VEMachineFunctionInfo>();
Register GlobalBaseReg = VEFI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// We use %s15 (%got) as a global base register
GlobalBaseReg = VE::SX15;
// Insert a pseudo instruction to set the GlobalBaseReg into the first
// MBB of the function
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc dl;
BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg);
VEFI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}
bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
switch (MI.getOpcode()) {
case VE::EXTEND_STACK: {
return expandExtendStackPseudo(MI);
}
case VE::EXTEND_STACK_GUARD: {
MI.eraseFromParent(); // The pseudo instruction is gone now.
return true;
}
case VE::GETSTACKTOP: {
return expandGetStackTopPseudo(MI);
}
}
return false;
}
bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const {
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
const VEInstrInfo &TII = *STI.getInstrInfo();
DebugLoc dl = MBB.findDebugLoc(MI);
// Create following instructions and multiple basic blocks.
//
// thisBB:
// brge.l.t %sp, %sl, sinkBB
// syscallBB:
// ld %s61, 0x18(, %tp) // load param area
// or %s62, 0, %s0 // spill the value of %s0
// lea %s63, 0x13b // syscall # of grow
// shm.l %s63, 0x0(%s61) // store syscall # at addr:0
// shm.l %sl, 0x8(%s61) // store old limit at addr:8
// shm.l %sp, 0x10(%s61) // store new limit at addr:16
// monc // call monitor
// or %s0, 0, %s62 // restore the value of %s0
// sinkBB:
// Create new MBB
MachineBasicBlock *BB = &MBB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = ++(BB->getIterator());
MF.insert(It, syscallMBB);
MF.insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(std::next(MachineBasicBlock::iterator(MI))),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(syscallMBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII.get(VE::BRCFLrr_t))
.addImm(VECC::CC_IGE)
.addReg(VE::SX11) // %sp
.addReg(VE::SX8) // %sl
.addMBB(sinkMBB);
BB = syscallMBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61)
.addReg(VE::SX14)
.addImm(0)
.addImm(0x18);
BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62)
.addReg(VE::SX0)
.addImm(0);
BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63)
.addImm(0)
.addImm(0)
.addImm(0x13b);
BuildMI(BB, dl, TII.get(VE::SHMLri))
.addReg(VE::SX61)
.addImm(0)
.addReg(VE::SX63);
BuildMI(BB, dl, TII.get(VE::SHMLri))
.addReg(VE::SX61)
.addImm(8)
.addReg(VE::SX8);
BuildMI(BB, dl, TII.get(VE::SHMLri))
.addReg(VE::SX61)
.addImm(16)
.addReg(VE::SX11);
BuildMI(BB, dl, TII.get(VE::MONC));
BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0)
.addReg(VE::SX62)
.addImm(0);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return true;
}
bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const {
MachineBasicBlock *MBB = MI.getParent();
MachineFunction &MF = *MBB->getParent();
const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
const VEInstrInfo &TII = *STI.getInstrInfo();
DebugLoc DL = MBB->findDebugLoc(MI);
// Create following instruction
//
// dst = %sp + target specific frame + the size of parameter area
const MachineFrameInfo &MFI = MF.getFrameInfo();
const VEFrameLowering &TFL = *STI.getFrameLowering();
// The VE ABI requires a reserved 176 bytes area at the top
// of stack as described in VESubtarget.cpp. So, we adjust it here.
unsigned NumBytes = STI.getAdjustedFrameSize(0);
// Also adds the size of parameter area.
if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF))
NumBytes += MFI.getMaxCallFrameSize();
BuildMI(*MBB, MI, DL, TII.get(VE::LEArii))
.addDef(MI.getOperand(0).getReg())
.addReg(VE::SX11)
.addImm(0)
.addImm(NumBytes);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return true;
}