VEISelLowering.cpp 51 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
//===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that VE uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "VEISelLowering.h"
#include "MCTargetDesc/VEMCExpr.h"
#include "VEMachineFunctionInfo.h"
#include "VERegisterInfo.h"
#include "VETargetMachine.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;

#define DEBUG_TYPE "ve-lower"

//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//

#include "VEGenCallingConv.inc"

bool VETargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
  CCAssignFn *RetCC = RetCC_VE;
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, RetCC);
}

SDValue
VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                              bool IsVarArg,
                              const SmallVectorImpl<ISD::OutputArg> &Outs,
                              const SmallVectorImpl<SDValue> &OutVals,
                              const SDLoc &DL, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to locations.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Analyze return values.
  CCInfo.AnalyzeReturn(Outs, RetCC_VE);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    SDValue OutVal = OutVals[i];

    // Integer return values must be sign or zero extended by the callee.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
      break;
    case CCValAssign::ZExt:
      OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
      break;
    case CCValAssign::AExt:
      OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
      break;
    case CCValAssign::BCvt: {
      // Convert a float return value to i64 with padding.
      //     63     31   0
      //    +------+------+
      //    | float|   0  |
      //    +------+------+
      assert(VA.getLocVT() == MVT::i64);
      assert(VA.getValVT() == MVT::f32);
      SDValue Undef = SDValue(
          DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
      SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
      OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
                                          MVT::i64, Undef, OutVal, Sub_f32),
                       0);
      break;
    }
    default:
      llvm_unreachable("Unknown loc info!");
    }

    assert(!VA.needsCustom() && "Unexpected custom lowering");

    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain; // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps);
}

SDValue VETargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();

  // Get the base offset of the incoming arguments stack space.
  unsigned ArgsBaseOffset = 176;
  // Get the size of the preserved arguments area
  unsigned ArgsPreserved = 64;

  // Analyze arguments according to CC_VE.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());
  // Allocate the preserved area first.
  CCInfo.AllocateStack(ArgsPreserved, Align(8));
  // We already allocated the preserved area, so the stack offset computed
  // by CC_VE would be correct now.
  CCInfo.AnalyzeFormalArguments(Ins, CC_VE);

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    if (VA.isRegLoc()) {
      // This argument is passed in a register.
      // All integer register arguments are promoted by the caller to i64.

      // Create a virtual register for the promoted live-in value.
      unsigned VReg =
          MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT()));
      SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());

      // Get the high bits for i32 struct elements.
      if (VA.getValVT() == MVT::i32 && VA.needsCustom())
        Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
                          DAG.getConstant(32, DL, MVT::i32));

      // The caller promoted the argument, so insert an Assert?ext SDNode so we
      // won't promote the value again in this function.
      switch (VA.getLocInfo()) {
      case CCValAssign::SExt:
        Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
                          DAG.getValueType(VA.getValVT()));
        break;
      case CCValAssign::ZExt:
        Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
                          DAG.getValueType(VA.getValVT()));
        break;
      case CCValAssign::BCvt: {
        // Extract a float argument from i64 with padding.
        //     63     31   0
        //    +------+------+
        //    | float|   0  |
        //    +------+------+
        assert(VA.getLocVT() == MVT::i64);
        assert(VA.getValVT() == MVT::f32);
        SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
        Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
                                         MVT::f32, Arg, Sub_f32),
                      0);
        break;
      }
      default:
        break;
      }

      // Truncate the register down to the argument type.
      if (VA.isExtInLoc())
        Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);

      InVals.push_back(Arg);
      continue;
    }

    // The registers are exhausted. This argument was passed on the stack.
    assert(VA.isMemLoc());
    // The CC_VE_Full/Half functions compute stack offsets relative to the
    // beginning of the arguments area at %fp+176.
    unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset;
    unsigned ValSize = VA.getValVT().getSizeInBits() / 8;

    // Adjust offset for a float argument by adding 4 since the argument is
    // stored in 8 bytes buffer with offset like below.  LLVM generates
    // 4 bytes load instruction, so need to adjust offset here.  This
    // adjustment is required in only LowerFormalArguments.  In LowerCall,
    // a float argument is converted to i64 first, and stored as 8 bytes
    // data, which is required by ABI, so no need for adjustment.
    //    0      4
    //    +------+------+
    //    | empty| float|
    //    +------+------+
    if (VA.getValVT() == MVT::f32)
      Offset += 4;

    int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
    InVals.push_back(
        DAG.getLoad(VA.getValVT(), DL, Chain,
                    DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
                    MachinePointerInfo::getFixedStack(MF, FI)));
  }

  if (!IsVarArg)
    return Chain;

  // This function takes variable arguments, some of which may have been passed
  // in registers %s0-%s8.
  //
  // The va_start intrinsic needs to know the offset to the first variable
  // argument.
  // TODO: need to calculate offset correctly once we support f128.
  unsigned ArgOffset = ArgLocs.size() * 8;
  VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
  // Skip the 176 bytes of register save area.
  FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset);

  return Chain;
}

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT,
                                             const MachineFunction &MF) const {
  Register Reg = StringSwitch<Register>(RegName)
                     .Case("sp", VE::SX11)    // Stack pointer
                     .Case("fp", VE::SX9)     // Frame pointer
                     .Case("sl", VE::SX8)     // Stack limit
                     .Case("lr", VE::SX10)    // Link register
                     .Case("tp", VE::SX14)    // Thread pointer
                     .Case("outer", VE::SX12) // Outer regiser
                     .Case("info", VE::SX17)  // Info area register
                     .Case("got", VE::SX15)   // Global offset table register
                     .Case("plt", VE::SX16) // Procedure linkage table register
                     .Default(0);

  if (Reg)
    return Reg;

  report_fatal_error("Invalid register name global variable");
}

//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//

SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                    SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc DL = CLI.DL;
  SDValue Chain = CLI.Chain;
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // VE target does not yet support tail call optimization.
  CLI.IsTailCall = false;

  // Get the base offset of the outgoing arguments stack space.
  unsigned ArgsBaseOffset = 176;
  // Get the size of the preserved arguments area
  unsigned ArgsPreserved = 8 * 8u;

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());
  // Allocate the preserved area first.
  CCInfo.AllocateStack(ArgsPreserved, Align(8));
  // We already allocated the preserved area, so the stack offset computed
  // by CC_VE would be correct now.
  CCInfo.AnalyzeCallOperands(CLI.Outs, CC_VE);

  // VE requires to use both register and stack for varargs or no-prototyped
  // functions.
  bool UseBoth = CLI.IsVarArg;

  // Analyze operands again if it is required to store BOTH.
  SmallVector<CCValAssign, 16> ArgLocs2;
  CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
                  ArgLocs2, *DAG.getContext());
  if (UseBoth)
    CCInfo2.AnalyzeCallOperands(CLI.Outs, CC_VE2);

  // Get the size of the outgoing arguments stack space requirement.
  unsigned ArgsSize = CCInfo.getNextStackOffset();

  // Keep stack frames 16-byte aligned.
  ArgsSize = alignTo(ArgsSize, 16);

  // Adjust the stack pointer to make room for the arguments.
  // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
  // with more than 6 arguments.
  Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);

  // Collect the set of registers to pass to the function and their values.
  // This will be emitted as a sequence of CopyToReg nodes glued to the call
  // instruction.
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;

  // Collect chains from all the memory opeations that copy arguments to the
  // stack. They must follow the stack pointer adjustment above and precede the
  // call instruction itself.
  SmallVector<SDValue, 8> MemOpChains;

  // VE needs to get address of callee function in a register
  // So, prepare to copy it to SX12 here.

  // If the callee is a GlobalAddress node (quite common, every direct call is)
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
  // Likewise ExternalSymbol -> TargetExternalSymbol.
  SDValue Callee = CLI.Callee;

  bool IsPICCall = isPositionIndependent();

  // PC-relative references to external symbols should go through $stub.
  // If so, we need to prepare GlobalBaseReg first.
  const TargetMachine &TM = DAG.getTarget();
  const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
  const GlobalValue *GV = nullptr;
  auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee);
  if (CalleeG)
    GV = CalleeG->getGlobal();
  bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
  bool UsePlt = !Local;
  MachineFunction &MF = DAG.getMachineFunction();

  // Turn GlobalAddress/ExternalSymbol node into a value node
  // containing the address of them here.
  if (CalleeG) {
    if (IsPICCall) {
      if (UsePlt)
        Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
      Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
    } else {
      Callee =
          makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
    }
  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    if (IsPICCall) {
      if (UsePlt)
        Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
      Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
      Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
    } else {
      Callee =
          makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
    }
  }

  RegsToPass.push_back(std::make_pair(VE::SX12, Callee));

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = CLI.OutVals[i];

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown location info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::BCvt: {
      // Convert a float argument to i64 with padding.
      //     63     31   0
      //    +------+------+
      //    | float|   0  |
      //    +------+------+
      assert(VA.getLocVT() == MVT::i64);
      assert(VA.getValVT() == MVT::f32);
      SDValue Undef = SDValue(
          DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
      SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
                                       MVT::i64, Undef, Arg, Sub_f32),
                    0);
      break;
    }
    }

    if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
      if (!UseBoth)
        continue;
      VA = ArgLocs2[i];
    }

    assert(VA.isMemLoc());

    // Create a store off the stack pointer for this argument.
    SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT);
    // The argument area starts at %fp+176 in the callee frame,
    // %sp+176 in ours.
    SDValue PtrOff =
        DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL);
    PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
    MemOpChains.push_back(
        DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
  }

  // Emit all stores, make sure they occur before the call.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);

  // Build a sequence of CopyToReg nodes glued together with token chain and
  // glue operands which copy the outgoing args into registers. The InGlue is
  // necessary since all emitted instructions must be stuck together in order
  // to pass the live physical registers.
  SDValue InGlue;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
                             RegsToPass[i].second, InGlue);
    InGlue = Chain.getValue(1);
  }

  // Build the operands for the call instruction itself.
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));

  // Add a register mask operand representing the call-preserved registers.
  const VERegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *Mask =
      TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  // Make sure the CopyToReg nodes are glued to the call instruction which
  // consumes the registers.
  if (InGlue.getNode())
    Ops.push_back(InGlue);

  // Now the call itself.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops);
  InGlue = Chain.getValue(1);

  // Revert the stack pointer immediately after the call.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
                             DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
  InGlue = Chain.getValue(1);

  // Now extract the return values. This is more or less the same as
  // LowerFormalArguments.

  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Set inreg flag manually for codegen generated library calls that
  // return float.
  if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
    CLI.Ins[0].Flags.setInReg();

  RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_VE);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    unsigned Reg = VA.getLocReg();

    // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
    // reside in the same register in the high and low bits. Reuse the
    // CopyFromReg previous node to avoid duplicate copies.
    SDValue RV;
    if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
      if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
        RV = Chain.getValue(0);

    // But usually we'll create a new CopyFromReg for a different register.
    if (!RV.getNode()) {
      RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
      Chain = RV.getValue(1);
      InGlue = Chain.getValue(2);
    }

    // Get the high bits for i32 struct elements.
    if (VA.getValVT() == MVT::i32 && VA.needsCustom())
      RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
                       DAG.getConstant(32, DL, MVT::i32));

    // The callee promoted the return value, so insert an Assert?ext SDNode so
    // we won't promote the value again in this function.
    switch (VA.getLocInfo()) {
    case CCValAssign::SExt:
      RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
                       DAG.getValueType(VA.getValVT()));
      break;
    case CCValAssign::ZExt:
      RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
                       DAG.getValueType(VA.getValVT()));
      break;
    case CCValAssign::BCvt: {
      // Extract a float return value from i64 with padding.
      //     63     31   0
      //    +------+------+
      //    | float|   0  |
      //    +------+------+
      assert(VA.getLocVT() == MVT::i64);
      assert(VA.getValVT() == MVT::f32);
      SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
      RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
                                      MVT::f32, RV, Sub_f32),
                   0);
      break;
    }
    default:
      break;
    }

    // Truncate the register down to the return value type.
    if (VA.isExtInLoc())
      RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);

    InVals.push_back(RV);
  }

  return Chain;
}

bool VETargetLowering::isOffsetFoldingLegal(
    const GlobalAddressSDNode *GA) const {
  // VE uses 64 bit addressing, so we need multiple instructions to generate
  // an address.  Folding address with offset increases the number of
  // instructions, so that we disable it here.  Offsets will be folded in
  // the DAG combine later if it worth to do so.
  return false;
}

/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                    bool ForCodeSize) const {
  return VT == MVT::f32 || VT == MVT::f64;
}

/// Determine if the target supports unaligned memory accesses.
///
/// This function returns true if the target allows unaligned memory accesses
/// of the specified type in the given address space. If true, it also returns
/// whether the unaligned memory access is "fast" in the last argument by
/// reference. This is used, for example, in situations where an array
/// copy/move/set is converted to a sequence of store operations. Its use
/// helps to ensure that such replacements don't generate code that causes an
/// alignment error (trap) on the target machine.
bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
                                                      unsigned AddrSpace,
                                                      unsigned Align,
                                                      MachineMemOperand::Flags,
                                                      bool *Fast) const {
  if (Fast) {
    // It's fast anytime on VE
    *Fast = true;
  }
  return true;
}

bool VETargetLowering::hasAndNot(SDValue Y) const {
  EVT VT = Y.getValueType();

  // VE doesn't have vector and not instruction.
  if (VT.isVector())
    return false;

  // VE allows different immediate values for X and Y where ~X & Y.
  // Only simm7 works for X, and only mimm works for Y on VE.  However, this
  // function is used to check whether an immediate value is OK for and-not
  // instruction as both X and Y.  Generating additional instruction to
  // retrieve an immediate value is no good since the purpose of this
  // function is to convert a series of 3 instructions to another series of
  // 3 instructions with better parallelism.  Therefore, we return false
  // for all immediate values now.
  // FIXME: Change hasAndNot function to have two operands to make it work
  //        correctly with Aurora VE.
  if (isa<ConstantSDNode>(Y))
    return false;

  // It's ok for generic registers.
  return true;
}

VETargetLowering::VETargetLowering(const TargetMachine &TM,
                                   const VESubtarget &STI)
    : TargetLowering(TM), Subtarget(&STI) {
  // Instructions which use registers as conditionals examine all the
  // bits (as does the pseudo SELECT_CC expansion). I don't think it
  // matters much whether it's ZeroOrOneBooleanContent, or
  // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
  // former.
  setBooleanContents(ZeroOrOneBooleanContent);
  setBooleanVectorContents(ZeroOrOneBooleanContent);

  // Set up the register classes.
  addRegisterClass(MVT::i32, &VE::I32RegClass);
  addRegisterClass(MVT::i64, &VE::I64RegClass);
  addRegisterClass(MVT::f32, &VE::F32RegClass);
  addRegisterClass(MVT::f64, &VE::I64RegClass);
  addRegisterClass(MVT::f128, &VE::F128RegClass);

  /// Load & Store {
  for (MVT FPVT : MVT::fp_valuetypes()) {
    for (MVT OtherFPVT : MVT::fp_valuetypes()) {
      // Turn FP extload into load/fpextend
      setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand);

      // Turn FP truncstore into trunc + store.
      setTruncStoreAction(FPVT, OtherFPVT, Expand);
    }
  }

  // VE doesn't have i1 sign extending load
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    setTruncStoreAction(VT, MVT::i1, Expand);
  }
  /// } Load & Store

  // Custom legalize address nodes into LO/HI parts.
  MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
  setOperationAction(ISD::BlockAddress, PtrVT, Custom);
  setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
  setOperationAction(ISD::ConstantPool, PtrVT, Custom);

  /// VAARG handling {
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  // VAARG needs to be lowered to access with 8 bytes alignment.
  setOperationAction(ISD::VAARG, MVT::Other, Custom);
  // Use the default implementation.
  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
  setOperationAction(ISD::VAEND, MVT::Other, Expand);
  /// } VAARG handling

  /// Stack {
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
  /// } Stack

  /// Int Ops {
  for (MVT IntVT : {MVT::i32, MVT::i64}) {
    // VE has no REM or DIVREM operations.
    setOperationAction(ISD::UREM, IntVT, Expand);
    setOperationAction(ISD::SREM, IntVT, Expand);
    setOperationAction(ISD::SDIVREM, IntVT, Expand);
    setOperationAction(ISD::UDIVREM, IntVT, Expand);

    // VE has no MULHU/S or U/SMUL_LOHI operations.
    // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type.
    setOperationAction(ISD::MULHU, IntVT, Expand);
    setOperationAction(ISD::MULHS, IntVT, Expand);
    setOperationAction(ISD::UMUL_LOHI, IntVT, Expand);
    setOperationAction(ISD::SMUL_LOHI, IntVT, Expand);

    // VE has no CTTZ, ROTL, ROTR operations.
    setOperationAction(ISD::CTTZ, IntVT, Expand);
    setOperationAction(ISD::ROTL, IntVT, Expand);
    setOperationAction(ISD::ROTR, IntVT, Expand);

    // VE has 64 bits instruction which works as i64 BSWAP operation.  This
    // instruction works fine as i32 BSWAP operation with an additional
    // parameter.  Use isel patterns to lower BSWAP.
    setOperationAction(ISD::BSWAP, IntVT, Legal);

    // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP
    // operations.  Use isel patterns for i64, promote for i32.
    LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal;
    setOperationAction(ISD::BITREVERSE, IntVT, Act);
    setOperationAction(ISD::CTLZ, IntVT, Act);
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act);
    setOperationAction(ISD::CTPOP, IntVT, Act);

    // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations.
    // Use isel patterns for i64, promote for i32.
    setOperationAction(ISD::AND, IntVT, Act);
    setOperationAction(ISD::OR, IntVT, Act);
    setOperationAction(ISD::XOR, IntVT, Act);
  }
  /// } Int Ops

  /// Conversion {
  // VE doesn't have instructions for fp<->uint, so expand them by llvm
  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);

  // fp16 not supported
  for (MVT FPVT : MVT::fp_valuetypes()) {
    setOperationAction(ISD::FP16_TO_FP, FPVT, Expand);
    setOperationAction(ISD::FP_TO_FP16, FPVT, Expand);
  }
  /// } Conversion

  /// Floating-point Ops {

  // VE doesn't have fdiv of f128.
  setOperationAction(ISD::FDIV, MVT::f128, Expand);

  // VE doesn't have load/store of f128, so use custom-lowering.
  setOperationAction(ISD::LOAD, MVT::f128, Custom);
  setOperationAction(ISD::STORE, MVT::f128, Custom);

  for (MVT FPVT : {MVT::f32, MVT::f64}) {
    // f32 and f64 uses ConstantFP.  f128 uses ConstantPool.
    setOperationAction(ISD::ConstantFP, FPVT, Legal);
  }
  /// } Floating-point Ops

  setStackPointerRegisterToSaveRestore(VE::SX11);

  // We have target-specific dag combine patterns for the following nodes:
  setTargetDAGCombine(ISD::TRUNCATE);

  // Set function alignment to 16 bytes
  setMinFunctionAlignment(Align(16));

  // VE stores all argument by 8 bytes alignment
  setMinStackArgumentAlignment(Align(8));

  computeRegisterProperties(Subtarget->getRegisterInfo());
}

const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const {
#define TARGET_NODE_CASE(NAME)                                                 \
  case VEISD::NAME:                                                            \
    return "VEISD::" #NAME;
  switch ((VEISD::NodeType)Opcode) {
  case VEISD::FIRST_NUMBER:
    break;
    TARGET_NODE_CASE(Lo)
    TARGET_NODE_CASE(Hi)
    TARGET_NODE_CASE(GETFUNPLT)
    TARGET_NODE_CASE(GETSTACKTOP)
    TARGET_NODE_CASE(GETTLSADDR)
    TARGET_NODE_CASE(CALL)
    TARGET_NODE_CASE(RET_FLAG)
    TARGET_NODE_CASE(GLOBAL_BASE_REG)
  }
#undef TARGET_NODE_CASE
  return nullptr;
}

EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
                                         EVT VT) const {
  return MVT::i32;
}

// Convert to a target node and set target flags.
SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF,
                                          SelectionDAG &DAG) const {
  if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
    return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA),
                                      GA->getValueType(0), GA->getOffset(), TF);

  if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
    return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(),
                                     0, TF);

  if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
    return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
                                     CP->getAlign(), CP->getOffset(), TF);

  if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
    return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0),
                                       TF);

  llvm_unreachable("Unhandled address SDNode");
}

// Split Op into high and low parts according to HiTF and LoTF.
// Return an ADD node combining the parts.
SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF,
                                       SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
  SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
  return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}

// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
// or ExternalSymbol SDNode.
SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT PtrVT = Op.getValueType();

  // Handle PIC mode first. VE needs a got load for every variable!
  if (isPositionIndependent()) {
    // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
    // function has calls.
    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
    MFI.setHasCalls(true);
    auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op);

    if (isa<ConstantPoolSDNode>(Op) ||
        (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) {
      // Create following instructions for local linkage PIC code.
      //     lea %s35, %gotoff_lo(.LCPI0_0)
      //     and %s35, %s35, (32)0
      //     lea.sl %s35, %gotoff_hi(.LCPI0_0)(%s35)
      //     adds.l %s35, %s15, %s35                  ; %s15 is GOT
      // FIXME: use lea.sl %s35, %gotoff_hi(.LCPI0_0)(%s35, %s15)
      SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32,
                                  VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
      SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
      return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
    }
    // Create following instructions for not local linkage PIC code.
    //     lea %s35, %got_lo(.LCPI0_0)
    //     and %s35, %s35, (32)0
    //     lea.sl %s35, %got_hi(.LCPI0_0)(%s35)
    //     adds.l %s35, %s15, %s35                  ; %s15 is GOT
    //     ld     %s35, (,%s35)
    // FIXME: use lea.sl %s35, %gotoff_hi(.LCPI0_0)(%s35, %s15)
    SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32,
                                VEMCExpr::VK_VE_GOT_LO32, DAG);
    SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
    SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
    return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr,
                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
  }

  // This is one of the absolute code models.
  switch (getTargetMachine().getCodeModel()) {
  default:
    llvm_unreachable("Unsupported absolute code model");
  case CodeModel::Small:
  case CodeModel::Medium:
  case CodeModel::Large:
    // abs64.
    return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
  }
}

/// Custom Lower {

SDValue VETargetLowering::lowerGlobalAddress(SDValue Op,
                                             SelectionDAG &DAG) const {
  return makeAddress(Op, DAG);
}

SDValue VETargetLowering::lowerBlockAddress(SDValue Op,
                                            SelectionDAG &DAG) const {
  return makeAddress(Op, DAG);
}

SDValue VETargetLowering::lowerConstantPool(SDValue Op,
                                            SelectionDAG &DAG) const {
  return makeAddress(Op, DAG);
}

SDValue
VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc DL(Op);

  // Generate the following code:
  //   t1: ch,glue = callseq_start t0, 0, 0
  //   t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1
  //   t3: ch,glue = callseq_end t2, 0, 0, t2:2
  //   t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1
  SDValue Label = withTargetFlags(Op, 0, DAG);
  EVT PtrVT = Op.getValueType();

  // Lowering the machine isd will make sure everything is in the right
  // location.
  SDValue Chain = DAG.getEntryNode();
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
      DAG.getMachineFunction(), CallingConv::C);
  Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL);
  SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)};
  Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args);
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true),
                             DAG.getIntPtrConstant(0, DL, true),
                             Chain.getValue(1), DL);
  Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1));

  // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls.
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setHasCalls(true);

  // Also generate code to prepare a GOT register if it is PIC.
  if (isPositionIndependent()) {
    MachineFunction &MF = DAG.getMachineFunction();
    Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
  }

  return Chain;
}

SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op,
                                                SelectionDAG &DAG) const {
  // The current implementation of nld (2.26) doesn't allow local exec model
  // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always
  // generate the general dynamic model code sequence.
  //
  // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf
  return lowerToTLSGeneralDynamicModel(Op, DAG);
}

// Lower a f128 load into two f64 loads.
static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
  assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type");
  unsigned Alignment = LdNode->getAlign().value();
  if (Alignment > 8)
    Alignment = 8;

  SDValue Lo64 =
      DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(),
                  LdNode->getPointerInfo(), Alignment,
                  LdNode->isVolatile() ? MachineMemOperand::MOVolatile
                                       : MachineMemOperand::MONone);
  EVT AddrVT = LdNode->getBasePtr().getValueType();
  SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(),
                              DAG.getConstant(8, DL, AddrVT));
  SDValue Hi64 =
      DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr,
                  LdNode->getPointerInfo(), Alignment,
                  LdNode->isVolatile() ? MachineMemOperand::MOVolatile
                                       : MachineMemOperand::MONone);

  SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32);
  SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32);

  // VE stores Hi64 to 8(addr) and Lo64 to 0(addr)
  SDNode *InFP128 =
      DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128);
  InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128,
                               SDValue(InFP128, 0), Hi64, SubRegEven);
  InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128,
                               SDValue(InFP128, 0), Lo64, SubRegOdd);
  SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1),
                          SDValue(Hi64.getNode(), 1)};
  SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
  SDValue Ops[2] = {SDValue(InFP128, 0), OutChain};
  return DAG.getMergeValues(Ops, DL);
}

SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());

  SDValue BasePtr = LdNode->getBasePtr();
  if (isa<FrameIndexSDNode>(BasePtr.getNode())) {
    // Do not expand store instruction with frame index here because of
    // dependency problems.  We expand it later in eliminateFrameIndex().
    return Op;
  }

  EVT MemVT = LdNode->getMemoryVT();
  if (MemVT == MVT::f128)
    return lowerLoadF128(Op, DAG);

  return Op;
}

// Lower a f128 store into two f64 stores.
static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
  assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type");

  SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32);
  SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32);

  SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64,
                                    StNode->getValue(), SubRegEven);
  SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64,
                                    StNode->getValue(), SubRegOdd);

  unsigned Alignment = StNode->getAlign().value();
  if (Alignment > 8)
    Alignment = 8;

  // VE stores Hi64 to 8(addr) and Lo64 to 0(addr)
  SDValue OutChains[2];
  OutChains[0] =
      DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0),
                   StNode->getBasePtr(), MachinePointerInfo(), Alignment,
                   StNode->isVolatile() ? MachineMemOperand::MOVolatile
                                        : MachineMemOperand::MONone);
  EVT AddrVT = StNode->getBasePtr().getValueType();
  SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(),
                              DAG.getConstant(8, DL, AddrVT));
  OutChains[1] =
      DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr,
                   MachinePointerInfo(), Alignment,
                   StNode->isVolatile() ? MachineMemOperand::MOVolatile
                                        : MachineMemOperand::MONone);
  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}

SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
  assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type");

  SDValue BasePtr = StNode->getBasePtr();
  if (isa<FrameIndexSDNode>(BasePtr.getNode())) {
    // Do not expand store instruction with frame index here because of
    // dependency problems.  We expand it later in eliminateFrameIndex().
    return Op;
  }

  EVT MemVT = StNode->getMemoryVT();
  if (MemVT == MVT::f128)
    return lowerStoreF128(Op, DAG);

  // Otherwise, ask llvm to expand it.
  return SDValue();
}

SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Need frame address to find the address of VarArgsFrameIndex.
  MF.getFrameInfo().setFrameAddressIsTaken(true);

  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  SDLoc DL(Op);
  SDValue Offset =
      DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT),
                  DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  EVT VT = Node->getValueType(0);
  SDValue InChain = Node->getOperand(0);
  SDValue VAListPtr = Node->getOperand(1);
  EVT PtrVT = VAListPtr.getValueType();
  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
  SDLoc DL(Node);
  SDValue VAList =
      DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
  SDValue Chain = VAList.getValue(1);
  SDValue NextPtr;

  if (VT == MVT::f128) {
    // VE f128 values must be stored with 16 bytes alignment.  We doesn't
    // know the actual alignment of VAList, so we take alignment of it
    // dyanmically.
    int Align = 16;
    VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                         DAG.getConstant(Align - 1, DL, PtrVT));
    VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
                         DAG.getConstant(-Align, DL, PtrVT));
    // Increment the pointer, VAList, by 16 to the next vaarg.
    NextPtr =
        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL));
  } else if (VT == MVT::f32) {
    // float --> need special handling like below.
    //    0      4
    //    +------+------+
    //    | empty| float|
    //    +------+------+
    // Increment the pointer, VAList, by 8 to the next vaarg.
    NextPtr =
        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
    // Then, adjust VAList.
    unsigned InternalOffset = 4;
    VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                         DAG.getConstant(InternalOffset, DL, PtrVT));
  } else {
    // Increment the pointer, VAList, by 8 to the next vaarg.
    NextPtr =
        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
  }

  // Store the incremented VAList to the legalized pointer.
  InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV));

  // Load the actual argument out of the pointer VAList.
  // We can't count on greater alignment than the word size.
  return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
                     std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8);
}

SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
                                                  SelectionDAG &DAG) const {
  // Generate following code.
  //   (void)__llvm_grow_stack(size);
  //   ret = GETSTACKTOP;        // pseudo instruction
  SDLoc DL(Op);

  // Get the inputs.
  SDNode *Node = Op.getNode();
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  MaybeAlign Alignment(Op.getConstantOperandVal(2));
  EVT VT = Node->getValueType(0);

  // Chain the dynamic stack allocation so that it doesn't modify the stack
  // pointer when other instructions are using the stack.
  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);

  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
  Align StackAlign = TFI.getStackAlign();
  bool NeedsAlign = Alignment.valueOrOne() > StackAlign;

  // Prepare arguments
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Node = Size;
  Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
  Args.push_back(Entry);
  if (NeedsAlign) {
    Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT);
    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
    Args.push_back(Entry);
  }
  Type *RetTy = Type::getVoidTy(*DAG.getContext());

  EVT PtrVT = Op.getValueType();
  SDValue Callee;
  if (NeedsAlign) {
    Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0);
  } else {
    Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0);
  }

  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(DL)
      .setChain(Chain)
      .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args))
      .setDiscardResult(true);
  std::pair<SDValue, SDValue> pair = LowerCallTo(CLI);
  Chain = pair.second;
  SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain);
  if (NeedsAlign) {
    Result = DAG.getNode(ISD::ADD, DL, VT, Result,
                         DAG.getConstant((Alignment->value() - 1ULL), DL, VT));
    Result = DAG.getNode(ISD::AND, DL, VT, Result,
                         DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT));
  }
  //  Chain = Result.getValue(1);
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
                             DAG.getIntPtrConstant(0, DL, true), SDValue(), DL);

  SDValue Ops[2] = {Result, Chain};
  return DAG.getMergeValues(Ops, DL);
}

SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Should not custom lower this!");
  case ISD::BlockAddress:
    return lowerBlockAddress(Op, DAG);
  case ISD::ConstantPool:
    return lowerConstantPool(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC:
    return lowerDYNAMIC_STACKALLOC(Op, DAG);
  case ISD::GlobalAddress:
    return lowerGlobalAddress(Op, DAG);
  case ISD::GlobalTLSAddress:
    return lowerGlobalTLSAddress(Op, DAG);
  case ISD::LOAD:
    return lowerLOAD(Op, DAG);
  case ISD::STORE:
    return lowerSTORE(Op, DAG);
  case ISD::VASTART:
    return lowerVASTART(Op, DAG);
  case ISD::VAARG:
    return lowerVAARG(Op, DAG);
  }
}
/// } Custom Lower

static bool isI32Insn(const SDNode *User, const SDNode *N) {
  switch (User->getOpcode()) {
  default:
    return false;
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SETCC:
  case ISD::SMIN:
  case ISD::SMAX:
  case ISD::SHL:
  case ISD::SRA:
  case ISD::BSWAP:
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
  case ISD::BR_CC:
  case ISD::BITCAST:
  case ISD::ATOMIC_CMP_SWAP:
  case ISD::ATOMIC_SWAP:
    return true;
  case ISD::SRL:
    if (N->getOperand(0).getOpcode() != ISD::SRL)
      return true;
    // (srl (trunc (srl ...))) may be optimized by combining srl, so
    // doesn't optimize trunc now.
    return false;
  case ISD::SELECT_CC:
    if (User->getOperand(2).getNode() != N &&
        User->getOperand(3).getNode() != N)
      return true;
    LLVM_FALLTHROUGH;
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::SELECT:
  case ISD::CopyToReg:
    // Check all use of selections, bit operations, and copies.  If all of them
    // are safe, optimize truncate to extract_subreg.
    for (SDNode::use_iterator UI = User->use_begin(), UE = User->use_end();
         UI != UE; ++UI) {
      switch ((*UI)->getOpcode()) {
      default:
        // If the use is an instruction which treats the source operand as i32,
        // it is safe to avoid truncate here.
        if (isI32Insn(*UI, N))
          continue;
        break;
      case ISD::ANY_EXTEND:
      case ISD::SIGN_EXTEND:
      case ISD::ZERO_EXTEND: {
        // Special optimizations to the combination of ext and trunc.
        // (ext ... (select ... (trunc ...))) is safe to avoid truncate here
        // since this truncate instruction clears higher 32 bits which is filled
        // by one of ext instructions later.
        assert(N->getValueType(0) == MVT::i32 &&
               "find truncate to not i32 integer");
        if (User->getOpcode() == ISD::SELECT_CC ||
            User->getOpcode() == ISD::SELECT)
          continue;
        break;
      }
      }
      return false;
    }
    return true;
  }
}

// Optimize TRUNCATE in DAG combining.  Optimizing it in CUSTOM lower is
// sometime too early.  Optimizing it in DAG pattern matching in VEInstrInfo.td
// is sometime too late.  So, doing it at here.
SDValue VETargetLowering::combineTRUNCATE(SDNode *N,
                                          DAGCombinerInfo &DCI) const {
  assert(N->getOpcode() == ISD::TRUNCATE &&
         "Should be called with a TRUNCATE node");

  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // We prefer to do this when all types are legal.
  if (!DCI.isAfterLegalizeDAG())
    return SDValue();

  // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant.
  if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC &&
      isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) &&
      isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
    return SDValue();

  // Check all use of this TRUNCATE.
  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE;
       ++UI) {
    SDNode *User = *UI;

    // Make sure that we're not going to replace TRUNCATE for non i32
    // instructions.
    //
    // FIXME: Although we could sometimes handle this, and it does occur in
    // practice that one of the condition inputs to the select is also one of
    // the outputs, we currently can't deal with this.
    if (isI32Insn(User, N))
      continue;

    return SDValue();
  }

  SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32);
  return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT,
                                    N->getOperand(0), SubI32),
                 0);
}

SDValue VETargetLowering::PerformDAGCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  switch (N->getOpcode()) {
  default:
    break;
  case ISD::TRUNCATE:
    return combineTRUNCATE(N, DCI);
  }

  return SDValue();
}